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Abstract

Over the last years the valuation of life insurance contracts using concepts from
financial mathematics has become a popular research area for actuaries as well as
financial economists. In particular, several methods have been proposed of how to
model and price participating policies, which are characterized by an annual interest
rate guarantee and some bonus distribution rules. However, despite the long terms
of life insurance products, most valuation models allowing for sophisticated bonus
distribution rules and the inclusion of frequently offered options assume a simple
Black-Scholes setup and, in particular, deterministic or even constant interest rates.

We present a framework in which participating life insurance contracts including
predominant kinds of guarantees and options can be valuated and analyzed in a
stochastic interest rate environment. In particular, the different option elements can
be priced and analyzed separately. We use Monte Carlo and discretization methods
to derive the respective values.

The sensitivity of the contract and guarantee values with respect to multiple
parameters is studied using the bonus distribution schemes as introduced in Bauer
et al. (2006). Surprisingly, even though the value of the contract as a whole is only
moderately affected by the stochasticity of the short rate of interest, the value of
the different embedded options is altered considerably in comparison to the value
under constant interest rates. Furthermore, using a simplified asset portfolio and
empirical parameter estimations, we show that the proportion of stock within the
insurer’s asset portfolio substantially affects the value of the contract.
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1 Introduction

Participating life insurance contracts are characterized by an interest rate
guarantee and some bonus distribution rules, which provide the possibility for
the policyholder to participate in the earnings of the insurance company. While
in England or other Anglo-Saxon countries the interest rate guarantee is often
given on a point-to-point basis, the predominant kinds of insurance contracts
in other markets as, e.g., the German market include so-called cliquet style
guarantees. Within such products, a certain guaranteed rate of return plus
some surplus is credited to the policyholder’s account each year. Furthermore,
these contracts often contain other option features such as, for example, a
surrender option.

The analysis of participating life insurance contracts with a minimum interest
rate requires a realistic model of bonus payments. Grosen and Jørgensen (2000)
establish some general principles for modeling bonus schemes: They argue that
life insurance policies should provide a low-risk, stable and yet competitive
investment opportunity. In particular, the surplus distribution should reflect
the so-called “average interest principle”, which states that insurers are to
build up reserves in years of high returns and use the accumulated reserves
to keep the surplus stable in years with low returns without jeopardizing the
company’s solvency. Aside from an interest rate guarantee and a distribution
mechanism for excessive returns which suites these principles, the model of
Grosen and Jørgensen (2000) further includes the possibility for the insured to
surrender. In this case, the policyholder obtains the account value whereas the
reserves remain with the company. Since the value of such a contract is path-
dependent, a closed-form solution cannot be derived. Monte Carlo methods
are used for the valuation of the contract.

In Jensen et al. (2001), the same valuation problem is tackled in an alter-
native way: Within each period, they show that the value function follows a
known Partial Differential Equation (PDE), namely the Black-Scholes PDE,
which can be solved using finite difference methods. At inception of each pe-
riod, arbitrage arguments ensure the continuity of the value function. Based
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as well as Rüdiger Kiesel, Alexander Kling, Norbert Renz, Jochen Russ, Karsten
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on these insights, they derive a backward iteration scheme for pricing the con-
tract. This approach is extended and generalized in Tanskanen and Lukkarinen
(2004). In particular, they do not use finite differences in order to solve the
PDE, but derive an integral solution which is based on the transformation
of the Black-Scholes PDE into a one dimensional heat equation. Their model
permits multiple distribution mechanisms including the one from Grosen and
Jørgensen (2000).

The distribution mechanisms considered in Bauer et al. (2006) also satisfy the
general principles provided in Grosen and Jørgensen (2000). Additionally, their
general framework allows for payments to the shareholders of the company as
a compensation for the adopted risk. Furthermore, Bauer et al. (2006) show
how the value of a contract can be separated into its single components and
derive an equilibrium condition for a fair contract.

However, all these contributions perform the valuation in a simple Black-
Scholes model for the financial market and, in particular, assume determin-
istic or even constant interest rates. Considering the long terms of insurance
products, this assumption does not seem adequate. In contrast, other publica-
tions allow for a stochastic evolution of interest rates. However, these articles
consider point-to-point guarantees rather than cliquet style guarantees (see
Barbarin and Devolder (2005), Bernard et al. (2005), or Briys and de Varenne
(1997)), or do not allow for the consideration of typical distribution schemes or
option features embedded in many life insurance contracts (see, e.g., Miltersen
and Persson (1999)).

The present paper fills this gap: We adopt the methodology presented in Bauer
et al. (2006) and incorporate more consistent models for the behavior of inter-
est rates into their model. In order to take into account all typical components
of a participating life insurance contract, different numerical methods are pre-
sented. Besides Monte Carlo methods, we present a discretization approach
based on the numerical solution of certain PDEs, which allows us to consider
the non-European surrender option. We study the impact of various parame-
ters on the contract value focusing on the parameters which emerge due to the
stochasticity of the evolution of interest rates. Furthermore, using a simplified
asset portfolio and empirical parameter estimations, we study the impact of
the proportion of stock within the insurer’s asset portfolio on the contract
value.

The remainder of the paper is organized as follows: In Section 2 and 3 we
briefly introduce the model and valuation methodology from Bauer et al.
(2006), respectively. Section 4 presents the valuation approaches. In partic-
ular, we introduce the two stochastic interest models considered in the paper,
namely the well-known models of Vasic̆ek (1977) and Cox et al. (1985) for
the evolution of the short rate, and explain our valuation algorithms as well
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as their implementation. Our results are presented in Sections 5 and 6. Be-
sides the values of the contract and the embedded options, we examine their
sensitivities toward changes in several parameters and give economic interpre-
tations. While in Section 5 we focus on parameters that come into play due to
the stochasticity of the interest rates, Section 6 is devoted to the study of the
impact of the proportion of stock within the insurer’s asset portfolio. Section 7
closes with a summary of the main results and an outlook for future research.

