Elementary divisors of Gram matrices of certain Specht modules

(jt. w. G. Nebe and A. Mathas)

Notation

 S_n symmetric group

 $\lambda \vdash n$ partition of n

 λ' transpose of λ

 S^{λ} integral Specht module over $\mathbf{Z}\mathcal{S}_n$

 $n_{\lambda} := \operatorname{rk}_{\mathbf{Z}} S^{\lambda}$

 $S^{\lambda,*}$ **Z**-linear dual

 $S_A^{\lambda} := A \otimes_{\mathbf{Z}} S^{\lambda}$ for a commutative ring A

(=,-) the S_n -invariant nondegenerate

Z-bilinear form on S^{λ}

Problem

 $\mathbf{Z}\mathcal{S}_n$ -linear map:

$$S^{\lambda} \stackrel{\eta}{\longleftarrow} S^{\lambda,*}$$

$$\xi \longmapsto (\xi, -)$$

Determine quotient $S^{\lambda,*}/S^{\lambda}$ as a finite abelian group.

Equivalently, determine el. div. of Gram matrix of (=, -).

Motivation

I) Simple modules

Ordinary:

$$\{S_{\mathbf{C}}^{\lambda} \mid \lambda \vdash n\} = \{\text{simple } \mathbf{C}S_n\text{-modules}\}$$

Modular: p prime.

$$D_{\mathbf{F}_p}^{\lambda} := \operatorname{Im}\left((S^{\lambda} \overset{\eta}{\smile} S^{\lambda,*}) \otimes_{\mathbf{Z}} \mathbf{F}_p \right)$$

James proves:

$$\{D_{\mathbf{F}_p}^{\lambda} \mid \lambda \vdash n \text{ p-regular}\} = \{\text{simple } \mathbf{F}_p \mathcal{S}_n \text{-modules}\}$$

So

$$\dim_{\mathbf{F}_p} D_{\mathbf{F}_p}^{\lambda} = \#\{\text{el. div. of } S^{\lambda} \text{ not divisible by } p\}$$

However, we will make extensive use of known such dimensions rather than derive them.

II) Quasiblocks

How to understand the integral group ring $\mathbb{Z}S_n$? Wedderburn isomorphism:

$$\mathbf{Q}\mathcal{S}_n \xrightarrow{\sim} \prod_{\lambda \vdash n} \underbrace{\operatorname{End}_{\mathbf{Q}} S_{\mathbf{Q}}^{\lambda}}_{\simeq \mathbf{Q}^{n_{\lambda} \times n_{\lambda}}}$$

Restrict to Wedderburn embedding.

$$\mathbf{Z}\mathcal{S}_n \subseteq \prod_{\lambda \vdash n} \underbrace{\operatorname{End}_{\mathbf{Z}}S^{\lambda}}_{\simeq \mathbf{Z}^{n_{\lambda} \times n_{\lambda}}}$$

Describe $\mathbf{Z}\mathcal{S}_n$ as image of the Wedderburn embedding.

Example:

$$\mathbf{Z}S_3 \simeq \mathbf{Z} \underbrace{\begin{pmatrix} \mathbf{Z} & \mathbf{Z} \\ 3\mathbf{Z} & \mathbf{Z} \end{pmatrix}}_{2} \mathbf{Z}$$

Call
$$Q^{(2,1)} = \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ 3\mathbf{z} & \mathbf{z} \end{pmatrix}$$
 a quasiblock of $\mathbf{Z}\mathcal{S}_3$.

Orthogonal decomposition into rational primitive central idempotents:

$$1_{\mathbf{Q}S_n} = \sum_{\lambda \vdash n} \varepsilon_{\lambda}$$

General definition of a quasiblock:

$$Q^{\lambda} := \mathbf{Z} \mathcal{S}_n \varepsilon_{\lambda} \left(\longrightarrow \operatorname{End}_{\mathbf{Z}} S^{\lambda} \simeq \mathbf{Z}^{n_{\lambda} \times n_{\lambda}} \right)$$

Unknown: index of this inclusion (as abelian groups).

