Elementary divisors of Gram matrices of certain Specht modules
 (jut. w. G. Nebs and A. Mathis)

Notation

$\mathcal{S}_{n} \quad$ symmetric group
$\lambda \vdash n \quad$ partition of n
$\lambda^{\prime} \quad$ transpose of λ
$S^{\lambda} \quad$ integral Specht module over $\mathbf{Z} \mathcal{S}_{n}$
$n_{\lambda}:=\mathrm{rk}_{\mathbf{Z}} S^{\lambda}$
$S^{\lambda, *} \quad$ Z-linear dual
$S_{A}^{\lambda}:=A \otimes_{\mathbf{Z}} S^{\lambda}$ for a commutative ring A
$(=,-) \quad$ the \mathcal{S}_{n}-invariant nondegenerate

Z-bilinear form on S^{λ}

Problem

$\mathbf{Z} \mathcal{S}_{n}$-linear map:

$$
\begin{aligned}
S^{\lambda} & { }^{\eta} \\
\xi & \longmapsto S^{\lambda, *} \\
& \longmapsto(\xi,-)
\end{aligned}
$$

Determine quotient $S^{\lambda, *} / S^{\lambda}$ as a finite abelian group.
Equivalently, determine el. div. of Gram matrix of $(=,-)$.

Motivation

I) Simple modules

Ordinary:

$$
\left\{S_{\mathbf{C}}^{\lambda} \mid \lambda \vdash n\right\}=\left\{\text { simple } \mathbf{C} \mathcal{S}_{n} \text {-modules }\right\}
$$

Modular: p prime.

$$
D_{\mathbf{F}_{p}}^{\lambda}:=\operatorname{Im}\left(\left(S^{\lambda}{\left.\left.\xrightarrow{\eta} S^{\lambda, *}\right) \otimes_{\mathbf{Z}} \mathbf{F}_{p}\right), ~\left({ }^{\eta}\right)}\right.\right.
$$

James proves:

$$
\left\{D_{\mathbf{F}_{p}}^{\lambda} \mid \lambda \vdash n \text { p-regular }\right\}=\left\{\text { simple } \mathbf{F}_{p} \mathcal{S}_{n} \text {-modules }\right\}
$$

So

$$
\operatorname{dim}_{\mathbf{F}_{p}} D_{\mathbf{F}_{p}}^{\lambda}=\#\left\{\text { el. div. of } S^{\lambda} \text { not divisible by } p\right\}
$$

However, we will make extensive use of known such dimensions rather than derive them.

II) Quasiblocks

How to understand the integral group ring $\mathbf{Z} \mathcal{S}_{n}$?
Wedderburn isomorphism:

$$
\mathbf{Q} \mathcal{S}_{n} \xrightarrow{\sim} \prod_{\lambda \vdash n} \underbrace{\operatorname{End}_{\mathbf{Q}} S_{\mathbf{Q}}^{\lambda}}_{\simeq \mathbf{Q}^{n} \lambda^{\times n_{\lambda}}}
$$

Restrict to Wedderburn embedding.

$$
\mathbf{Z} \mathcal{S}_{n} \longleftrightarrow \prod_{\lambda \vdash n} \underbrace{\operatorname{End}_{\mathbf{Z}} S^{\lambda}}_{\simeq \mathbf{Z}^{n_{\lambda} \times n_{\lambda}}}
$$

Describe $\mathbf{Z} \mathcal{S}_{n}$ as image of the Wedderburn embedding.

Example:

$$
\mathbf{Z} \mathcal{S}_{3} \simeq \mathbf{Z} \underbrace{3}_{2}\binom{\mathbf{Z} \mathbf{Z}}{3 \mathbf{Z} \mathbf{Z}}+3
$$

Call $Q^{(2,1)}=\binom{\mathrm{Z} \mathbf{Z}}{3 \mathbf{Z} \mathbf{Z}}$ a quasiblock of $\mathbf{Z} \mathcal{S}_{3}$.

Orthogonal decomposition into rational primitive central idempotents:

$$
1_{\mathbf{Q} \mathcal{S}_{n}}=\sum_{\lambda \vdash n} \varepsilon_{\lambda}
$$

General definition of a quasiblock:

$$
Q^{\lambda}:=\mathbf{Z}_{n} \varepsilon_{\lambda}\left(\longleftrightarrow \operatorname{End}_{\mathbf{Z}} S^{\lambda} \simeq \mathbf{Z}^{n_{\lambda} \times n_{\lambda}}\right)
$$

Unknown: index of this inclusion (as abelian groups).

Necessary condition on $\varphi \in \operatorname{End}_{\mathbf{Z}} S^{\lambda}$ to lie in image:

$$
\eta^{-1} \varphi \eta \text { has to be integral }
$$

$\left(\eta^{-1}=\right.$ rational inverse of $\left.\eta\right)$. Not sufficient in general.

The Smith form of $S^{(2,1)}$ is $\binom{10}{03}$, so for $Q^{(2,1)}=\binom{\mathbf{Z ~ Z}}{3 Z \mathbf{Z}}$ this necessary condition is in fact sufficient.