2 Model

We use the simplified balance sheet given in Table 2 to model the insurance
company’s financial situation. Here, At denotes the market value of the in-
surer’s asset portfolio at time t, Lt the policyholders’ account balance at time
t, and Rt = At −Lt the time t reserve. We further assume that dividend pay-
ments dt to the shareholders occur at the policy anniversaries t ∈ {1, . . . , T}.

Assets Liabilities

At Lt

Rt

At At

Table 1
Simplified balance sheet

We consider only one simple life insurance contract, namely a single premium
(P = L0) term-fix insurance contract issued at time 0 and maturing after T

years ignoring any charges. Given this contract, the benefit does not depend on
biometric circumstances, but merely on the development of the insurer’s assets
and liabilities. Thus, at maturity T the policyholder or the policyholder’s heirs

receive P LT

L0

P=L0= LT .

2.1 Surplus distribution schemes

The question of how the surplus is distributed to the policyholders in prac-
tice is highly delicate and demands legal as well as strategic considerations
within the insurance company. Our general model allows for any management
decision made at time t that is dependent on the information at time t only.
For the numerical implementation, however, we focus on two bonus schemes
from Bauer et al. (2006), who model distribution schemes based on the le-
gal requirements (MUST-case) and the typical behavior of insurers (IS-case),
respectively, within the German market.
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The MUST-case

According to the German legislation, insurance companies are obliged to grant
a minimum rate of interest g, which is currently fixed at 2.75%. 1 Furthermore,
it is required that at least a minimum participation rate δ = 90% of the
earnings on book values has to be passed on to the policyholders.

The insurers’ earnings are subject to accounting rules and thus the earnings
on book values are in general not equal to the earnings on market values
A−

t − A+
t−1, where A−

t and A+
t = A−

t − dt denote the value of the portfolio
at time t shortly prior to and shortly after the payment of the dividends dt,
respectively. We assume that at least a portion y of the earnings on market
values has to be displayed as earnings on book values in the balance sheet.

These regulations imply (see Bauer et al. (2006)) that

Lt = (1 + g) Lt−1 +
[

δy
(

A−
t − A+

t−1

)

− gLt−1

]+
, t = 1, . . . , T. (1)

Assuming that the remaining portion of the earnings on book values is paid
out as dividends, we obtain that

dt = (1 − δ) y
(

A−
t − A+

t−1

)

1{δy(A−

t −A+
t−1)> gLt−1}

+
[

y
(

A−
t − A+

t−1

)

− gLt−1

]

1{δy(A−

t −A+
t−1)≤ gLt−1 ≤ y(A−

t −A+
t−1)}.

(2)

The IS-case

The IS-case models the typical behavior of German insurance companies re-
garding their bonus distribution policy over the recent years: In the past,
insurance companies have tried to grant their policyholders a stable and yet
competitive return. In years with high returns, asset reserves have been accu-
mulated and utilized in years with poor returns to keep the granted rate at
a stable, fairly high level. Only if the reserves dropped beneath or rose above
certain levels would the companies reduce or increase the surplus, respectively.
The following distribution rule originally introduced by Kling et al. (2004) was
designed to model this behavior.

If crediting the target interest rate z > g leads to a reserve quota between
some positive constants a and b, i.e. if

a ≤ xt ≤ b,

1 However, starting 2007 it will be reduced to only 2.25%.
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for

Lt = (1 + z) Lt−1,

dt = α (z − g) Lt−1,

A+
t = A−

t − dt,

Rt = A+
t − Lt,

then exactly the target interest rate z is credited to the policyholder. Here,

xt :=
Rt

Lt

=
A+

t − Lt

Lt

=
A−

t − dt − Lt

Lt

is the so-called reserve quota, and α is

the portion of the surplus above the guaranteed level g which is distributed
to the shareholders. If the reserve quota falls below a or rises above b when
crediting the target rate z, then the credited rate is chosen as the rate which
leads to a reserve quota of exactly a or b, respectively, where at all times the
minimum participation rules from (1) and (2) need to be satisfied.

When summarizing all cases and conditions (see Bauer et al. (2006) for a more
detailed description), we obtain that

Lt = (1 + g) Lt−1 + max {
[

δy
(

A−
t − A+

t−1

)

− gLt−1

]+
,

(z − g) Lt−11{((1+a)(1+z)+α(z−g))Lt−1≤A−

t ≤((1+b)(1+z)+α(z−g))Lt−1}
+

1

1 + a + α

[

A−
t − (1 + g) (1 + a) Lt−1

]

1{(1+a)(1+g)Lt−1<A−

t <((1+a)(1+z)+α(z−g))Lt−1}
+

1

1 + b + α

[

A−
t − (1 + g) (1 + b) Lt−1

]

1{((1+b)(1+z)+α(z−g))Lt−1<A−

t } } ,

and

dt = max { α
[

δy
(

A−
t − A+

t−1

)

− gLt−1

]+
,

α (z − g) Lt−11{((1+a)(1+z)+α(z−g))Lt−1≤A−

t ≤((1+b)(1+z)+α(z−g))Lt−1}
+

α

1 + a + α

[

A−
t − (1 + g) (1 + a) Lt−1

]

1{(1+a)(1+g)Lt−1<A−

t <((1+a)(1+z)+α(z−g))Lt−1}
+

α

1 + b + α

[

A−
t − (1 + g) (1 + b) Lt−1

]

1{((1+b)(1+z)+α(z−g))Lt−1<A−

t } } .

Please note that the reserve corridor [a, b] can be easily linked to the actual
situation in practice: A lower bound for the bonus reserve is required for sol-
vency reasons and an upper bound is justified by the need to stay competitive
in a rising market.
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3 Risk-Neutral Valuation

As in Bauer et al. (2006), we assume the existence of a probability space
(Ω,F ,Q) equipped with a filtration F = (Ft)t∈[0,T ], where Q is a risk-neutral
measure under which payment streams can be valuated as expected discounted
values with respect to the numéraire process B = (Bt)t∈[0,T ].

