Algebra I

8. Übungsblatt

Aufgabe 1: (1+1+1/2+1/2+1=4 P) Sei R ein faktorieller Ring. Wir bezeichnen mit $P \subset R$ ein Vertretersystem der Assoziiertenklassen aller Primelemente (d.h. für jedes Primelement $p \in R$ existiert ein eindeutiges Element $p' \in P$ mit $p \sim p'$). Für Elemente $a, b \in R - \{0\}$ setzen wir

$$\begin{split} \operatorname{ggT}(a,b) &:= \prod_{p \in P} \ p^{\min\{\operatorname{ord}_p(a),\operatorname{ord}_p(b)\}}, \\ \operatorname{kgV}(a,b) &:= \prod_{p \in P} \ p^{\max\{\operatorname{ord}_p(a),\operatorname{ord}_p(b)\}}. \end{split}$$

Seien $a, b, c \in R - \{0\}$. Zeigen Sie:

- (a) Die Assoziiertenklassen von ggT(a, b) und kgV(a, b) hängen nicht von der Wahl des Vertretersystems P ab.
- (b) $a|b \iff \operatorname{ord}_{p}(a) \leq \operatorname{ord}_{p}(b) \ \forall \ p \in P$,
- (c) c|a und $c|b \iff c|ggT(a,b)$,
- (d) a|c und $b|c \iff kgV(a,b)|c$.
- (e) Bestimmen Sie den ggT der Polynome

$$f = 10X - 15, g = 15X - 6$$

in dem Ring $\mathbb{Z}[X]$ (bis auf Assoziiertheit).

Aufgabe 2: (1/2+1/2+1+1+1=4 P) Welches der folgenden Polynome ist irreduzibel in dem Ring $\mathbb{Q}[X,Y]$, und welches ist irreduzible in $\mathbb{C}[X,Y]$?

- (a) $X^5 3$,
- (b) $Y^4 4$,
- (c) $X^2 + XY + Y^2$,
- (d) $X^2 + Y^2 1$,
- (e) $X^4 2X^2Y^2 + 1$.

Aufgabe 3: (1/2+1/2+1+1+1=4P) Sei R ein Ring und $I \triangleleft R$ ein Ideal, $I \neq R$. Wir bezeichnen mit $R[X] \cdot I$ das von den Elementen aus I erzeugte Ideal des Polynomringes R[X].

- (a) Zeigen Sie: ein Polynom $f = \sum a_i X^i$ liegt genau dann in $R[X] \cdot I$, wenn alle Koeffizienten a_i in I liegen.
- (b) Konstruieren Sie einen Ringhomomorphismus

$$R[X]/R[X] \cdot I \longrightarrow (R/I)[X],$$

und zeigen Sie, dass dieser Homomorphismus ein Isomorphismus ist.

- (c) Zeigen Sie: I ist genau dann ein Primideal von R, wenn $R[X] \cdot I$ ein Primideal von R[X] ist. (Hinweis: benutzen Sie die Aussage von Aufgabe 1(b) vom 7. Übungsblatt.)
- (d) Nun sei R ein faktorieller Ring und $f,g \in R[X]$. Folgern Sie aus (b): wenn f und g primitiv sind, dann ist auch fg primitiv. (Bem.: diese Aussage ist Teil des Lemmas von Gauß.)
- (e) Zeigen Sie: $R[X] \cdot I$ ist niemals ein maximales Ideal.

Abgabe: am Donnerstag, den 22.12. (in der Vorlesung, oder bei Herrn Martin).