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Introduction

Since 2003, I work in PFA Pension

– Danish life insurance company/pension fund

– Mutual company

– Balance: approximately 27 billion euro

– participating life insurance contracts (defined contributions)

Background: until 2003, Assistant professor,

Laboratory of Actuarial Math, Univ. Cph

Chief Analyst, Actuarial Innovation

– market-valuation of liabilities

– new savings products

– actuarial support for risk-management and investment depts

– actuarial research & supervision
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Introduction

Brief motivation – Systematic mortality risk

❏ Large improvements in the mortality in many countries during

the last years

❏ Risk for life insurers with (guaranteed) annuities

(mortality tables were not conservative enough!)

❏ Future mortality is difficult to predict (unpredictable!)

❏ A new market for mortality derivatives is appearing

(mortality/survivor swaps, longevity bonds etc)

Necessary to model e.g. the mortality intensity as a stochastic

process
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Introduction

Some recent literature on systematic mortality risk

Marocco/Pitacco (1998)

Olivieri/Pitacco (2002)

Milevsky/Promislow (2001)

Dahl (2004)

Dahl/Møller (2006)

Cairns, Blake and Dowd (2004)

Miltersen/Persson (2006)

Biffis and Millossovich (2006)
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Introduction

Long term simulation of number of survivors

Example: age 30, simulate number of survivors at age 85
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Expected no. of survivors: 37 Expected no. of survivors: 374
Std.dev without systematic risk: 4.9 Std.dev without systematic risk: 15.4
Std.dev with systematic risk: 7.3 Std.dev with systematic risk: 57.7
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Introduction

Simulation for a portfolio of retired

Example: start age 75, simulate number of survivors at age 85
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Std.dev with systematic risk: 5.2 Std.dev with systematic risk: 21.5
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Systematic mortality risk

The mortality intensity is a stochastic process

(joint work with M. Dahl)

Known at time 0:

µ◦(x+ t) is mortality intensity “today” at all ages x+ t

Unknown at time 0:

ζ(t, x) is relative change in the mortality from 0 to t, age x

Mortality intensity:

µ(x, t) = µ◦(x+ t)ζ(x, t)

(In general, a stochastic process)

True survival probability from t to T given information I(t):

S(x, t, T) = EP
[
e−
∫ T
t µ(x,τ)dτ

∣∣∣∣ I(t)

]
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Systematic mortality risk

A specific model:

Time-inhomogeneous CIR model known from finance:

dζ(x, t) = (γ(x, t) − δ(x, t)ζ(x, t))dt+ σ(x, t)
√
ζ(x, t)dWµ(t)

Proposition (Affine mortality structure, Dahl, 2004)

The survival probability S(x, t, T) is

S(x, t, T) = eA
µ(x,t,T)−Bµ(x,t,T)µ(x,t)

where

∂

∂t
Bµ(x, t, T) = δµ(x, t)Bµ(x, t, T) +

1

2
(σµ(x, t))2(Bµ(x, t, T))2 − 1

∂

∂t
Aµ(x, t, T) = γµ(x, t)Bµ(x, t, T)

with Bµ(x, T, T) = 0 and Aµ(x, T, T) = 0

Martingale: SM(x, t, T) = EP
[
e−
∫ T
0 µ(x,τ)dτ

∣∣∣∣ I(t)

]
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Systematic mortality risk

Forward mortality intensity

fµ(x, t, T) = − ∂

∂T
logS(x, t, T) = µ(x, t)

∂

∂T
Bµ(x, t, T) − ∂

∂T
Aµ(x, t, T)

Survival probability

S(x, t, T) = e−
∫ T
t fµ(x,t,u)du 6= e−

∫ T
t µ(x,u)du

Change of measure for mortality and financial market

Equivalent measure Q

Financial market

Standard affine model for short rate:

dr(t) = (γr,α − δr,αr(t)) dt+
√
γr,σ + δr,σr(t)dW r(t)
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Systematic mortality risk

Change of measure for mortality and financial market

Equivalent measure dQ
dP

= Λ(T) via

dΛ(t) = Λ(t−)

(
hr(t)dW r(t) + hµ(t)dWµ(t) + g(t)dM(x, t)

)