2 The risk-neutral
value of the insurance benefit (without a surrender option) is thus given by
the Risk-neutral Valuation Formula (cf. Bingham and Kiesel (2004), Theorem
6.1.4)

P ∗ = EQ

[

B−1
T P

LT

L0

]

L0=P
= EQ

[

B−1
T LT

]

.

However, employing the results of the risk-neutral valuation by applying the
corresponding hedging strategy so far presents difficulties within this setup:
Firstly, in contrast to unit-linked products, the underlying security is not
traded on the financial market, but is an asset portfolio the composition of
which is influenced by the management of the insurance company. Neverthe-
less, it is possible to approximate the insurer’s asset portfolio by a benchmark
portfolio, i.e. a synthetic portfolio consisting of various instruments which
are actually traded on the market. Henceforth, we will call the relevant asset
portfolio the reference portfolio.

Furthermore, since the underlying is the company’s asset side which is modified
when the asset allocation is changed, hedging within the company’s balance
sheet is not possible for the insurer. To overcome this “feedback effect”, we
choose a different approach and assume that the insurer invests his money
in the reference portfolio A and leaves it there. The reference portfolio is not
modified, except for the occurrence of one of the following events, which may
change its value but not its composition:

(1) Dividends dt are paid out to the shareholders at t = 1, 2, ..., T ; the risk-
neutral value at t = 0 of these future payments is

D0 = EQ

[

T
∑

t=1

B−1
t dt

]

. (3)

(2) If the return of the reference portfolio is so poor that the interest rate
guarantee cannot be fulfilled using the company’s funds even if the reserve
is completely dissolved, then the company needs a capital shot ct. The

2 The existence of such a risk-neutral measure implies that the financial market is
arbitrage-free.
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risk-neutral value at time 0 of these capital shots is given by

C0 = EQ

[

T
∑

t=1

B−1
t ct

]

. (4)

Thus, C0 can be interpreted as the value of the interest rate guarantee.
Note that in case these capital shots are actually paid by a financial
intermediator, e.g. an investment bank or a reinsurer, then, neglecting
credit risk of this financial intermediator, the insurer cannot default.

Moreover, the risk-neutral value of the change of reserve is given by

∆R0 = EQ

[

B−1
T RT

]

− R0,

where Rt is the reserve account at time t.

In addition, the policyholder has the possibility to surrender his contract at
any policy anniversary, say t0, and “walk away” with the account value Lt0 .
Using the same notation as Bauer et al. (2006), the policyholder’s gain from
surrendering at time t0 is

wt0 = max
{

Dt0 + Bt0EQ

[

B−1
T RT | Ft0

]

− Rt0 − Ct0 , 0
}

,

where Dt0 denotes the value of dividend payments in [t0, T ] at t0 and Ct0

the value of future capital shots at t0. Hence, the value of the surrender or
walk-away option at t = 0 is given by

W0 = sup
τ∈Υ[0,T ]

EQ

[

B−1
τ wτ

]

,

where Υ[0,T ] denotes all stopping times with values in {0, 1, . . . , T}.

These cash-flows can be used to decompose the contract. For a “fair” contract,
the values of the interest rate guarantee and the surrender option should co-
incide with the values of the dividend payments and the change of reserve
account, i.e.

C0 + W0
!
= D0 + ∆R0. (5)

This equilibrium condition has the equivalent representation

P ∗ := EQ

[

B−1
T P

LT

L0

]

+ W0 = P + C0 − D0 − ∆R0 + W0

!
= P. (6)

Hence, the value of the contract can be calculated in two different ways: di-
rectly as a discounted expectation or by summing up the embedded options.
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Isolating these embedded options is particularly useful for securitization pur-
poses, since it allows for a separate valuation and thus hedging of the com-
ponents of the contracts: An insurer would want to securitize the embedded
options rather than the contract as a whole.

4 Numerical Analysis

We assume that investors can trade continuously in a frictionless, arbitrage-
free financial market with finite time horizon T and we suppose that the single
premium, which is paid at the conclusion of the contract, is invested in a well
diversified reference portfolio A consisting of various asset classes and evolving
according to the stochastic differential equation

dAt

At

= rt dt + σA

[

ρ dWt +
√

1 − ρ2 dZt

]

, A0 > 0. (7)

Here σA > 0 denotes the volatility of the asset process A, ρ ∈ [0, 1] charac-
terizes the correlation between A and the risk-free rate r, and (Wt)t∈[0,T ] and
(Zt)t∈[0,T ] are two independent standard Brownian motions under the equiva-
lent risk-neutral probability measure Q on the complete, filtered probability
space (Ω,F ,Q,F), where F satisfies the usual conditions (cf. Karatzas and
Shreve (1991), Definition 1.2.15).

The risk-free rate r is assumed to evolve according to

drt = κ (ξ − rt) dt + σrr
γ
t dWt, r0 > 0, (8)

where κ, ξ, σr are constants, and γ ∈ {0, 1
2
}. By choosing γ = 0 we obtain the

Vasic̆ek (1977) model, and for γ = 1
2

the Cox et al. (1985) model. 3

In order for the market to be complete, we can introduce bonds as additional
securities. A market without bonds would be incomplete. In particular, inter-
est rate risk would not be hedgeable. For our considerations in this section, the
market structure is not of importance, since it does not affect the valuation
approach. However, it does affect the practical implementation as, under the
risk-neutral measure Q, the short rate dynamics (8) in a market with bonds
in general do not coincide with the short rate dynamics in a market with-
out bonds. Thus, the market structure has to be considered when choosing a
parametrization for (8).

Taking the dividend payments into account and applying Itô’s lemma, we
obtain

3 Note that we could easily generalize this setup by allowing for time-dependent,
deterministic coefficients in (7) and (8), respectively.
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A−
t = A+

t−1 exp

(

∫ t

t−1
rs ds − σ2

A

2
+
∫ t

t−1
ρσA dWs +

∫ t

t−1

√

1 − ρ2σA dZs

)

,

and
A+

t = max
{

A−
t − dt, Lt

}

.