In general, elementary divisors of S^{λ} partially describe Q^{λ}.

Method

I) Jantzen filtration

Let p be a prime, let $i \geq 0$. Define $S_{\mathbf{F}_{p}}^{\lambda}(i)$ by

The Jantzen filtration is the finite filtration

$$
S_{\mathbf{F}_{p}}^{\lambda}=S_{\mathbf{F}_{p}}^{\lambda}(0) \supseteq S_{\mathbf{F}_{p}}^{\lambda}(1) \supseteq S_{\mathbf{F}_{p}}^{\lambda}(2) \supseteq \cdots,
$$

We have $S_{\mathbf{F}_{p}}^{\lambda}(0) / S_{\mathbf{F}_{p}}^{\lambda}(1) \simeq D_{\mathbf{F}_{p}}^{\lambda}$.
The Jantzen filtration gives $\mathbf{Z}_{(p)}$-linear elementary divisors:

$$
S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda} \simeq \bigoplus_{i \geq 0}\left(\mathbf{Z} / p^{i} \mathbf{Z}\right)^{\operatorname{dim}_{\mathbf{F}_{p}} S_{\mathbf{F}_{p}}^{\lambda}(i) / S_{\mathbf{F}_{p}}^{\lambda}(i+1)}
$$

So to get elementary divisors:

- Determine composition factors of Jantzen subquotients (using Jantzen's Lemma and Schaper's Theorem).
- Use results of James et al. on the dimensions of simple modules.

II) Jantzen's Lemma

p prime, $\lambda \vdash n$ arbitrary, $\mu \vdash n$-regular.

$$
\vartheta_{i}:=\left[S_{\mathbf{F}_{p}}^{\lambda}(i) / S_{\mathbf{F}_{p}}^{\lambda}(i+1): D_{\mathbf{F}_{p}}^{\mu}\right] .
$$

Jantzen's Lemma:

$$
\begin{array}{ll}
{\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]} & =\vartheta_{0}+\vartheta_{1}+\cdots \\
{\left[S_{\mathbf{Z}_{(p)}, *}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]} & =0 \vartheta_{0}+1 \vartheta_{1}+2 \vartheta_{2}+\cdots
\end{array}
$$

So if $\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]=1$, then

$$
\vartheta_{i}=\left\{\begin{array}{l}
1 \text { for } i=\left[S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right] \\
0 \text { else. }
\end{array}\right.
$$

If $\lambda=\mu$, then $\vartheta_{0}=1$, and $\vartheta_{i}=0$ for $i>0$.
If $\lambda \neq \mu$, we have $\vartheta_{0}=0$. E.g. if $\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]=2$, then:
If $\left[S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]=2$, then $\vartheta_{1}=2$.
If $\left[S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]=3$, then $\vartheta_{1}=1, \vartheta_{2}=1$.
If $\left[S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]=4$, then $\vartheta_{1}=1, \vartheta_{3}=1$; or $\vartheta_{2}=2$.
Etc. So there is still ambiguity.

III) Schaper's Theorem

Even if all occurring decomposition numbers $\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]$ are known, we still need $\left[S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]$.

Schaper's Theorem is a formula in the Grothendieck group:

$$
\left[S_{\mathbf{Z}_{(p)}^{\lambda, *}}^{\lambda,} / S_{\mathbf{Z}_{(p)}}^{\lambda}\right]=\sum_{\lambda \unlhd \nu} \alpha_{\nu}\left[S_{\mathbf{F}_{p}}^{\nu}\right],
$$

with combinatorially determined coefficients $\alpha_{\nu} \in \mathbf{Z}$.
So for our purposes, knowledge of further decomposition numbers $\left[S_{\mathbf{F}_{p}}^{\nu}: D_{\mathbf{F}_{p}}^{\mu}\right]$ is required.

IV) Transposition

Jantzen filtration of $S^{\lambda} \longleftrightarrow$ Jantzen filtration of $S^{\lambda^{\prime}}$

Some results

Table of calculated Jantzen filtrations.
Partially depending on conjectures on dec. numbers.
Partially with ambiguity.

λ	Remarks
$\left(n-m, 1^{n-m}\right)$	hooks, two methods: Jantzen-Schaper and direct; independently done by JamesMathas
$(n-m, m)$	two-row; independently done by Fayers and by Murphy
$(n-3,2,1)$	
$\left(n-4,2^{2}\right)$	if $p=2$: depending on a conj. on $\left[S_{\mathbf{F}_{2}}^{\left(n-4,2^{2}\right)}: D_{\mathbf{F}_{2}}^{(n)}\right]$ if $p=3$: with ambiguity
$(n-4,3,1)$	if $p=2$: with ambiguity
$\left(n-4,2,1^{2}\right)$	if $p=2$: depending heavily on conj. on dec. nos., and with ambiguity; if $p=3$: depending on conj. on dec. nos.
Case $n-\lambda_{1}<p$	using Kleshchev's Modular Branching and Carter-Payne

How to proceed?

