
Universität Ulm
Fakultät für Mathematik und Wirtschaftswissenschaften

U
NI

VE
RSITÄT ULM

·
SC
IE
N
D
O

·DOCENDO
·C

U
R
A
N
D
O
·

Automatic differentiation in flow simulation

Diplomarbeit

in Mathematik

vorgelegt von
Ralf, Leidenberger

am August 30, 2007

Gutachter

Prof. Dr. Karsten Urban
Prof. Dr. Stefan Funken

Acknowledgements

First of all, my special thanks goes to Professor Dr. Karsten Urban, Insitute of Numerical
Mathematics, Ulm University, Germany, for entrusting me with the challenging topic of my
diploma thesis and for lending me his precious time and valueable advice, especially in make-
ing this work feasible.
I wish to thank Professor Dr. Stefan Funken, Insitute of Numerical Mathematics, Ulm Univer-
sity, Germany, for the support and in advance for the survey of this work.

Additional thanks are going to Professor Dr.-Ing. Milovan Perić and Dr. Eberhard Schreck
from the company CD-adapco for their support in questions concerning the program Comet.

I appreciate the sacrifiing offer from my father Wilhelm Leidenberger and from my girlfriend
Julia Hoffmann for reading my revisions and for giving usefull advice for English formula-
tions.

Finally, special thanks goes to my girlfriend Julia Hoffmann for her encouragement in the
course of this half year.

August 30th 2007 Ralf Leidenberger

i

Contents

1 Introduction 1
1.1 General topics . 1
1.2 Destination . 2

2 Basics of numerical optimization 3
2.1 Theoretical results of optimization . 3
2.2 Numerical optimization algorithms . 4

2.2.1 Nelder-Mead-Algorithm . 4
2.2.2 Gradient-Algorithm . 5
2.2.3 Conjugated-Gradients . 7
2.2.4 Newton-like algorithms . 7

2.3 Stepsize control . 11
2.3.1 Exact stepsize control . 15
2.3.2 Stepsize control of Armijo . 16
2.3.3 Stepsize control of Powell . 17

2.4 Comparison of different optimization algorithms 18
2.4.1 The Rosenbrock-function . 19
2.4.2 The Himmelblau-function . 20
2.4.3 The Bazaraa-Shetty-function . 21
2.4.4 Result of this small experiment . 21

3 The Navier-Stokes equations 23
3.1 The model . 23

3.1.1 The Euler- and Navier-Stokes equations 24
3.1.2 Conservation of mass . 27
3.1.3 Conservation of momentum . 28
3.1.4 Euler equations . 29
3.1.5 Navier-Stokes equations . 29

3.2 Numerical methods . 30
3.2.1 Finite differences method . 30
3.2.2 Finite volume method . 46

4 Automatic differentiation 57
4.1 Forward mode . 57
4.2 Reverse mode . 61
4.3 Operator overloading . 64

ii

CONTENTS iii

4.3.1 Functionality of operator overloading 64
4.3.2 Advantages and disadvantages . 65

4.4 Source transformation . 65
4.4.1 Functionality of source transformation 65
4.4.2 Advantages and disadvantages . 68

4.5 Complexity comparison of different approaches on two functions 68
4.5.1 Function f from the Rn

+ to the R . 68
4.5.2 Function f from the R to the Rn . 71

4.6 AD is not a silver bullet . 73
4.6.1 The problem . 73
4.6.2 Application . 74

5 An implementation of an operator overloading AD tool 75
5.1 Forward mode . 75

5.1.1 Main parts . 75
5.1.2 Redefinition of a mathematical function 77
5.1.3 Redefinition of an operator . 77

5.2 Reverse mode . 78
5.2.1 Main parts . 79
5.2.2 Redefinition of a mathematical function 84
5.2.3 Redefine of an operator . 85