Require affine under Q. Zero coupon bond prizes

P(t, T) = eA
r(t,T)−Br(t,T)r(t)

where Ar(t, T) and Br(t, T) solve

∂

∂t
Br(t, T) = δr,α,QBr(t, T) +

1

2
δr,σ(Br(t, T))2 − 1

∂

∂t
Ar(t, T) = γr,α,QBr(t, T) − 1

2
γr,σ(Br(t, T))2

with Br(T, T) = 0 and Ar(T, T) = 0
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Systematic mortality risk

Two portfolios of insured lives

Tj,1, . . . , Tj,n are i.i.d. given ζj with

P(Tj,1 > t|I(T)) = e−
∫ t
0 µj(x,s)ds, j = 1,2

(1: own pf, 2: other pf)

Counting processes and martingales

Nj(x, t) =
n∑

i=1

1(Tj,i≤t)

Mj(x, t) = Nj(x, t) −
∫ t

0
(n−Nj(x, u−))µj(x, u)du

Insurance payment process (Benefits − premiums on pf 1)

dA(t) = (n−N1(x, T ))∆A0(T )d1(t≥T )

+ a0(t)(n−N1(x, t))dt+ a1(t)dN1(x, t)

(ai, A0 deterministic functions)
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Systematic mortality risk

Modeling of the mortality in two portfolios

dζj(x, t) = (γj(x, t) − δj(x, t)ζj(x, t))dt+ σj(x, t)
√
ζj(x, t)dW

µ(t)

Here:

Wµ two-dimensional Brownian motion and σj(x, t) ∈ R
2

Possibility for correlation between systematic mortality risk in the

two portfolios

Simple example:

(
σ1(x, t)
σ2(x, t)

)
=

(
σ11 σ12
0 σ22

)

First: focus on risk in portfolio 1. Hedge with bonds

Later: Hedge with bonds and mortality swaps
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Systematic mortality risk

Q-martingale:

V ∗(t) = EQ
[∫

[0,T ]
e−
∫ τ
0 r(u)dudA(τ)

∣∣∣∣∣F(t)

]

=

∫

[0,t]
e−
∫ τ
0 r(u)dudA(τ) + e−

∫ t
0 rudu Ṽ Q(t)

Here, the market reserve is

Ṽ Q(t) = EQ
[∫

(t,T ]
e−
∫ τ
t r(u)dudA(τ)

∣∣∣∣∣F(t)

]

= (n−N1(x, t))V
Q(t, r(t), µ1(x, t))

where

V Q(t, r(t), µ1(x, t)) =
∫ T

t
P(t, τ)SQ1 (x, t, τ)

(
a0(τ) + a1(τ)f

µ1,Q(x, t, τ)
)
dτ

+ P(t, T)SQ1 (x, t, T )∆A0(T )1(t<T )
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Systematic mortality risk

Risk-minimization

(Föllmer/Sondermann, Schweizer)

Here: with payment streams (Møller, 2001)

Market: savings account and long zero coupon bond

Discounted price processes: X(t) = P ∗(t, T), Y (t) = 1

Trading strategy: Process ϕ = (ξ, η) with ξ predictable

(+ technical conditions)

Value process: V (t, ϕ) := ξ(t)X(t) + η(t)
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Systematic mortality risk

Payment process A = (A(t))0≤t≤T square integrable

A(t) −A(s) is amount paid by insurer during (s, t]

Cost process

C(t, ϕ) = V (t, ϕ) − ∫ t
0 ξ(u) dX(u) +A∗(t)

Risk process

R(t, ϕ) = EQ
[
(C(T, ϕ) − C(t, ϕ))2

∣∣∣F(t)
]

Criterion of risk-minimization

Minimize R(t, ϕ) over ϕ for all t

Terminal cost

C(T, ϕ) = V (T, ϕ) − ∫ T
0 ξ(u) dX(u) +A∗(T)

; V value after payments. Fix V (T, ϕ) = 0

Investments
V (ϕ)

Unlimited
capital

Payments

ϕ = (ξ, η)

A

6

?

6

?
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Systematic mortality risk

Kunita-Watanabe decomposition:

V ∗(t) := EQ[A∗(T) | F(t)] = V ∗(0) +

∫ t

0
ξA,Q(u) dX(u) + LA,Q(t)

where

❏ ξA,Q is predictable

❏ LA,Q is a square integrable martingale

❏ X and LA,Q are orthogonal

Theorem.