Let e^{μ} be a primitive idempotent of $\mathbf{Z}_{(p)} \mathcal{S}_{n}$ belonging to $D_{\mathbf{F}_{p}}^{\mu}$ and let ε^{λ} be the primitive central idempotent of $\mathbf{Q} \boldsymbol{S}_{n}$ belonging to $S_{\mathbf{Q}}^{\lambda}$.

The embedding η decomposes into a direct sum of embeddings

$$
S_{\mathbf{Z}_{(p)}}^{\lambda} e^{\mu} \stackrel{e^{\mu} \eta e^{\mu}}{\longrightarrow} S_{\mathbf{Z}_{(p)}}^{\lambda, *} e^{\mu}
$$

so we get a block diagonalisation of the Gram matrix, with blocks of edge length

$$
\mathrm{rk}_{\mathbf{z}_{(p)}} S^{\lambda} e^{\mu}=\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right] .
$$

It remains to
calculate the Smith form of $e^{\mu} \eta e^{\mu}$.

Schaper's Theorem ess. allows to calculate the determinant:

$$
v_{p}\left(\operatorname{det}\left(e^{\mu} \eta e^{\mu}\right)\right)=\left[S_{\mathbf{Z}_{(p)}}^{\lambda, *} / S_{\mathbf{Z}_{(p)}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]
$$

Assume $\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right] \geq 1$. Let

$$
Q_{(p)}^{\lambda: \mu}:=e^{\mu} Q_{\mathbf{Z}_{(p)}}^{\lambda} e^{\mu}\left(\longleftrightarrow \mathbf{Z}_{(p)}^{\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right] \times\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]}\right)
$$

- $\mathbf{Q} \otimes_{\mathbf{Z}_{(p)}} Q_{(p)}^{\lambda ; \mu}$ is simple.
- $Q_{(p)}^{\lambda ; \mu}$ is local (for $e^{\mu} Q_{\mathbf{Z}_{(p)}}^{\lambda}$ is indecomposable).
- $e^{\mu} \eta e^{\mu}$ is an inclusion of simple $Q_{(p)}^{\lambda ; \mu}$ - lattices.

If we could classify all inclusions of simple lattices over $Q_{(p)}^{\lambda ; \mu}$, we would know the Smith form of $e^{\mu} \eta e^{\mu}$ to be one of the Smith forms of these inclusions (moreover, one of a given determinant).

Example: $Q_{(2)}^{\left(3,1^{2}\right):(5)} \simeq\left\{\left.\binom{a b}{c d} \in \mathbf{Z}_{(2)}^{2 \times 2} \right\rvert\, b \equiv_{2} 0, a \equiv_{2} d\right\}$,
with simple lattices $X:=\binom{\mathbf{z}_{(2)}}{\mathbf{z}_{(2)}}$ and $Y:=\binom{2 \mathbf{Z}_{(2)}}{\mathbf{z}_{(2)}}$.
Inclusions of determinant 4: only the scalar inclusions $X \xrightarrow{2} X$ and $Y \longleftrightarrow{ }^{2} Y$, both with Smith form $\binom{20}{02}$.

Need: lattices over $Q_{(p)}^{\lambda: \mu}$. Note: $\mathrm{rk}_{\mathbf{z}_{(p)}} Q_{(p)}^{\lambda ; \mu}=\left[S_{\mathbf{F}_{p}}^{\lambda}: D_{\mathbf{F}_{p}}^{\mu}\right]^{2}$. So to ask for $Q_{(p)}^{\lambda: \mu}$ can be viewed a refined version of the question for the decomposition numbers.

Elementary divisors over $\mathbf{Z}\left[q, q^{-1}\right]$?

For the Specht module over the Hecke algebra \mathcal{H} with ground ring $\mathbf{Z}\left[q, q^{-1}\right]$, we may also consider the Gram matrix of the invariant bilinear form.

Distinguish (also over $\mathbf{Z}_{(p)}\left[q, q^{-1}\right]$):

- divisibly diagonalizable matrices (each diagonal entry divides successor)
- diagonalizable, but not divisibly diagonalizable matrices
- non-diagonalizable matrices

Andersen remarked that not every Gram matrix of a Specht module is diagonalizable.
For $\lambda=\left(n-l, 1^{l}\right)$: bases divisibly diagonalizing the Gram matrix (the q causing difficulties).
For $\lambda=(3,3,2):$ not diagonalizable over $\mathbf{Z}_{(2)}\left[q, q^{-1}\right]$.
For $\lambda=(4,2,1,1)$: neither diagonalizable over $\mathbf{Z}_{(2)}\left[q, q^{-1}\right]$ nor over $\mathbf{Z}_{(3)}\left[q, q^{-1}\right]$.

Method: if diagonalizable, then there is a connection between the elementary divisors over $\mathbf{Q}\left[q, q^{-1}\right]$ and $\mathbf{F}_{p}\left[q, q^{-1}\right]$. We do not know (not even conjecturally) a criterion for λ to decide on diagonalizability.