6 Application of AD on flow simulation 87
6.1 2D Example Caffa . 87

6.1.1 Program structure . 87
6.1.2 Variable inflow . 88
6.1.3 Angle of attack . 91

6.2 3D Example Comet . 95
6.2.1 Program structure . 95
6.2.2 Moving grid . 96
6.2.3 Variable inflow . 98
6.2.4 Conclusion for the 3D case . 104

7 Results, problems and outlook 105
7.1 Results . 105

7.1.1 Basics . 105
7.1.2 Automatic differentiation . 106
7.1.3 Application . 106
7.1.4 Conclusion of the results . 107

7.2 Problems . 107
7.2.1 Programming problems . 107
7.2.2 Mathematical problems . 108

7.3 Outlook . 108
7.3.1 Development of new approaches in AD 108
7.3.2 Application of AD on flow simulation 111

List of Figures

2.1 Rosenbrock-function . 19
2.2 Himmelblau-function . 20
2.3 Bazaraa-Shetty-function . 21

3.1 Example for a finite differences grid . 31
3.2 Example 3.2.4 (i) central differnences. 33
3.3 Example 3.2.4 (ii) backward differences. 34
3.4 Example 3.2.4 (iii) backward differences non equidistance. 35
3.5 Discrete domain. 36
3.6 Staggered grid. 37
3.7 Two kinds of control volume tessellation . 46
3.8 Exapmle 3.2.12 . 48
3.9 Approximation of the problem (3.68) with the UDC method. 50
3.10 2D tessellation with quadratic cells. 51

4.1 Function dependence graph . 58
4.2 Time complexity of the Equation (4.2). 70
4.3 Storage complexity of the Equation (4.2). 71
4.4 Time complexity of the Equation (4.3). 72
4.5 Storage complexity of the Equation (4.3). 73

6.1 Geometry of the example . 88
6.2 Inflow profile . 89
6.3 Force and derivative on the foil in x direction over the time 89
6.4 Force and derivative on the foil in x direction over the time 90
6.5 Force and derivative on the foil in x direction respect to the inflow parameter . 90
6.6 Derivative and FD on the foil in x direction respect to the inflow parameter . . 90
6.7 Angle of attack . 91
6.8 Curve of the forces in y direction on the airfoil. 92
6.9 Comparison of finite differences and derivatives. 92
6.10 History of the force in y direction respect to the iterations 94
6.11 Derivatives and finite differenes of the Example 6.2.2 96
6.12 Domain for the comet example 6.2.2 . 97
6.13 Domain for the comet example 6.2.3 . 98
6.14 Forces, derivatives and finite differences of example 6.2.3 100
6.15 Forces, derivatives and finite differences of example 6.2.3 102
6.16 Forces, derivatives and finite differences of example 6.2.3 103

iv

List of Tables

2.1 Rosenbrock-function with an error < 10−5. 19
2.2 Rosenbrock-function with an error < 10−10. 20
2.3 Himmelblau-function with an error < 10−5. 20
2.4 Himmelblau-function with an error < 10−10. 21
2.5 Bazarra-Shetty-function with an error < 10−5. 22
2.6 Bazarra-Shetty-function with an error < 10−10 or max 10000 iterations. 22

4.1 Computation complexity of elementary functions in the forward mode 60
4.2 Computation complexity of elementary functions in the reverse mode 63

6.1 History of the force and their derivatives in y direction respect to the iterations . 94

v

Chapter 1

Introduction

At the beginning of this diploma thesis we explain the structure and the assembling of this
work. And we give a small overview about the general topics and the destinations of this work.
We start with the explanation of the general topics.

