

Übungen - Differentialgeometrie

Abgabe: bis 24. April 2007, 12:00 Uhr, Raum 321, HeHo 18

Name: Vorname:

Aufgabe	1	2	3	Summe
Soll	9	6	5	20
lst				

Fakultät für Mathematik und Wirtschaftswissenschaften Institut für Analysis

Dr. Matthias Bergner matthias.bergner@uni-ulm.de

Jan-Willem Liebezeit jan-willem.liebezeit@uni-ulm.de

Bis auf solche Fakten, die aus der Vorlesung bekannt sind, müssen alle verwendeten Aussagen gut formuliert und bewiesen werden. Der Lösungsweg muss deutlich erkennbar sein.

1. Gegeben ist die Kurve

$$c(t): (-1,1) \to \mathbb{R}^2$$
 ; $c(t):=(t^2, t\sqrt{1-t^2})$.

- (a) Berechnen Sie die Länge der Kurve c.
- (b) Geben Sie eine Parametrisierung der Kurve c nach Bogenlänge an.
- (c) Zeigen Sie $\lim_{t\to +1}c(t)=\lim_{t\to -1}c(t)$, d.h. die Kurve ist geschlossen. Berechnen Sie die Grenzwerte $\lim_{t\to \pm 1}c'(t)$ und deuten Sie das Ergebnis.
- (d) Zeigen Sie, dass c einen Kreis von Radius $\frac{1}{2}$ mit Mittelpunkt $\left(\frac{1}{2},0\right)$ parametrisiert.
- 2. (a) Sei \sim eine Relation zwischen Kurven c, \tilde{c} mit $c \sim \tilde{c}$: \Leftrightarrow es gibt eine Parametertransformation φ , so dass $\tilde{c} = c \circ \varphi$ eine Umparametrisierung von c ist. Zeigen Sie: \sim ist eine Äquivalenzrelation auf der Menge der parametrisierten Kurven.
 - (b) Welche der folgenden Parametrisierungen repräsentieren dieselbe orientierte Kurve?

$$\begin{array}{lll} c_1(t) & := & (\cos t, \sin t) & , \ t \in (0,\pi) \\ c_2(t) & := & (\cos^2 t - \sin^2 t, 2\sin t\cos t) & , \ t \in (0,\frac{\pi}{2}) \\ c_3(t) & := & (t,\sqrt{1-t^2}) & , \ t \in (-1,1) \\ c_4(t) & := & \left(\tanh t, \frac{1}{\cosh t}\right) & , \ t \in (-\infty,+\infty) \end{array}$$

- 3. Schließen Sie aus dem Folgenden, dass die Gerade g(t) := (t,0) für $t \in [0,1]$ die kürzeste Verbindung der Punkte (0,0) und (1,0) ist.
 - (a) Zeigen Sie, dass die Länge der Gerade *g* gleich 1 ist.
 - (b) Sei $c: [0,1] \to \mathbb{R}^2$ mit c(0) = (0,0) sowie c(1) = (1,0) eine Kurve mit $c(t_0) \notin [0,1] \times \{0\}$ für ein $t_0 \in [0,1]$. Zeigen Sie für ihre Länge L(c) > 1.

Differentialgeometrie

Termine

Vorlesung: Mittwoch, 8:00-10:00 Uhr im Raum 220, Helmholtzstraße 18 Übung: Mittwoch, 10:00-11:00 Uhr im Raum 220, Helmholtzstraße 18

Übungsschein/Leistungsnachweis

Vorraussetzungen zur Erlangung des Scheins sind 50% der Punkte aus den Übungsserien und die aktive Teilnahme an den Übungen (mindestens eine Aufgabe an der Tafel vorrechnen).

Abgabe der Übungsaufgaben

Jeweils bis Dienstag vor der Übung, 12:00 Uhr im Raum 231 oder 210 in der Helmholtzstraße 18

Prüfung

Die Vorlesung kann als 2+1 Vorlesung zusammen mit

- 1. der Vorlesung "Integralgleichungen" (2+1) (Prof. Balser) oder
- 2. dem ersten Teil (Elliptische Differentialgleichungen) der Vorlesung "Partielle Differentialgleichungen" (Prof. Schulz)

als 6 SWS oder alleine als 3 SWS geprüft werden (abhängig von den Anforderungen der Prüfungsordnung).

Weitere Informationen

Das Skript, die Übungsaufgaben und weitere Informationen finden sich unter http://www.mathematik.uni-ulm.de/analysis/lehre/diffgeo_ss07/Diffgeo_ss07.html