Lösung Klausur II Lineare Algebra für Informatiker

Aufgabe 1.

- (1) Die Determinante ist det A = -1, die Inverse ist $A^{-1} = \begin{pmatrix} -1 & \iota \\ \iota & -1 \end{pmatrix}$.
- (2) Die Determinante ist $\det A = 0$, die Inverse existiert nicht.
- (3) Die Determinante ist det A = 1, die Inverse ist $A^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$.

Aufgabe 2.

- (1) Es ist $\operatorname{rk} A = 2$.
- (2) Es ist $\{x \in \mathbf{F}_4^4 \mid Ax = 0\} = \langle \begin{pmatrix} \alpha \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \rangle$, eine Basis davon also z.B. gegeben durch $\begin{pmatrix} \alpha \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \rangle$.
- (3) Es ist $\{x \in \mathbf{F}_4^4 \mid Ax = b\} = \emptyset$.
- (4) Es ist $\{x \in \mathbf{F}_4^4 \mid Ax = 0\} = \begin{pmatrix} \alpha \\ 0 \\ 1 \\ 0 \end{pmatrix} + \langle \begin{pmatrix} \alpha \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \rangle$.

Aufgabe 3.

- (1) (a) Es ist $\chi_A(X) = X^2(X+1)$.
 - (b) Mit z.B. $S = \begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ wird $S^{-1}AS = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
 - (c) Es ist $\mu_A(X) = X^2(X+1)$.
- (2) (a) Es ist $\chi_A(X) = (X+1)^5$.
 - (b) Mit z.B. $S = \begin{pmatrix} -1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}$ wird $S^{-1}AS = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$.
 - (c) Es ist $\mu_A(X) = (X+1)^2$.

Aufgabe 4.

- (1) (a) Es ist $\chi_A(X) = X(X-2)$. Mit z.B. $U = \frac{\sqrt{2}}{2} \begin{pmatrix} i i \\ 1 & 1 \end{pmatrix}$ wird $\bar{U}^t A U = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$.
 - (b) Wegen der Eigenwerte 0 und 2 ist A positiv semidefinit (aber nicht positiv definit).
 - (c) Über positive Semidefinitheit gibt das Hauptminorenkriterium keine Aussage ab.
- (2) (a) Es ist $\chi_A(X) = (X+5)^2(X+2)$. Mit z.B. $U = \frac{\sqrt{6}}{6} \begin{pmatrix} -\sqrt{3} & -1 & \sqrt{2} \\ \sqrt{3} & -1 & \sqrt{2} \\ 0 & 2 & \sqrt{2} \end{pmatrix}$ wird $\bar{U}^t A U = \begin{pmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.
 - (b) Wegen der Eigenwerte -5 und -2 ist A negativ definit.
 - (c) Das Hauptminorenkriterium bestätigt mit det $A_1 = -4$, det $A_2 = +15$ und det $A_3 = -50$ die negative Definitheit von A.

Aufgabe 5.

- (1) Mit der Cramerschen Regel berechnet sich der Eintrag an Position (1,5) zu $(\det A)^{-1}(-1)^{1+5} \det \begin{pmatrix} s & 1 & s & 1 \\ 1 & s & 1 & s \\ 0 & 1 & s & 1 \\ 0 & 0 & 1 & s \end{pmatrix} = (s^4 s^2)/(1 + s^4 s^2).$
- (2) Die Elementarteiler ergeben sich zu $d_1 = 1$, $d_2 = 6$ und $d_3 = 6$.

(3) Wir setzen an mit
$$\binom{a_{n-2}}{a_{n-1}} = \underbrace{\binom{0 & 1 & 0}{0 & 0 & 1}}_{=:A} \binom{a_{n-3}}{a_{n-1}}$$
. Es wird $\chi_A(X) = (X-1)^3$. Mit z.B. $S = \binom{1-1 & 1}{1 & 0 & 0}$ wird $S^{-1}AS = \binom{1 & 1 & 0}{0 & 1 & 1} =: J$. Insgesamt wird

$$\begin{pmatrix} a_n \\ a_{n+1} \\ a_{n+2} \end{pmatrix} = A^n \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = SJ^n S^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$= S \begin{pmatrix} 1 & n & n(n-1)/2 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} S^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & n & n(n-1)/2 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} * & 2n-n^2 & * \\ * & * & * & * \\ * & * & * & * \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} ,$$

also $a_n = 2n - n^2$.

Aufgabe 6.

- (1) Aussage ist falsch. Zum Beispiel sind $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ und $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ nilpotent, nicht aber $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- (2) Aussage ist falsch. Sei ein solches A als existent angenommen, und sei $S \in GL_2(\mathbb{C})$ mit $J := S^{-1}AS$ in Jordanform. Aus $J^3 = 0$ folgt, daß die Diagonaleinträge von J gleich 0 sind. Dann ist aber $J = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ oder $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, und jedenfalls $J^2 = 0$, im Widerspruch zu $A^2 \neq 0$.

Alternativ, ist A nilpotent, so ist $\chi_A(X) = X^2$, also $\chi_A(A) = A^2 = 0$.

(3) Aussage ist richtig. Es wird

$$\chi_A(X)\chi_B(X) = \det(XE - A)\det(XE - B)
= \det((XE - A)(XE - B))
= \det(X^2E - X(A + B) + AB)
= \det(X^2E - X(A + B))
= X^n \det(XE - (A + B))
= X^n\chi_{A+B}(X).$$

(4) Aussage ist richtig. Sei hierzu $S \in GL_n(\mathbf{C})$ mit $J := S^{-1}AS$ in Jordanform. Aus $J^2 = E$ folgt, daß J bereits Diagonalgestalt hat, da sonst in J^2 ein Eintrag 2λ oberhalb der Diagonalen auftritt, für einen Eigenwert λ von A

Alternativ, aus $A^2 - E = 0$ folgt, daß $\mu_A(X)$ ein Teiler von $X^2 - 1$ ist, also nur einfache Nullstellen aufweist, und A somit diagonalisierbar ist.

(5) Aussage ist falsch. Zum Beispiel ist $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ als nichtdiagonale obere Dreiecksmatrix nicht normal, und mithin nicht unitär diagonalisierbar. Wohl ist aber $A^2 = E$.