1.1 General topics

The title of this work is ”Automatic differentiation in flow simulation”, this title reflects the
two main topics automatic differentiation1 and the numerical flow simulation.
The pure automatic differentiation part is splited into two parts. The theoretical part explains
the method and different kinds of automatic differentiation, and it also compares these ap-
proaches. The other one explains a special implementation of an operator overloading tool.
The other main topic, the numerical flow simulation, starts with a derivation of the physical
flow model, whereby one is called Euler equations and the other (the more detailed) one is
called Navier-Stokes equations. Then we explain the simulation of the Navier-Stokes equa-
tions with different kinds, at first with the easier finite differences method and then with the
finite volume method.
The subtopics of this diploma thesis are the numerical optimization, especially the comparison
of algorithms, which uses and does not use informations about the derivative. And this implies
the other subtopic, the application of automatic differentiation on numerical flow simulations
for numerical optimization with different approaches for the optimization and for the different
kinds of numerical flow simulation.
The structure of this work is: we start with an introduction in the numerical optimization and a
small comparison of some different methods. Then we give a derivation of the flow model and
two numerical methods to simulate the flow numerically. The next two chapters will explain
the automatic differentiation and the special implementation of an operator overloading tool.
Then, we have the basics in order to apply the automatic differentiation on the numerical flow
simulation, with the aim optimization. Finally, we summarize the results, give an overview
about the results, the problems and an outlook.

1A conventional shortcut is AD, and another popular name is algorithmic differentiation.

1

CHAPTER 1. INTRODUCTION 2

1.2 Destination

The destination of this diploma thesis is divided in different aims:
The first aim is to give an overview and an introduction of the automatic differentiation, to write
the theoretical results about the automatic differentiation in a formally correct way down, to
compare the different kinds of AD, and to explain the functionality of an operator overloading
automatic differentiation tool on a special implementation.
The second one is to derive the model of the flow, that means we explain the physical as-
sumptions and rules, which are necessary to desribe the flow of a fluid, in a mathematical
formulation. This allows us to consider the methods for the flow simulation. Then, we give an
introduction to the numerical methods, which are needed in order to simulate the flow of fluids.
The main destination is to show, that it is possible to use automatic differentiation in numeric
flow simulation for optimization problems, because it is a very important problem, to optimize
the efficiency of a propeller on a ship, an airplane or only to reduce the aerodynamic resistance
of airplanes and cars. And many other problems are also possible.
Another destination is to explain the topics and the subtopics of this diploma thesis in a way,
such that it is possible to understand the main ideas without a too large knowledge about this
topics. It is tried to write each chapter in such a way, that it is a closed part and also a part of
the full diploma thesis.
We complete the printed version of this diploma thesis with a compact disk, which contains the
diploma thesis in a digital version in the PDF format. Furthermore it contains the programs,
which I have written by myself, and the programs, which I have changed, and which the licence
allows to copy. And also additional graphics are presented on the compact disk.

Chapter 2

Basics of numerical optimization

In this chapter we give an introduction in the basics of numerical optimization. At first, we
show the theoretical aspects of optimization. Then, we consider some algorithms for the nu-
merical optimization with information about the derivative and without informations about the
derivative. In the third section we concentrate us on the stepsize control by the optimization.
In the last section of this chapter we have a look on some simple examples and experiments of
numerical optimization.
The fundamentals of this chapter are the book of Alt [Alt02] the OR lecture note of Rieder
[Rie95], the numeric I and II lecture notes of Urban [Urb05], [Urb06] and the preprint of Forst
and Hoffmann [WF07].

2.1 Theoretical results of optimization

In this section we concentrate us on the theoretical properties, which we need in following. At
first we define some basic notions.

Definition 2.1.1 (Local minimum)
For a continuous function f : Rn → R a point x∗ ∈ R is called local minimum of the function
f , if there exists a R > 0, such that

f(x∗) ≤ f(x) for all x ∈ B(x∗, R) := {y ∈ Rn : |x∗ − y| ≤ R} (2.1)

By this follows:

Definition 2.1.2 (Critical point)
A point x∗ ∈ Rn is called critical point of the function f ∈ C1, if

∇f(x∗) = 0 (2.2)

holds.
The Equation (2.2) is called the Euler-Lagrange-Equation of the function f .

