Large Portfolio Approximation in an Elliptical Distributions Framework

Clemens Prestele

Department of Financial Mathematics,
University of Ulm

Financial Modelling Workshop Ulm, September 2005
Outline

1. Introduction

2. Our Contribution
 - The basic structure and assumptions
 - Main Result
 - Example
We want to price and analyze **Credit Structures** such as CDOs.

Essentially needed: **distribution of losses** in underlying portfolio
Credit structures with large underlying portfolio (> 100 names)

Problem:
portfolio loss distribution
→ mathematically difficult to obtain;
pricing and sensitivity analysis via MC-Simulation
→ very time consuming

Aim/Solution:
factor setup
→ reduction of dimensionality;
approximation of portfolio losses
→ distribution to be obtained (semi)-analytically
Like Merton’s model [2] (one-period model \([0, T]\)):

default is triggered by fall of firm value \(S_j\) below “appropriate” threshold at time \(T\).

Figure: 5000 realizations of \((S_1, S_2)\) with different dependence structures

More general: we want to use **elliptical distributions.**
The central objects

Company \(j, j = 1, \ldots, n \), with asset value \(S_j \) at time \(T \):

<table>
<thead>
<tr>
<th></th>
<th>Merton</th>
<th>our setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>ratings at (t = 0):</td>
<td>(non-)default</td>
<td>(k_j \in {1, \ldots, r}); (k = 1) for default;</td>
</tr>
<tr>
<td>given probabilities:</td>
<td>PDs</td>
<td>(p_{kl}): going from (k) at (t = 0) (\rightarrow) (l) at (t = T); (p_{11} = 1);</td>
</tr>
<tr>
<td>thresholds:</td>
<td>(DT_j)</td>
<td>(c_{kl}^{(j)} \in \mathbb{R}): corresponding to (p_{kl});</td>
</tr>
<tr>
<td>rating at (t = T):</td>
<td>(1 { S_j < DT_j })</td>
<td>(L_j := \sum_{l=1}^{r} 1 { c_{kj,l-1}^{(j)} < S_j \leq c_{kj,l}^{(j)} } \cdot l);</td>
</tr>
<tr>
<td>losses at (t = T):</td>
<td>((Not. - S_j)^+)</td>
<td>(\pi(j, k_j, l_j, \Psi)), if from (k_j) to (L_j = l_j), macro-influence (\Psi).</td>
</tr>
</tbody>
</table>

→ characteristics \((S_j, k_j, L_j, \pi(j, k_j, L_j, \Psi))\).

(See e.g. also [3] for setup with several rating classes)
Outline

1 Introduction

2 Our Contribution
 - The basic structure and assumptions
 - Main Result
 - Example
Definition (Portfolio credit loss C_n at $t = T$)

$$C_n := \sum_{j=1}^{n} \pi(j, k_j, L_j, \Psi) = \sum_{j=1}^{n} \sum_{l_j=1}^{r} \pi_{j,l_j} \cdot Z_{j,l_j}$$

where $Z_{j,l} := \mathbf{1}_{\{L_j = l_j\}}$ and $\pi_{j,l} := \pi(j, k_j, l, \Psi)$.

Definition (asset value vector $S^{(n)}$)

$$S^{(n)} := (S_1, \ldots, S_n)^T = \beta^{(n)} F + \varepsilon^{(n)},$$

$$\rightarrow S_j = \beta_j^T F + \varepsilon_j$$

where

$\beta^{(n)} = (\beta_1, \ldots, \beta_n)^T \in \mathbb{R}^{n \times m}$, $\beta_j \in \mathbb{R}^m$: factor-loadings ($m << n$)

$\varepsilon^{(n)} = (\varepsilon_1, \ldots, \varepsilon_n)^T$, ε_j : individual behavior / idiosyncratic risk.

$\varepsilon^{(n)}$ independent of (F, Ψ).
Portfolio Credit loss and Factor structure

Definition (Portfolio credit loss C_n at $t = T$)

$$C_n := \sum_{j=1}^{n} \pi(j, k_j, L_j, \Psi) = \sum_{j=1}^{n} \sum_{l=1}^{r} \pi_{j,l} \cdot Z_{j,l}$$

where $Z_{j,l} := \mathbf{1}_{\{L_j = l_j\}}$ and $\pi_{j,l} := \pi(j, k_j, l, \Psi)$.