For an Ornstein-Uhlenbeck process modeling the short rate, i.e. for γ = 0,
the distributions of the involved quantities are explicitly known and we can
therefore implement a Monte Carlo algorithm which “exactly” simulates the
corresponding quantities in order to determine the risk-neutral value of a con-
tract without surrender option:
For the simulation we require the rate of return r A

t of the asset portfolio in
each time period [t − 1, t):

r A
t =

A−
t − A+

t−1

A+
t−1

= exp

{

∫ t

t−1
rs ds − σ2

A

2
+ ρσA

∫ t

t−1
dWs +

√

1 − ρ2σA

∫ t

t−1
dZs

}

− 1.

The normal distributions of rt and
∫ t
t−1 rs ds can be derived under rt−1. Hence,

rA
t can be simulated using this information, where the covariances between the

respective random variables have to be taken into account. The risk-neutral
value of the contract can then be approximated by

L(N) :=

∑N
k=1 L

(k)
T exp (− ∫ T

0 r(k)
u du)

N
(9)

for a sufficiently large number of simulations N , since, by the strong law of
large numbers,

L(N)
a.s.−→ EQ

[

exp

(

−
∫ T

0
ru du

)

LT

]

(N → ∞).

If γ = 1
2
, i.e. if the short rate is governed by a square-root process, the distri-

bution of the integral
∫ t

t−1
rs ds

is not explicitly known and we have to discretize the integral. Thus, in our
implementation, we use the relationship

rt+∆ = e−κ∆ (rt − ξ) + ξ + σr

∫ t+∆

t
e−κ(t+∆−s)√rs dWs

≈ e−κ∆ (rt − ξ) + ξ + σr e−κ∆√rt (Wt+∆ − Wt) ,
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where ∆ is sufficiently small, and we approximate the integral by its left-hand
Riemann sum. Then, the risk-neutral contract value can again be approxi-
mated by L(N) from (9) for N sufficiently large.

Similarly, we are able to calculate the values for the embedded options ac-
cording to equations (3) and (4) from Section 3. Therefore, there are two ways
to calculate the contract value: as a whole according to equation (9) or by
summing up the components according to equation (6). However, for pricing
the Bermuda-type surrender option, Monte Carlo methods are not preferable.
Therefore, we implement a discretization approach building on the ideas of
Jensen et al. (2001) and Tanskanen and Lukkarinen (2004).

A Discretization Approach

Similar to Bauer et al. (2006), we assume that the value of the policyholder’s
account Lν at time ν ∈ {1, 2, . . . , T} is given by a known function

Lν = Bonν

(

A−
ν , A+

ν−1, Lν−1

)

,

and analogously, that the account value adjusted by the dividend payments
dν at time ν is given by a function

A+
ν = Divν

(

A−
ν , A+

ν−1, Lν−1

)

.

This leads to the following relations:

Lt =











Lν−1 , t ∈ [ν − 1, ν)

Bonν

(

A−
ν , A+

ν−1, Lν−1

)

, t = ν
,

A+
t =











A−
t = A+

ν−1

(

1 +
A−

t −A+
ν−1

A+
ν−1

)

, t ∈ [ν − 1, ν)

Divν

(

A−
ν , A+

ν−1, Lν−1

)

, t = ν
.

Assuming P = L0, the fair value of the contract at maturity is equal to its
payoff value, that is VT = LT , and the risk-neutral values of the European and
non-European contracts at time t are given by

Vt =



















V EUR
t = EQ

[

exp

(

−
∫ T

t
ru du

)

LT

∣

∣

∣

∣

Ft

]

,

V NON−EUR
t = sup

τ∈Υ[t,T ]

EQ

[

exp
(

−
∫ τ

t
ru du

)

Lτ

∣

∣

∣

∣

Ft

] ,

respectively, where Υ[t,T ] denotes all stopping times with values in {⌈t⌉, . . . , T}.
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Thus, the value of the surrender option is

Wt := V NON−EUR
t − V EUR

t .

The value Vt of the contract at time t depends on the value of the state

variables A−
t , rt, A+

⌊t⌋, and L⌊t⌋ at time t, i.e.

Vt = V
(

t, A−
t , A+

⌊t⌋, L⌊t⌋, rt

)

.

Furthermore, it can be shown that the value function has to be almost surely
continuous at ν ∈ {1, . . . , T}, i.e.

Vt → Vν , (t → ν), a.s.,

otherwise there would be an arbitrage opportunity (see Tanskanen and Lukkari-
nen (2004)).

Thus, if for every ν we define the function Fν for all a, l, r by

Fν(a, l, r) := V (ν, a, a, l, r),

for all a, a′, l, r we obtain

lim
t→ν−

V (t, a′, a, l, r) = Fν (Divν(a
′, a, l), Bonν(a

′, a, l), r)

= V (ν, Divν(a
′, a, l), Divν(a

′, a, l), Bonν(a
′, a, l), r) .

For the remainder of the section, we assume γ = 0, i.e. we assume the Vasic̆ek
(1977) model for the evolution of the short rate. However, similar results can
also be obtained for the Cox et al. (1985) model.