Definition 2.1.3 (Level Set)
For a given point x∗ ∈ Rn, D ⊂ Rn, where D is compact, and for a continuous function f the
set

LS (f, f(x∗)) := {x ∈ Rn|f(x) ≤ f(x∗)} , (2.3)

is called the level set of the function f respect to the point x∗.

3

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 4

2.2 Numerical optimization algorithms

In this section we consider some algorithms for numerical optimization. We start with an
algorithm, which needs no informations about the derivative of the function. But the main
aspect is based on algorithms, which use information of the derivative, because this are the
algorithms, we will use later for the optimization with AD.

2.2.1 Nelder-Mead-Algorithm

The Nelder-Mead-Algorithm is also known as the Downhill-Simplex-algorithm.
Before we explain this algorithm we need a notion.

Definition 2.2.1 (n-Dimensional simplex)
Let x0, . . . , xn ∈ Rn affine independent vectors, i.e. xi−x0, i = 1, . . . , n are linear indepen-
dent. Then the set

S :=

{
n∑

i=0

λix
i |λi i = 0, . . . , n,

n∑
i=0

λi = 1

}
(2.4)

is called the n-dimensional simplex with the edges x0, . . . , xn.

The idea of this algorithm is: Start with n-dimensional simplex as start value. And then
replace the worst point by a better one.
Now we show the full Algorithm:

Algorithm 2.2.2 (Nelder-Mead)

choose a start point x(0,0) ∈ R

set x(0,i) := x(0,0) + ei the edges of the simplex S0

do k=0:N

– calculate x(k,worst) the point of the simplex Sk, which have the biggest function

value x(k,worst) := arg
(

max
i=0,...,n

{f(x(k,i))}
)

– calculate x(k,2.worst) the point of the simplex Sk, which have the second biggest

function value x(k,2.worst) := arg

(
max

i=0,...,n
i6=worst

{f(x(k,i))}

)
– calculate x(k,best) the point of the simplex Sk, which have the smallest function

value x(k,best) := arg
(

min
i=0,...,n

{f(x(k,i))}
)

– calculate x(k,centre) the centre of the simplex Sk respect to x(k,worst)

x(k,centre) = 1
n

n∑
i=0

i6=worst

x(k,i)

– reflect x(k,worst) on x(k,centre) with
x(k,reflect) = x(k,centre) + γ(x(k,centre) − x(k,worst))

– if (f(x(k,reflect)) < f(x(k,best))) then

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 5

x(k,expansion) := αx(k,reflect) + (1− α)x(k,centre)

x(k,tmp) :=
{
x(k,expansion) if f(x(k,expansion)) < f(x(k,reflect))
x(k,reflect) else

x(k+1,i) :=
{
x(k,i) if i 6= worst

x(k,tmp) else

– else if (f(x(k,best)) ≤ f(x(k,reflect)) ≤ f(x(k,2.worst))) then

x(k+1,i) :=
{
x(k,i) if i 6= worst

x(k,reflect) else

– else if (f(x(k,reflect)) > f(x(k,2.worst))) then

x(k,tmp):=
{
x(k,worst) if f(x(k,worst)) < f(x(k,reflect))
x(k,reflect) else

x(k,contraction) := βx(k,tmp) + (1− β)x(k,centre)

if(f(x(k,contraction)) < f(x(k,worst)))then

x(k+1,i) :=
{
x(k,i) if i 6= worst

x(k,contraction) else

else
x(k+1,i) := 1

2(x(k,i) + x(k,best))
end

end

end

At next we give some remarks to the Nelder-Mead-Algorithm:

Remark 2.2.3
Here we explain the sense of the parameters, and give a typical range for this parameters:

– The parameter γ is the reflextion factor, γ = 1.

– The parameter α is the expansion factor, 2 ≤ α ≤ 3.