Definition (asset value vector $S^{(n)}$)

$$S^{(n)} := (S_1, \ldots, S_n)^T = \beta^{(n)} F + \varepsilon^{(n)},$$

$$\rightarrow S_j = \beta_j^T F + \varepsilon_j$$

where

- $\beta^{(n)} = (\beta_1, \ldots, \beta_n)^T \in \mathbb{R}^{n \times m}$, $\beta_j \in \mathbb{R}^m$: factor-loadings ($m <<< n$)
- $\varepsilon^{(n)} = (\varepsilon_1, \ldots, \varepsilon_n)^T$, ε_j: individual behavior / idiosyncratic risk.
- $\varepsilon^{(n)}$ independent of (F, Ψ).
Assumptions (1) - An elliptical distribution framework

\[S^{(n)} = \beta^{(n)} F + \varepsilon^{(n)} \]

Special choice of

\[F \sim EC_m(0, \Omega_F, \phi_F) \quad \text{and} \quad \varepsilon^{(n)} \sim EC_n(0, \Sigma_n, \phi) : \]

\[
\begin{align*}
F & \overset{d}{=} R_1 \cdot W \\
R_1 & \geq 0, R_1 \sim G_1 \\
W & \sim N_m(0, \Omega_F) \\
\Omega_F & > 0 \\
\mathbb{E}(R_1^2) & = 1 \\
R_1, R, W, Y^{(n)} & \text{ ind.}
\end{align*}
\]

\[
\begin{align*}
\varepsilon^{(n)} & \overset{d}{=} R \cdot Y^{(n)} \\
R & \geq 0, R \sim G_2 \\
Y^{(n)} & \sim N_n(0, \Sigma_n) \\
\Sigma_n & = \text{diag}(\omega_1, \ldots, \omega_n) > 0 \\
\mathbb{E}(R^2) & = 1
\end{align*}
\]

\[R_1, R, W, Y^{(n)} \text{ ind.} \]

\[\implies S_j = \beta_j^T F + \varepsilon_j \sim F_j = H_{\beta_j^T \Omega_F \beta_j, \omega_j} \quad \text{with} \]

\[H_{\sigma_1^2, \sigma_2^2}(x) := \int_{-\infty}^{x} \int_{0}^{\infty} \int_{0}^{\infty} n(y; 0, r^2 \sigma_1^2 + s^2 \sigma_2^2) dG_{R_1}(r) dG_{R_2}(s) dy. \]
Assumptions (2)

Assumption 1:

a.) \(\exists \) Borel fct. \(f_j : \mathbb{R}^{2+m+d} \rightarrow \mathbb{R} \) s.t.

\[\pi(j, k_j, L_j, \Psi) = f_j(Y_j, R, F, \Psi); \]

b.) \(\exists \) strictly increasing \((b_n)_{n \geq 0} \) with \(b_n \rightarrow \infty \), for \(n \rightarrow \infty \), s.t.

\[\sum_{n=1}^{\infty} \left(\frac{\log n}{b_n} \right)^2 \mathbb{E} \left([\pi_{n,L_n} - \mathbb{E}(\pi_{n,L_n}|R, F, \Psi)]^2 \right) < \infty. \]

Assumption 2:

a.) \(\pi(j, k_j, l_j, \Psi) \) measurable w.r.t. \(\sigma(R, F, \Psi) \), for all \(1 \leq l_j \leq r \).

b.) Case 1: \(\Psi \) ind. of \(\sigma(R, F) \lor \sigma(S_j) \subseteq \sigma(R, F, Y_j) \),

or case 2: \(\sigma(R, F, \Psi) = \sigma(R, F) \)
1. Introduction

2. Our Contribution
 - The basic structure and assumptions
 - Main Result
 - Example
Approximating result

Under above factor structure and assumptions 1 and 2, $C_n \in L_1$:

Definition (Conditional portfolio credit losses $(B_n)_{n \geq 0}$)

\[
B_n := \mathbb{E}(C_n| R, F, \Psi) = \sum_{j=1}^{n} \sum_{l=1}^{r} \pi(j, k_j, l_j, \Psi) \cdot \hat{\Phi}_{j,l}(F, R)
\]
\[
\hat{\Phi}_{j,l}(f, r) := \Phi \left(\frac{c^{(j)}_{k_j,l} - \beta^T_j f}{\sqrt{\omega_j r}} \right) - \Phi \left(\frac{c^{(j)}_{k_j,l-1} - \beta^T_j f}{\sqrt{\omega_j r}} \right), \quad f \in \mathbb{R}^m, \ r \in \mathbb{R}.
\]