∃! risk-minimizing strategy ϕ = (ξ, η) with V (T, ϕ) = 0:

ξ(t) = ξA,Q(t)

η(t) = V ∗(t) −A∗(t) − ξA,Q(t)X(t)

The minimum risk process

R(t, ϕ) = EQ
[
(LA,Q(T) − LA,Q(t))2

∣∣∣F(t)
]
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Systematic mortality risk

Intrinsic value process:

dV ∗,Q(t) = ν
V,Q
1 (t)dM

Q
1 (x, t) + η

V,Q
1 (t)dW r,Q(t) + ρ

V,Q
1 (t)dWµ,Q(t)

where

ν
V,Q
1 (t) = B(t)−1ad(t) − Ṽ ∗,Q

p (t)

η
V,Q
1 (t) =

√
γr,σ

∂

∂r
Ṽ ∗,Q(t)

ρ
V,Q
1,j (t) = σ

µ
1,j(x, t)

√
µ1(x, t)

∂

∂µ1
Ṽ ∗,Q(t)

Risk-minimizing strategy determined from Galtchouk-Kunita-Wa-

tanabe decomposition:

dV ∗(t) = ξA,Q(t)dX(t) + dLA,Q(t)
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Systematic mortality risk

Risk-minimizing strategy in a pure bond market

(ξ∗B(t), η∗B(t)) = (ξA,Q(t), Ṽ ∗,Q(t) − ξA,Q(t)P ∗(t, T))

where

ξA,Q(t) =
η
V,Q
1 (t)

−
√
γrσBr(t, T)P ∗(t, T)

The unhedgeable risk

dLQ(t) = ν
V,Q
1 (τ)dM

Q
1 (x, τ) + ρ

V,Q
1,1 (τ)dW

µ,Q
1 (τ) + ρ

V,Q
1,2 (τ)dW

µ,Q
2 (τ)

(See Dahl/Møller (2006))
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Systematic mortality risk

Sources of risk from GKW-decomposition:

dV ∗(t) = ξA,Q(t)dX(t) + νQ(t)dM
Q
1 (t) + ρ

V,Q
1 (t)dWµ,Q(t)

Financial risk: ξA,QdX

Unsystematic mortality risk: νQdM
Q
1

Systematic mortality risk: ρ
V,Q
1 dWµ,Q

Properties of the optimal strategy: ξ = ξA,Q

✔ eliminates the financial risk

✗ is unable to deal with other risks
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Hedging with mortality derivatives

Extending the market with mortality swaps

(joint work with M. Dahl and M. Melchior)

Underlying payment processes:

dAswap
j (x, t) = (nj −Nj(x, t))dt− nj · tpjxdt

(Defined for portfolios j = 1,2)

Traded price process:

Z
∗,Q
j (x, t) = EQ

[∫ T

0
e−
∫ τ
0 r(u)dudAswap

j (x, τ)

∣∣∣∣∣F(t)

]

We assume this process is traded on extended market (B∗, P ∗, Z∗
j )

j = 1: same portfolio (same systematic and unsystematic risk)

j = 2: another portfolio (systematic risk correlated)
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Hedging with mortality derivatives

Motivation/idea

❏ Mortality swaps are available in the reinsurance markets

❏ The mortality swap contains systematic and unsystematic risk

❏ If we use Z∗
1, we hedge with 1 process driven by 3 sources of

risk (M1,W
µ,1,Wµ,2)

❏ Can use this process to “balance” the systematic and unsys-

tematic risks in the insurance portfolio

❏ Using a swap on another portfolio introduces a new unsys-

tematic risk M2, but eliminates part of the systematic risk
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Hedging with mortality derivatives

Dynamics for the traded process

dZ
∗,Q
1 (t) = ν

Z,Q
1 (t)dM

Q
1 (x, t)+ η

Z,Q
1 (t)dW r,Q(t)+ ρ

Z,Q
1 (t)dWµ,Q(t)

where

ν
Z,Q
1 (t) = −

∫ T

t
P ∗(t, τ)SQ1 (x, t, τ)dτ

η
Z,Q
1 (t) = −

√
γrσ(n1 −N1(x, t))

∫ T

t
Br(t, τ)P ∗(t, τ)SQ1 (x, t, τ)dτ

+
√
γrσ

∫ T

t
Br(t, τ)P ∗(t, τ) τp1x n1 dτ

ρ
Z,Q
1,j (t) = −σµ1,j(x, t)

√
µ1(x, t)(n1 −N1(x, t))(1 + g1(t))

×
∫ T

t
B
µ,Q
1 (t, τ)P ∗(t, τ)SQ1 (x, t, τ)dτ

Useful for finding the risk-minimzing strategy
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Hedging with mortality derivatives