Between two policy anniversaries, the evolution of the value function V only
depends on changes in the asset portfolio A and the interest rate r. Conse-
quently, given the values of A+

ν−1, Lν−1, and given the value function at time
t0 ∈ [ν − 1, ν), for t ∈ [ν − 1, t0] the value function satisfies the PDE

0 =
∂g

∂t
+

1

2

[

σ2
AA2 ∂2g

∂A2
+ 2AσAσrρ

∂2g

∂A∂r
+ σ2

r

∂2g

∂r2

]

+ rA
∂g

∂A
+ κ (ξ − r)

∂g

∂r
− rg (10)

with final condition

g(t0, A, r) = V
(

t0, A,A+
ν−1, Lν−1, r

)

,

which can be shown by an application of Itô’s lemma. Thus, given a solution
of the PDE, we can compute the value function ∀ν − 1 ≤ t < ν if V is known
at t = ν.
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Mallier and Deakin (2002) derive a closed form solution of the PDE (10)
when evaluating convertible bonds. In their approach, Laplace and Mellin
transformations are used to transform the PDE into an ordinary differential
equation. However, we found that their approach is invalid, since the Mellin

Determination of the value function V

•For t = T : FT (a, l, r) = V (T, a, a, l, r) = l ∀a, l, r

•For t = T − k, k ∈ {1, 2, . . . , T}: ∀a′, l′, r′ > 0 evaluate

the PDE with final condition

g(T + 1 − k, A, r) = FT+1−k (DivT+1−k(A, a′, l′), BonT+1−k(A, a′, l′), r)

and set

FT−k(a
′, l′, r′) = V (T − k, a′, a′, l′, r′) = g(T − k, a′, r′)

for a European contract, and

FT−k(a
′, l′, r′) = V (T − k, a′, a′, l′, r′) = max{g(T − k, a′, r′), l′}

for a non-European contract.

Table 2
Determination of the value function

transformation is not properly applied when transforming the PDE. Thus, we
are not able to apply their ideas, but have to rely on numerical methods: By
using finite differences for the approximation of first and second order space
derivatives and a discrete Euler scheme for the time derivative, the solution
of the PDE can be approximated. Since the value of the process V is known
at t = T (VT = LT ) and since it is a function of prior account values as state
variables, we can obtain the value process at t = T−1 given the state variables
at T − 1. This leads to a backward-iterative algorithm to obtain V0 for given
state variables (see Table 2).

However, there is an infinite number of possible states. We solve this prob-
lem by using discretization methods and approximate the value function on a
three-dimensional lattice:
Let Yν ⊂ R+ × R+ × R be the set of all possible values of the state vector
yν := (Aν , Lν , rν) and Latν(A,L, r) ⊂ Yν be a finite subset of Yν . Latν(A,L, r)
can be different for each policy anniversary ν ∈ {0, 1, . . . , T}. In order to sim-
plify notation, we choose equidistant lattice points and use the same number
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of lattice points for each lattice Latν , ν ∈ {0, 1, . . . , T}. Thus, the lattices
are determined by the marginal choices for A, L, and r together with the
number of lattice points. Let Lmin

ν , Lmax
ν , Amin

ν , Amax
ν , rmin

ν , and rmax
ν denote

some minimal and maximal values for Lν , Aν , and rν , ν ∈ {0, 1, . . . T}, and
GridA, GridL, and Gridr the number of lattice points for A, L, and r, re-
spectively. Lmin

ν , Lmax
ν , Amin

ν etc. are chosen such that the respective random
variables Lν , Aν , rν remain below the maximal value and above the minimal
value with a probability of more than 99%. For example, we choose Amax

ν , such
that

Q (Aν ≤ Amax
ν ) ≥ 0.99

for a specific à priori choice of A0.

At maturity T , we have

FT (a, l, r) = V (T, a, a, l, r) = l ∀(a, l, r) ∈ Yν .

Thus, by numerically solving the PDE with this terminal condition, we can de-
termine FT−1(a, l, r) ∀ (a, l, r) ∈ LatT−1(A,L, r). Consequently, we are given
the terminal condition for the next iteration step at least on the lattice. How-
ever, for given states a′, l′ at T − 2 and a, r at T − 1, the required values of
the terminal condition

g(T − 1, a, r) = FT−1 (DivT−1(a, a′, l′), BonT−1(a, a′, l′), r) ,

cannot be exactly determined, since DivT−1(a, a′, l′) and BonT−1(a, a′, l′) will
not necessarily be located on the lattice, even if a′, l′, a, r are on the respective
lattices. Therefore, we have to interpolate between the given values of F on the
lattice in order to obtain F for arguments between the lattice points. Since r is
not changed by the distribution scheme, it is sufficient to interpolate in A and
L when only values on the lattice are required for solving the PDE. For the
other policy anniversaries t the computation can be carried out analogously.

With this method we can price both European and non-European contracts.
The value of the surrender option can be priced as the difference of a European
and a non-European contract with identical parameters. We used C++ with the
FLENS and GSL-libraries for the practical implementation. 4

While other valuation mechanisms similar to those in Longstaff and Schwartz
(2001) could yield faster results, we consider the PDE approach as more in-
structive, since the corresponding PDEs include the greeks delta, gamma, and

4 See http://flens.sourceforge.net and http://www.gnu.org for detailed in-
formations about the FLENS and GSL library, respectively.
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rho. 5 However, for practical applications faster methods should be considered,
too.

5 Results – the Impact of Stochastic Interest Rates

In what follows, we provide risk-neutral values of the insurance contract as
well as risk-neutral values of the embedded options. We compare our results
to those of Bauer et al. (2006) in order to assess how stochastic interest rates
influence the respective values. Furthermore, we analyze the sensitivity of the
policy value with respect to changes in the parameters that come into play
due to the stochastic evolution of the interest rates.

The risk-neutral value of a life insurance policy depends on many factors
and regulations. Besides the current regulatory and legal requirements, the
corporate policy and the market situation affect the value of the contract.
In this section, as in Bauer et al. (2006), we let the guaranteed interest rate
g = 3.5%, the minimum participation rate δ = 90%, the minimum portion
of market value earnings that has to be displayed as book value earnings in
the balance sheet y = 50%, the target rate z = 5%, the reserve corridor
[a, b] = [5%, 30%], the portion of earnings that is provided to equity holders
α = 5%, and the volatility of the asset portfolio σA = 7.5%. Furthermore,
we set the volatility of the Ornstein-Uhlenbeck process σr = 1% as in Briys
and de Varenne (1997) and the correlation ρ = 0.05, which corresponds to
a proportion of about 10% − 15% of stock in the asset portfolio. 6 In order
to obtain comparable results for the Vasic̆ek (1977) and the Cox et al. (1985)
model, we equate the variances of the corresponding processes under r0, which

leads to a volatility parameter σ̃r =

√

σ2
r

ξ
for the square root process within

the Cox et al. (1985) model. Moreover, we let the time horizon be T = 10, the
initial investment P = 10.000, the insurer’s initial reserve quota x0 = 10%,
and the initial interest rate as well as the mean reversion level r0 = ξ = 4% in
order to be able to compare our findings to those of Bauer et al. (2006). We
further choose a reversion rate κ = 0.14 as in Barbarin and Devolder (2005).