Theorem

\[
\frac{C_n - B_n}{b_n} \to 0, \quad \text{as } n \to \infty, \text{ almost surely.}
\]
Approximating result

Under above factor structure and assumptions 1 and 2, $C_n \in L_1$:

Definition (Conditional portfolio credit losses $(B_n)_{n \geq 0}$)

$$B_n := \mathbb{E}(C_n | R, F, \Psi) = \sum_{j=1}^{n} \sum_{l_j=1}^{r} \pi(j, k_j, l_j, \Psi) \cdot \hat{\Phi}_{j,l}(F, R)$$

with

$$\hat{\Phi}_{j,l}(f, r) := \Phi\left(\frac{c_{k_j,l}^{(j)} - \beta^T_j f}{\sqrt{\omega_j r}}\right) - \Phi\left(\frac{c_{k_j,l-1}^{(j)} - \beta^T_j f}{\sqrt{\omega_j r}}\right), f \in \mathbb{R}^m, r \in \mathbb{R}.$$

Theorem

$$\frac{C_n - B_n}{b_n} \rightarrow 0, \text{ as } n \rightarrow \infty, \text{ almost surely}.$$

C. Prestele (University of Ulm) Large Portfolio Approximation Workshop Ulm, Sept. 2005
Outline

1. Introduction

2. Our Contribution
 - The basic structure and assumptions
 - Main Result
 - Example
2 rating classes: 1 for default, 2 for non-default; let

- \(m = 1, \beta_j \equiv \rho, \var{Var}(F) = 1, \omega_j \equiv 1 - \rho^2 \).
- \(\pi(j, 1, l, \psi) = \begin{cases} N_j, & \text{for } l_j = 1; \\ 0, & \text{for } l_j = 2. \end{cases} \); \(N_j \): size of loan \(j \).

\[B_n = \Phi \left(\frac{\rho F - c_{2,2}}{\sqrt{1 - \rho^2 R}} \right) \cdot \sum_{j=1}^{n} N_j \]

\[C_n \frac{1}{b_n} - \frac{1}{b_n} \sum_{j=1}^{n} N_j \cdot \Phi \left(\frac{\rho F - c_{2,2}}{\sqrt{1 - \rho^2 R}} \right) \to 0, \quad \text{as } n \to \infty, \text{ a.s..} \]
If $\frac{1}{b_n} \sum_{j=1}^{n} N_j \xrightarrow{n \to \infty} 1$:

For portfolio loss distribution:

in the limit only distribution of $\Phi \left(\frac{\rho F - c_{2,2}}{\sqrt{1 - \rho^2 R}} \right)$ important!

This (scaled) approximated portfolio loss distribution is directly given via a two-dimensional integral → analytical evaluation:

$$x \mapsto \int_{0}^{\infty} \int_{0}^{\infty} \Phi \left(\frac{\sqrt{1 - \rho^2 r \Phi^{-1}(x) + c_{2,2}}}{\rho r_1} \right) dG_1(r_1) dG(r).$$
Factor model plus Gaussian mixture distributions yield approximation for portfolio credit losses.
Approximation gives rise to (semi-)analytical valuation and analysis of credit structures.

Outlook

- Consequences for the analysis of credit structures?
- Does this model imply a correlation smile similar to the market implied correlation smile?
For Further Reading I

C. Bluhm, L. Overbeck and C. Wagner.
An Introduction to Credit Risk Modeling, Financial Mathematics Series.

R. Merton.
On the pricing of corporate debt: the risk structure of interest rates.

André Lucas, Pieter Klaassen, Peter Spreij, and Stefan Straetmans.
An Analytic Approach to Credit Risk of Large Corporate Bond and Loan Portfolios.
Andersen, Leif and Sidenius, Jakob.
Extensions to the Gaussian Copula: Random Recovery and Random Factor Loadings.

Hull, John and White, Alan.
Valuation of a CDO and an nth to Default CDS Without Monte Carlo Simulation.