– The parameter β is the contraction factor, 0.4 ≤ β ≤ 0.6.

Nelder and Mead (1965) propose the values: γ = 1, α = 2 β = 0.5

Another algorithm without informations about the derivative is for example the Hooke-Jeeves-
Algorithm.

2.2.2 Gradient-Algorithm

In this section we orientate us directly on the book from Alt [Alt02]. Now, we consider a
method, which is already considered by Cauchy in the year 1847, in a work about methods
to solve systems of equations (Méthode générale pour la résolution des systèmes d’équations
simultanées), for more details see in [Cau47].
In the following we consider a function f : Rn → R, which is continuously differentiable. If
we have not a critical point in the point x according to the Definition 2.1.2, i.e. ∇f(x) 6= 0,

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 6

then −∇f describes a descent direction. At next, we prove, that the gradient, in the point x is
the steepest descent in x. For this we consider the following optimization problem

min
d∈Rn

∇f(x)Td

SC1 ‖d‖ = r, r > 0, r ∈ R.
(2.5)

The side condition ‖d‖ = r is necessary, that the problem has an solution, because the mini-
mization is not restricted without this side condition.

Lemma 2.2.4 (The steepest descent)
Let f : Rn → R continuously differentiable in the variable x and ∇f(x) 6= 0. Then

d̄ := −r · ∇f(x)
‖∇f(x)‖

(2.6)

is the solution of the optimization problem (2.5), i.e. the negative gradient of the function f in
the variable x represents the direction of the steepest descent in the point x.

Proof.
For an arbitrary d ∈ Rn holds

∇f(x)Td ≥ −‖∇f(x)‖‖d‖. (2.7)

With the Equation (2.7) follows, that for all d ∈ Rn with ‖d‖ = r holds

∇f(x)Td ≥ −r · ‖∇f(x)‖. (2.8)

And for d̄ holds
∇f(x)T d̄ = −r · ‖∇f(x)‖. (2.9)

by this follows the claim.

Now we describe in a general form the Gradient-Algorithm.

Algorithm 2.2.5 (Gradient-Algorithm)

choose a start point x(0) ∈ Rn

do i=0:N

if (∇f(x(i)) = 0) stop

d(i) := −∇f(x(i));

σ(i) := stepsize(); //for details look section 2.3

x(i+1) := x(i) + σ(i)d(i)

end

Now we present some general remarks to the Gradient-Algorithm.

1stands for side condtion

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 7

Remark 2.2.6

(i) The gradient is the best descent direction in each local point. But this has not to be the
best descent direction in a global setting, for each function.

(ii) In general, we only know, that the gradient algorithm finds a local minimum. But, if we
have a convex function, so this one is also the global minimum.

(iii) The choice of a good stepsize is not a trivial problem. Some ideas to choose the stepsize,
we will show in the Section 2.3.

2.2.3 Conjugated-Gradients

Here we consider a special version of the steepest descent algorithm. The idea is to compute in
each step the steepest descent direction with the gradient, and then to orthogonalize this with
respect to the previous directions. The advantage of this method is to eliminate a shiver of the
descent direction.

Algorithm 2.2.7 (Conjugated-Gradients)

choose a start point x(0) ∈ Rn

set ∇f0 := ∇f(x(0))

set d(0) := −∇f0

do i=0:N

if (∇fi = 0) stop;

σ(i) := stepsize(); //for details look section 2.3

x(i+1) := x(i) + σ(i)d(i);
∇fi+1 := ∇f(x(i+1));

γ(i+1) :=

{
0 if(i+ 1 ≡ 0modn)