As pointed out in Section 3, the risk-neutral value of a European insurance
contract can be calculated in two different ways: directly, or by summation of

5 For the definition and the use of the greeks, see for example Hull (2006).
6 See Section 6.
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the individual contract components, i.e.

contract value = initial investment (P)

+ value of the interest rate guarantee (C0)

− change of reserve (∆R0) − value of the dividends (D0)

+ value of the surrender option (W0).

The European contract value as well as its decomposition is calculated using
the Monte Carlo methods introduced in Section 4. The non-European contract
with walk-away option is valuated with the discretization algorithm, which was
also introduced in Section 4.

MUST-case r = 4% const OU r0 = 4% CIR r0 = 4%

Initial investment P 10,000.00 10,000.00 10,000.00

+ Interest rate guarantee C0 865.9 1,002.7 1,000.1

- Value of dividends D0 238.1 242.8 242.2

- Exp. change of reserve ∆R0 267.5 310.0 298.6

Fair value European Contract 10,360.3 10,449.9 10,459.3

+ Value of Surrender Option W0 0 169.2 N/A

Fair value non-European Contract 10,360.3 10,619.1 N/A

IS-case r = 4% const OU r0 = 4% CIR r0 = 4%

Initial investment P 10,000.00 10,000.00 10,000.00

+ Interest rate guarantee C0 1,052.3 1,143.7 1,141.4

- Value of dividends D0 75.1 77.6 77.5

- Exp. Change of reserve ∆R0 10.1 45.4 33.9

Fair value European Contract 10,967.1 11,020.7 11,030.0

+ Value of Surrender Option W0 0 82.3 N/A

Fair value non-European Contract 10,967.1 11,103.0 N/A

Table 3
Contract values

Table 3 displays the risk-neutral value of the contract and its components for
the chosen parameter set, for a constant short rate, a short rate following an
Ornstein-Uhlenbeck (OU) process (Vasic̆ek (1977) model), and a short rate
following a square root process (Cox et al. (1985) model), respectively. 7 We
notice that for the stochastic short rate models, the contract values are higher
than for a constant short rate. Furthermore, we observe that, in comparison

7 For the square root process, a surrender option has not been considered.
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to the contract value itself, the interest rate option is over-proportionally in-
fluenced by the stochasticity of the short rate: Comparing the OU stochastic
short rate case with the constant short rate case in the MUST-case, we observe
an increase of the contract value for a European contract of approximately 90
units, but an increase of the guarantee option value of over 130 units. This
deviation is compensated by a higher expected change of reserve. Moreover,
we find that the surrender option is increased with stochastic interest rates:
While it is never advisable to surrender given the standard parameters under
constant interest rates, the surrender option becomes valuable in a stochastic
interest rate environment.

Unlike the deviation between constant and stochastic interest rates, the differ-
ences between the corresponding values of the stochastic interest rate models
are rather moderate. In particular, we can observe the same effects for both
the Vasic̆ek (1977) and the Cox et al. (1985) model. The same holds for our
other findings if we choose the parameters in a realistic range. Therefore, in
what follows, we will restrict ourselves to the Vasic̆ek (1977) model, i.e. we
focus on an OU process for the short rate of interest.

Regarding the sensitivity of the contract value with respect to changes in the
contract parameters, the qualitative effects for the constant and stochastic
interest rate environment are similar. The sensitivities with respect to para-
meters which are shared by the model with constant and stochastic interest
rates have been studied in detail by Bauer et al. (2006). Therefore, we focus on
parameters that come into play due to the stochasticity of the interest rates.
Since results are very similar for European and non-European contracts, we
focus on the European case where calculations are carried out using Monte
Carlo methods.

The Influence of the Volatilities of the Interest Rate and the Asset Process

The volatility of the interest rate considerably affects the risk-neutral value
of the insurance contract. Figure 1 shows that a change in the volatility of
the OU process has a similar relative impact on the contract value in the
MUST-case and in the IS-case. In both cases we observe a significant increase
of the contract value: In the MUST-case, if the volatility σr is increased from
1% to 2%, the contract value increases by about 260 units, if the volatility is
increased to 3%, then the contract value increases by another 420 units. This
strong sensitivity of the contract value is explained by the increased risk of
poor returns on the money market, which makes the interest rate guarantee
considerably more valuable.

Table 4 illustrates the joint influence of the parameters σr and σA on the con-
tract value and the value of the interest rate guarantee. With increasing σA and
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Fig. 1. Influence of σr on the contract value

σr, the contract value increases, which can be explained by the fact that higher
volatilities of asset and interest rate processes imply an increasing probabil-
ity of unfavorable asset returns and of low market interest rates, respectively,
which both increase the value of the guarantee option. In comparison to the
contract value, the guarantee option is even increased over-proportionally as
is also displayed in Table 4.