GKW-decomposition of V ∗,Q in the extended market (B,P, Z1)

dV ∗,Q(t) = ξ
Q
1 (t)dP ∗(t, T) + ϑ

Q
1 (t)dZ

∗,Q
1 (x, t) + dL

Q
1 (t)

where

dLQ(t) =

(
ν
V,Q
1 (t) − ϑ

Q
1 (t)ν

Z,Q
1 (t)

)
dM

Q
1 (x, t)

+

(
ρ
V,Q
1,1 (t) − ϑ

Q
1 (t)ρ

Z,Q
1,1 (t)

)
dW

µ,Q
1 (t)

+

(
ρ
V,Q
1,2 (t) − ϑ

Q
1 (t)ρ

Z,Q
1,2 (t)

)
dW

µ,Q
2 (t)

and

ξ
Q
1 (t) =

η
V,Q
1 (t) − ϑ

Q
1 (t)η

Z,Q
1 (t)

−
√
γr,σBr(t, T)P ∗(t, T)

ϑ
Q
1 (t) =

ν
V,Q
1 (t) + ρ

V,Q
1,1 (t)(κ

Q
1,1(t))

−1ρ
V,Q
1,2 (t)(κ

Q
1,2(t))

−1

ν
Z,Q
1 (t) + ρ

Z,Q
1,1 (t)(κ

Q
1,1(t))

−1 + ρ
Z,Q
1,2 (t)(κ

Q
1,2(t))

−1

Here: κ
Q
1,j(t) =

ν
Z,Q
1 (t)λ

Q
1 (x,t)

ρ
Z,Q
1,j (t)
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Hedging with mortality derivatives

Interpretation:

Optimal number of swaps: The strategy balances the three

sources of risk: the unsystematic mortality risk and the two fac-

tors driving the systematic risk

ϑ
Q
1 (t) =

ν
V,Q
1 (t) + ρ

V,Q
1,1 (t)(κ

Q
1,1(t))

−1 + ρ
V,Q
1,2 (t)(κ

Q
1,2(t))

−1

ν
Z,Q
1 (t) + ρ

Z,Q
1,1 (t)(κ

Q
1,1(t))

−1 + ρ
Z,Q
1,2 (t)(κ

Q
1,2(t))

−1

Optimal position in bonds: Identical to the previous position

(without swaps) added a position which eliminates the new in-

terest rate risk in the swaps

ξ
Q
1 (t) =

ϑ
Q
1 (t)η

Z,Q
1 (t) − η

V,Q
1 (t)√

γrσBr(t, T)P ∗(t, T)
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Hedging with mortality derivatives

GKW-decomposition of V ∗,Q in the extended market (B,P, Z2)

dV ∗,Q(t) = ξ
Q
2 (t)dP ∗(t, T) + ϑ

Q
2 (t)dZ

∗,Q
2 (x, t) + L

Q
2 (t)

where

dL
Q
2 (t) = ν

V,Q
1 (t)dM

Q
1 (x, t) − ϑ

Q
2 (t)ν

Z,Q
2 (t)dM

Q
2 (x, t)

+

(
ρ
V,Q
1,1 (t) − ϑ

Q
2 (t)ρ

Z,Q
2,1 (t)

)
dW

µ,Q
1 (t)

+

(
ρ
V,Q
1,2 (t) − ϑ

Q
2 (t)ρ

Z,Q
2,2 (t)

)
dW

µ,Q
2 (t)

and

ξ
Q
2 (t) =

η
V,Q
1 (t) − ϑ

Q
2 (t)η

Z,Q
2 (t)

−
√
γr,σBr(t, T)P ∗(t, T)

ϑ
Q
2 (t) =

ρ
V,Q
1,1 (t)(κ

Q
2,1(t))

−1 + ρ
V,Q
1,2 (t)(κ

Q
2,2(t))

−1

ν
Z,Q
2 (t) + ρ

Z,Q
2,1 (t)(κ

Q
2,1(t))

−1 + ρ
Z,Q
2,2 (t)(κ

Q
2,2(t))

−1

Here: κ
Q
2,j(t) =

ν
Z,Q
2 (t)λ

Q
2 (x,t)

ρ
Z,Q
2,j (t)
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Hedging with mortality derivatives

Interpretation:

Optimal number of swaps: (Similar interpretation). The strategy

balances the three sources of risk: the unsystematic mortality risk

and the two factors driving the systematic risk

Optimal position on bonds: Similar intepretation as in previous

model

Note: The investment in the alternative swap introduces new

unsystematic risk related to the insurance portfolio

dL
Q
2 (t) = ν

V,Q
1 (t)dM

Q
1 (x, t) − ϑ

Q
2 (t)ν

Z,Q
2 (t)dM

Q
2 (x, t)

+

(
ρ
V,Q
1,1 (t) − ϑ

Q
2 (t)ρ

Z,Q
2,1 (t)

)
dW

µ,Q
1 (t)

+

(
ρ
V,Q
1,2 (t) − ϑ

Q
2 (t)ρ

Z,Q
2,2 (t)

)
dW

µ,Q
2 (t)
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Hedging with mortality derivatives

Have also derived GKW-decomposition of V ∗,Q in the extended

market (B,P, Z1, Z2)

dV ∗,Q(t) = ξQ(t)dP ∗(t, T)+ϑQ(t)dZ
∗,Q
1 (x, t)+ψQ(t)dZ

∗,Q
2 (x, t)+LQ(t)

More involved expressions.

Now use both mortality swaps to hedge dynamically the risk in-

herent in the life insurance portfolio
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Hedging with mortality derivatives: Numerical results
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different stochastic scenarios (red and blue line)
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Hedging with mortality derivatives: Numerical results
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Hedging with mortality derivatives: Numerical results

Portfolio (j) µj(x,0) γj(x, t) δj(x, t) σj,1(x, t) σj,2(x, t)

1 µ0
1(x) 0.0001800 0.0080 0.006 0.018

2 µ0
2(x) 0.0001805 0.0081 0.000 0.019

Parameters for mortality intensities.

We consider two portfolios, n1 = 100, n2 = 1,000.
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Hedging with mortality derivatives: Numerical results
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Hedging with mortality derivatives: Numerical results
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Hedging with mortality derivatives: Numerical results

0 10 20 30 40 50 60

−
10

00
0

−
50

00
0

50
00

t
0 10 20 30 40 50 60

−
10

00
0

−
50

00
0

50
00

t

The liability - to be hedged!

Intrinsic value processes for the insurance contract in two differ-

ent stochastic scenarios (red and blue line)

33



Hedging with mortality derivatives: Numerical results
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Picture: Number of survivor swaps on the insurance portfolio

held at time t in the market (B,P, Z1) (in scenario 1)
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Hedging with mortality derivatives: Numerical results
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Picture: Number of survivor swaps on the the population held at

time t in the market (B,P, Z2) (in scenario 1)
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Hedging with mortality derivatives: Numerical results
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Left plot: Black line is number of survivor swaps on the insurance portfolio
in the (B,P, Z1, Z2) market. Red line is number of survivor swaps on the
insurance portfolio in the (B,P, Z1) market

The right plot: Black line is number of survivor swaps on the population in

the (B, P,Z1, Z2) market. Grey line is the difference between the investments

in the survivor swap on the insurance portfolio from the (B, P,Z1) market and

the (B,P, Z1, Z2) market scaled by a factor 10
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Hedging with mortality derivatives: Numerical results
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ξ in the (B,P) market
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ξ in the (B,P,Z1Z2) market

Number of zero coupon bonds held. Hedge for the interest rate

risk inherent in the insurance portfolio and for the interest rate

risk in the mortality swaps
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Hedging with mortality derivatives: Numerical results

n1 n2

√
R(0,Ψ∗

V )

n1

√
R(0,Ψ∗

B)

n1

100 1,000 0.632 0.111
100 10,000 0.633 0.111

1,000 10,000 0.628 0.062
1,000 100,000 0.622 0.062

10,000 100,000 0.628 0.055

n1 n2

√
R(0,Ψ∗

1)
n1

√
R(0,Ψ∗

2)
n1

√
R(0,Ψ∗)
n1

100 1,000 0.048 0.101 0.033
100 10,000 0.048 0.096 0.020

1,000 10,000 0.032 0.033 0.018
1,000 100,000 0.032 0.030 0.015

10,000 100,000 0.013 0.011 0.010

The minimum obtainable risk in the various markets
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Hedging with mortality derivatives: Status and future research

We have also studied

❏ Strategies in discrete time for the mortality swap combined with

continuous time hedging for the bond (have derived optimality

result)

We are currently

❏ Finishing the paper

❏ Extending the numerical work further

❏ Comparing with alternative mortality derivatives
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