Necessary condition on $\varphi \in \operatorname{End}_{\mathbf{Z}} S^{\lambda}$ to lie in image:

$$\eta^{-1}\varphi\eta$$
 has to be integral

 $(\eta^{-1} = \text{rational inverse of } \eta)$. Not sufficient in general.

The Smith form of $S^{(2,1)}$ is $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$, so for $Q^{(2,1)} = \begin{pmatrix} \mathbf{Z} & \mathbf{Z} \\ 3\mathbf{Z} & \mathbf{Z} \end{pmatrix}$ this necessary condition is in fact sufficient.

In general, elementary divisors of S^{λ} partially describe Q^{λ} .

Method

I) Jantzen filtration

Let p be a prime, let $i \geq 0$. Define $S_{\mathbf{F}_p}^{\lambda}(i)$ by

$$\operatorname{Kern} \stackrel{\boldsymbol{\zeta}}{\longrightarrow} S^{\lambda} \stackrel{\eta}{\longrightarrow} S^{\lambda,*}/p^{i}S^{\lambda,*}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{\lambda}_{\mathbf{F}_{p}}(i) \stackrel{\boldsymbol{\zeta}}{\longleftarrow} S^{\lambda}_{\mathbf{F}_{p}}$$

The Jantzen filtration is the finite filtration

$$S_{\mathbf{F}_p}^{\lambda} = S_{\mathbf{F}_p}^{\lambda}(0) \supseteq S_{\mathbf{F}_p}^{\lambda}(1) \supseteq S_{\mathbf{F}_p}^{\lambda}(2) \supseteq \cdots,$$

We have $S_{\mathbf{F}_p}^{\lambda}(0)/S_{\mathbf{F}_p}^{\lambda}(1) \simeq D_{\mathbf{F}_p}^{\lambda}$.

The Jantzen filtration gives $\mathbf{Z}_{(p)}$ -linear elementary divisors:

$$S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda} \simeq \bigoplus_{i\geq 0} (\mathbf{Z}/p^i\mathbf{Z})^{\dim_{\mathbf{F}_p} S_{\mathbf{F}_p}^{\lambda}(i)/S_{\mathbf{F}_p}^{\lambda}(i+1)}$$
.

So to get elementary divisors:

- Determine composition factors of Jantzen subquotients (using Jantzen's Lemma and Schaper's Theorem).
- Use results of James et al. on the dimensions of simple modules.

II) Jantzen's Lemma

p prime, $\lambda \vdash n$ arbitrary, $\mu \vdash n$ p-regular.

$$\vartheta_i := [S_{\mathbf{F}_p}^{\lambda}(i)/S_{\mathbf{F}_p}^{\lambda}(i+1):D_{\mathbf{F}_p}^{\mu}].$$

Jantzen's Lemma:

$$[S_{\mathbf{F}_p}^{\lambda}: D_{\mathbf{F}_p}^{\mu}] = \vartheta_0 + \vartheta_1 + \vartheta_2 + \cdots$$

$$[S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_p}^{\mu}] = 0\vartheta_0 + 1\vartheta_1 + 2\vartheta_2 + \cdots$$

So if $[S_{\mathbf{F}_n}^{\lambda}:D_{\mathbf{F}_n}^{\mu}]=1$, then

$$\vartheta_i = \begin{cases} 1 \text{ for } i = [S_{\mathbf{Z}_{(p)}}^{\lambda,*} / S_{\mathbf{Z}_{(p)}}^{\lambda} : D_{\mathbf{F}_p}^{\mu}] \\ 0 \text{ else.} \end{cases}$$

If $\lambda = \mu$, then $\vartheta_0 = 1$, and $\vartheta_i = 0$ for i > 0.