OU MUST-case σr = 0.5%, σA = 5% σr = 1%, σA = 7% σr = 1.5%, σA = 9%

Fair value 9,930.6 10,355.8 10,849.2

C0 351.7 881.8 1,537.2

OU IS-case σr = 0.5%, σA = 5% σr = 1%, σA = 7% σr = 1.5%, σA = 9%

Fair value 10,552.4 10,928.2 11,449.9

C0 481.5 1,023.3 1,679.6

Table 4
Influence of σr and σA on the guarantee option

We are particularly interested in parameter combinations leading to the same
contract value. Besides the parameter pairs that lead to the value of a “stan-
dard contract”, i.e. a contract with parameter values as introduced in the
beginning of this section, the parameter combinations that lead to a “fair”
contract are of interest. Here, we call a contract ”fair” if the initial investment
and the contract value coincide, i.e. if the equilibrium condition (5) from Sec-
tion 3 is fulfilled. Figure 2 presents combinations of σA and σr which lead to
a fair contract and to a standard contract in the MUST-case.
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If the volatility σr of the interest rate process is increased, in order to keep the
contract value on the same level, the volatility of the asset process has to be
decreased. However, if σr and σA exceed 3.2% and 7.8% respectively, neither
a standard contract nor a fair contract can be created. A fair contract even
requires σr and σA to remain below 2.5% and 5.5%, respectively. This indicates
that in order to keep their liabilities on the same level, the insurance companies
have to ensure that the asset portfolio is not too volatile, for example by mainly
investing in low risk assets such as bonds and money market accounts rather
than risky assets such as stock. On the other hand, the short rate must not
be too volatile. Hence, if a rising volatility for the money market rates is
observed, the insurance company should decrease the portion of stock in its
asset portfolio in order to decrease the asset volatility σA. Conversely, in times
of low volatilities on the money market, the portion of stock and other risky
investments with moderate volatilities can be increased. However, even with
a very low interest rate volatility or even a constant interest rate, the 7.8%
bound for the volatility σA remains. The results in the IS-case are similar.

In order to consider changes of the proportion of risky assets within the in-
surer’s portfolio properly, we have to simultaneously adjust the correlation
parameter ρ in equal measure as a change in this proportion affects the com-
position of the asset portfolio, and thus the correlation between asset portfolio
and money market. However, our analysis shows that the impact of changes
of the correlation parameter is rather small, and thus the results remain more
or less the same when simultaneously adjusting the correlation coefficient (see
Section 6).

Instead of adjusting the portfolio composition when volatilities on the market
change, the insurer can also intervene by adjusting the target rate z. To assess
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how interest rate volatility and the target rate z jointly influence the contract
value, in Figure 3 we illustrate the pairs of z and σr leading to a standard
contract. There are no combinations that lead to a fair contract with a value
of 10,000 units. We find that if z is considerably higher than 5.3%, then even
an interest volatility of zero cannot lead to the value of a standard contract.
Furthermore, if the interest rate volatility increases from 1% to 2%, a decrease
of the target rate of almost 1.25% is necessary to keep the contract value at the
same level. Conversely, if the interest volatility increases from 0.5% to 1.5%,
a decrease of the target rate of less than 0.75% is sufficient for the contract
value to remain the same. This phenomenon is due to the fact that when the
target rate is rather high and interest rate volatilities are rather low, the target
rate poses the greatest influence on the contract value, whereas if the target
rate is lower and the interest rate volatility is relatively high, the interest rate
guarantee and thus the interest rate volatility have a bigger impact on the
contract value.

6 Results – the Impact of the Stock-proportion

The impact of the stock proportion within the insurer’s asset process on the
contract value is connected to both, the influence of the asset volatility and
the influence of the correlation between interest rate and asset. If the portfolio
structure is altered, both the volatility of the portfolio and the correlation
change. Thus, in order to study the impact of the stock proportion on the
contract value, we need to investigate this interrelation.
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So far, we have chosen the model parameters so that it is possible to compare
our results with those presented in Bauer et al. (2006), i.e. the initial interest
rate as well as the mean reversion parameter r0 = ξ = 4% and the asset
volatility σA = 7.5% have been chosen corresponding to the constant short
rate r and the asset volatility used in their contribution, respectively. For the
interest rate models, we used parameterizations as proposed in the literature;
however, since our underlying asset differs from specifications in other articles,
no adequate value for the correlation coefficient ρ can be found.

Hence, in order to obtain an idea about this correlation coefficient and in
order to assess the influence of the composition of the insurer’s asset portfolio
properly, empirical investigations are necessary.

We assume that the insurer’s assets are invested in the money market and
a well diversified stock portfolio at constant proportions. Thus, the return
of the reference portfolio can be determined as the weighted average of the
returns of the stock portfolio and the money market rates. In our empirical
analysis, we use monthly DAX 8 and German call money rates for different
time periods. We estimate the volatility of the reference portfolio σA using
the standard variance estimator for the normal distributed logarithms of the
returns of the synthetic reference portfolio, and we use maximum likelihood
estimates based on Walter (1996) for the interest rate parameters κ, ξ, and
σr. Finally, we estimate ρ as the correlation of the normalizations of the log
returns of the reference portfolio and the call money rates, respectively, using
the standard covariance estimator. The results for a stock proportion of 15%
and, consequently, a money market proportion of 85% for two different time
periods are given in Table 5.

orig. parameters estimates for 1960-2006 estimates for 1996-2006

κ 0.14 0.79 0.19

ξ 4.0% 5.0% 2.7%

σr 1.0% 3.1% 0.5%

ρ 0.05 0.02 0.03

σA 7.5% 2.9% 3.6%

Table 5
Parameter estimates

Considering the comparatively high value for the volatility used in Section 5,
we see that the choice of a correlation parameter of ρ = 0.05 was adequate. We
find that the other parameter estimates differ considerably from the parame-
trization used in Section 5. However, we use historical data for our empirical
estimates and we do not consider bond prices. Thus, the interest rate parame-

8 German stock index.
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ters are not adjusted by a market price of risk. Even though, within the model,
this adjustment can have an impact on the values of κ and ξ only but not on
σr or σA, it is well known that historical volatilities may well be different from
implied volatilities. Thus, these deviations are not necessarily a sign that the
parametrization used in Section 5 is inadequate.

Henceforth, in contrast to Section 5 where we considered a representative
contract from a typical German insurer’s portfolio as in Bauer et al. (2006),
we now consider a just recently concluded contract with minimum interest rate
g = 2.75% and r0 = 3% according to the current legislative regulations and
the current market average for money market returns. Furthermore, since we
are considering a contract with maturity T = 10 years, we use the parameter
values according to our empirical estimations based on the time period 1996-
2006. The risk-neutral value of the insurance contract is calculated for different
portions of stock and, hence, for different values of ρ and σA. The data is fitted
by a function f : R → R and the plot for the OU MUST - case is given in
Figure 4.
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Fig. 4. Influence of the stock proportion on the contract value

We observe that with increasing stock portion within the asset portfolio, the
contract value increases, which is due to the increasing risk of unfavorable asset
returns represented by an increasing asset volatility σA. If the portfolio consists
of 15% stock, which is realistic for a typical German insurance company, the
contract value amounts to 10,157.0 units. With a stock portion of 0%, the
contract is worth just a little under 10,000 units, indicating that in order to
offer a fair contract in the current interest rate environment, insurers should
be hardly invested in stock.

Table 6 shows how the contract value and the value of the embedded options
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OU MUST-case orig. param. 1960-2006 1996-2006

Fair value 10,449.9 8,778.0 10,157.0

Interest rate guarantee C0 1,002.7 34.9 233.8

Value of dividends D0 242.8 196.9 105.8

Exp. change of reserve ∆R0 310.0 1,060.0 -29.0

OU IS-case orig. param. 1960-2006 1996-2006

Fair value 11,020.7 9,809.8 10,957.4

Interest rate guarantee C0 1,143.7 84.4 434.2

Value of dividends D0 77.6 88.1 53.4

Exp. change of reserve ∆R0 45.4 186.5 -576.6

Table 6
Contract values with original parameters/estimated parameters

change if we use the estimated parameters for both periods compared with
the originally used parameters, in each case for a stock proportion of 15%. We
find that the results vary a lot between the parameters of the different periods:
The contract value differs by more than 10% for both, the MUST- and the
IS-case. However, the results for both parameterizations are below the results
for the original parameters used in Section 5 and those in Bauer et al. (2006).
Especially the value of the interest rate guarantee is reduced considerably.

Thus, under our empirical estimates, the situation seems less alarming. How-
ever, for example in the IS-case for current parameter values, there still is a big
gap between the price and the risk-neutral value of the contract, and the inter-
est rate guarantee is still of considerable value. Thus, embedded options need
to be taken into account when pricing the contracts and new risk-management
approaches such as securitizing or hedging the respective guaranteed should
be considered.

7 Conclusion

We present a valuation model for participating life insurance contracts which,
in particular, allows for a stochastic evolution of interest rates. In order to fo-
cus on the basic effects, only a very simple kind of insurance contract, namely
a term fix contract with a single up-front premium is considered. We present
two different bonus distribution schemes for the insurance contract, which are
adapted to the German regulatory framework, namely the MUST-case consid-
ering only compulsory payments due to legal and regulatory requirements, and
the IS-case in which additionally corporate behaviors are taken into account.
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The life insurance contract is valuated and analyzed using methods from mod-
ern financial mathematics. However, due to the legal situation and the special
features of the German insurance industry, the requirements for applying the
resulting hedging strategies are not automatically fulfilled. The problem is en-
countered by using the cash-flow model from Bauer et al. (2006) which makes
it possible to apply the concept of risk-neutral valuation and, in particular, to
price and hedge the embedded options separately.

For the instantaneous short rate two different stochastic models are consid-
ered: the Vasic̆ek (1977) model and the Cox et al. (1985) model. The Ornstein-
Uhlenbeck process within the Vasic̆ek (1977) model is easier to handle, since
the respective stochastic differential equation has a closed form solution. How-
ever, the process can take negative values, which may limit the applicability
of the model. The Cox et al. (1985) short rate model cannot become negative
under certain conditions and therefore presents a better model for the inter-
est rate evolution. However, the Cox et al. (1985) model is more delicate to
handle.

The insurance contract itself and the embedded options are complex, path-
dependent derivatives. Hence, it is not possible to obtain closed form solutions
for their risk-neutral values and numerical methods have to be applied. We
present Monte Carlo algorithms, which allow for the valuation of a European
contract as well as the embedded options, and a discretization approach which
allows for the valuation of Bermuda style walk-away options in non-European
contracts by solving a certain partial differential equation numerically. Besides
calculating contract values, we perform sensitivity analyses with respect to
those parameters that come into play due to the stochasticity of the interest
rate.

It turns out that due to the additional source of uncertainty in the model, the
risk-neutral value of an insurance contract with stochastic short rates always
exceeds the value of a contract with a constant or deterministic short rate
for a comparable parameter choice. With increasing volatility of the interest
rate process, the contract value also increases. Even though the values under
stochastic and constant interest rates do not differ tremendously for realistic
choices of the interest rate volatility, the decomposition into the various em-
bedded options is altered considerably. In particular, the value of the interest
rate guarantee is increased over proportionally compared with the contract
value.

Furthermore, we show that the composition of the insurer’s asset portfolio
influences the contract value considerably. Using empirical parameter estima-
tions, we show that the contracts value for different proportions of stock within
the reference portfolio between 0% and 100% is altered by more than 50% –
thus, insurers should be careful in their investment decisions, since they have
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a big impact on the values of the embedded options and, thus, on the value
of the contract as a whole.

Even though we observe that under the influence of stochastic short rates the
value of the insurance contract as a whole exceeds the initial premium paid
in most cases, our empirical studies show that this gap is highly dependent
on the parametrization used. In particular, when estimating the respective
values from data for different time periods, the results differ tremendously. The
incorporation of stochastic interest rates is important, since market interest
rates do not remain constant over the long lifetimes of insurance contracts.
However, it is very difficult to choose an adequate model and, within a given
interest rate model, to calibrate the parameters adequately.

Empirical studies further show that the distribution of the log returns of the
asset process differ from the assumed normal distribution. Thus, it could be
worthwhile to consider other processes to model the asset portfolio. We could
further extend the model by considering an asset portfolio consisting of several
different asset classes such as bonds, real estate etc. instead of a single asset
process the composition of which is described via correlations. In addition, in
order to obtain a more applicable model, it would be interesting to determine
hedging strategies for the insurance contract and for the embedded options.
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