If $\lambda \neq \mu$, we have $\vartheta_0 = 0$. E.g. if $[S_{\mathbf{F}_p}^{\lambda} : D_{\mathbf{F}_p}^{\mu}] = 2$, then:

If
$$[S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_p}^{\mu}] = 2$$
, then $\vartheta_1 = 2$.

If
$$[S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_p}^{\mu}] = 3$$
, then $\vartheta_1 = 1$, $\vartheta_2 = 1$.

If
$$[S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_p}^{\mu}] = 4$$
, then $\vartheta_1 = 1$, $\vartheta_3 = 1$; or $\vartheta_2 = 2$.

Etc. So there is still ambiguity.

III) Schaper's Theorem

Even if all occurring decomposition numbers $[S_{\mathbf{F}_p}^{\lambda}:D_{\mathbf{F}_p}^{\mu}]$ are known, we still need $[S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}:D_{\mathbf{F}_p}^{\mu}].$

Schaper's Theorem is a formula in the Grothendieck group:

$$[S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}] = \sum_{\lambda \leq \nu} \alpha_{\nu} [S_{\mathbf{F}_{p}}^{\nu}],$$

with combinatorially determined coefficients $\alpha_{\nu} \in \mathbf{Z}$.

So for our purposes, knowledge of further decomposition numbers $[S_{\mathbf{F}_p}^{\nu}:D_{\mathbf{F}_p}^{\mu}]$ is required.

IV) Transposition

Jantzen filtration of S^{λ} \longleftrightarrow Jantzen filtration of $S^{\lambda'}$

Some results

Table of calculated Jantzen filtrations.

Partially depending on conjectures on dec. numbers.

Partially with ambiguity.

λ	Remarks
$(n-m,1^{n-m})$	hooks, two methods: Jantzen-Schaper and direct; independently done by James-Mathas
(n-m,m)	two-row; independently done by Fayers and by Murphy
(n-3,2,1)	
$(n-4,2^2)$	if $p=2$: depending on a conj. on $[S_{\mathbf{F}_2}^{(n-4,2^2)}:D_{\mathbf{F}_2}^{(n)}];$ if $p=3$: with ambiguity
(n-4,3,1)	if $p = 2$: with ambiguity
$(n-4,2,1^2)$	if $p=2$: depending heavily on conj. on dec. nos., and with ambiguity; if $p=3$: depending on conj. on dec. nos.
Case $n - \lambda_1 < p$	using Kleshchev's Modular Branching and Carter-Payne

How to proceed?

Let e^{μ} be a primitive idempotent of $\mathbf{Z}_{(p)}\mathcal{S}_n$ belonging to $D_{\mathbf{F}_p}^{\mu}$ and let ε^{λ} be the primitive central idempotent of $\mathbf{Q}\mathcal{S}_n$ belonging to $S_{\mathbf{Q}}^{\lambda}$.

The embedding η decomposes into a direct sum of embeddings

$$S_{\mathbf{Z}(p)}^{\lambda} e^{\mu} \subset \stackrel{e^{\mu} \eta e^{\mu}}{\longrightarrow} S_{\mathbf{Z}(p)}^{\lambda,*} e^{\mu}$$
,

so we get a block diagonalisation of the Gram matrix, with blocks of edge length

$$\operatorname{rk}_{\mathbf{Z}_{(p)}} S^{\lambda} e^{\mu} = [S^{\lambda}_{\mathbf{F}_{p}} : D^{\mu}_{\mathbf{F}_{p}}].$$

It remains to

calculate the Smith form of $e^{\mu}\eta e^{\mu}$.

Schaper's Theorem ess. allows to calculate the determinant:

$$v_p(\det(e^{\mu}\eta e^{\mu})) = [S_{\mathbf{Z}_{(p)}}^{\lambda,*}/S_{\mathbf{Z}_{(p)}}^{\lambda}:D_{\mathbf{F}_p}^{\mu}]$$

Assume $[S_{\mathbf{F}_p}^{\lambda}:D_{\mathbf{F}_p}^{\mu}] \geq 1$. Let

$$Q_{(p)}^{\lambda:\mu} := e^{\mu} Q_{\mathbf{Z}_{(p)}}^{\lambda} e^{\mu} \left(\longrightarrow \mathbf{Z}_{(p)}^{[S_{\mathbf{F}_p}^{\lambda}:D_{\mathbf{F}_p}^{\mu}] \times [S_{\mathbf{F}_p}^{\lambda}:D_{\mathbf{F}_p}^{\mu}]} \right).$$

- $\mathbf{Q} \otimes_{\mathbf{Z}_{(p)}} Q_{(p)}^{\lambda:\mu}$ is simple.
- $Q_{(p)}^{\lambda:\mu}$ is local (for $e^{\mu}Q_{\mathbf{Z}_{(p)}}^{\lambda}$ is indecomposable).
- $e^{\mu}\eta e^{\mu}$ is an inclusion of simple $Q_{(p)}^{\lambda:\mu}$ -lattices.

If we could classify all inclusions of simple lattices over $Q_{(p)}^{\lambda:\mu}$, we would know the Smith form of $e^{\mu}\eta e^{\mu}$ to be one of the Smith forms of these inclusions (moreover, one of a given determinant).

Example:
$$Q_{(2)}^{(3,1^2):(5)} \simeq \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{Z}_{(2)}^{2\times 2} \mid b \equiv_2 0, a \equiv_2 d \right\},$$
 with simple lattices $X := \begin{pmatrix} \mathbf{Z}_{(2)} \\ \mathbf{Z}_{(2)} \end{pmatrix}$ and $Y := \begin{pmatrix} 2\mathbf{Z}_{(2)} \\ \mathbf{Z}_{(2)} \end{pmatrix}.$

Inclusions of determinant 4: only the scalar inclusions $X \stackrel{2}{\longleftarrow} X$ and $Y \stackrel{2}{\longleftarrow} Y$, both with Smith form $\begin{pmatrix} 20\\02 \end{pmatrix}$.

Need: lattices over $Q_{(p)}^{\lambda:\mu}$. Note: $\operatorname{rk}_{\mathbf{Z}_{(p)}} Q_{(p)}^{\lambda:\mu} = [S_{\mathbf{F}_p}^{\lambda}: D_{\mathbf{F}_p}^{\mu}]^2$. So to ask for $Q_{(p)}^{\lambda:\mu}$ can be viewed a refined version of the question for the decomposition numbers.

Elementary divisors over $\mathbb{Z}[q, q^{-1}]$?

For the Specht module over the Hecke algebra \mathcal{H} with ground ring $\mathbf{Z}[q,q^{-1}]$, we may also consider the Gram matrix of the invariant bilinear form.

Distinguish (also over $\mathbf{Z}_{(p)}[q, q^{-1}]$):

- divisibly diagonalizable matrices (each diagonal entry divides successor)
- diagonalizable, but not divisibly diagonalizable matrices
- non-diagonalizable matrices

Andersen remarked that not every Gram matrix of a Specht module is diagonalizable.

For $\lambda = (n - l, 1^l)$: bases divisibly diagonalizing the Gram matrix (the q causing difficulties).

For $\lambda = (3, 3, 2)$: not diagonalizable over $\mathbf{Z}_{(2)}[q, q^{-1}]$.

For $\lambda=(4,2,1,1)$: neither diagonalizable over $\mathbf{Z}_{(2)}[q,q^{-1}]$ nor over $\mathbf{Z}_{(3)}[q,q^{-1}]$.

Method: if diagonalizable, then there is a connection between the elementary divisors over $\mathbf{Q}[q, q^{-1}]$ and $\mathbf{F}_p[q, q^{-1}]$.

We do not know (not even conjecturally) a criterion for λ to decide on diagonalizability.