〈∇fi+1,∇fi+1〉
〈∇fi,∇fi〉 else

;

d(i+1) := −∇fi+1 + γ(i+1)di;

end

2.2.4 Newton-like algorithms

In this subsection we consider the Newton-Algorithm and the Damped-Newton-Algorithm.
The idea of the Newton-Algorithm is: consider a linear approximation of the function in order
to find the null of the function.
Let f : Rn → Rn be a twice continuously differentiable function, then we can use the Taylor
approximation, by this follows:

f(x) = f(x(i)) +∇f(x(i))(x− x(i)) +O(‖x− x(i)‖2
2). (2.10)

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 8

If the rang of matrix ∇f(x(i)) is full, then the Equation (2.10) implies, that the null of this
linear approximation is given by:

x(i+1) = x(i) − (∇f(x(i)))−1f(x(i)). (2.11)

It is clear, that the inverse matrix in the Equation (2.11) is only for the theoretical view. The
Newton-Algorithm is given by:

Algorithm 2.2.8 (Newton-Algorithm)

choose a start point x(0) ∈ Rn, tol

do i=0:N

fi := f(x(i));
∇fi := ∇f(x(i));
if (∇fi ≤ tol) stop;

compute di with ∇fi · di = −fi

x(i+1) := x(i) + d(i);

end

Now, we consider the convergence order of the Newton-Algorithm.

Remark 2.2.9 (Condition)
Let Ω ⊂ Rn be open and convex. The function f : Ω → Rn is a continuously differentiable
function, for which the following conditions hold:

(i) ∇f(x) has full rang for all x ∈ Ω,

(ii) ‖(∇f(x))−1‖ ≤ β for all x ∈ Ω,

(iii) ∇f(x) is Lipschitz-continuous on Ω with the constant γ,

(iv) there exists a point x? ∈ Ω, such that f(x?) = 0.

Lemma 2.2.10
By the conditions from the Remark 2.2.9 follows:

‖f(x)− f(y)−∇f(y)(x− y)‖ ≤ γ

2
‖x− y‖2, (2.12)

for all x, y ∈ Ω.

Proof.
Let φ := f(y + t(x − y)) on t ∈ [0, 1], this implies, that the function φ(t) is continuously
differentiable on the interval [0, 1]. The derivative of the function φ is given by φ′(t) = ∇f(y+
t(x− y)) · (x− y), this follows by the chain rule.
This implies

‖φ′(t)− φ′(0)‖ = ‖[∇f(y + t(x− y))−∇f(y)](x− y)‖
≤ ‖[∇f(y + t(x− y))−∇f(y)]‖ · ‖(x− y)‖
≤

2.2.9(iii) γt‖(x− y)‖2.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 9

On the other hand holds:

f(x)− f(y)−∇f(y) · (x− y) = φ(1)− φ(0)− φ′(0) =
∫ 1

0
(φ′(t)− φ′(0))dt. (2.13)

And this implies:

‖f(x)− f(y)−∇f(y) · (x− y)‖ =
∫ 1

0
‖φ′(t)− φ′(0)‖dt

≤ γ‖x− y‖2

∫ 1

0
tdt

=
γ

2
‖x− y‖2.

Theorem 2.2.11
Additionally to the conditions from the Remark 2.2.9 there must hold, that a start point x(0) ∈ Ω
is given, such that

‖x? − x(0)‖ ≤ ω (2.14)

and
1
2
(βγω) < 1, (2.15)

holds.
Than the sequence {x(i)}∞i=0, which is defined by the Newton-Algorithm 2.2.8, is in the set

Bw(x?) := {x ∈ Rn : ‖x? − x‖ < ω},

xi converge to x∗ and the convergence order is two.

Proof.

x(i+1) − x? = x(i) − x? − (∇f(x(i)))−1(f(x(i))− f(x?)︸ ︷︷ ︸
=0

)

= −(∇f(x(i)))−1(f(x(i))− f(x?)−∇f(x(i))(x(i) − x?))

By the Lemma 2.2.10 follows:

‖x(i+1) − x?‖ ≤ ‖(∇f(x(i)))−1‖︸ ︷︷ ︸
2.2.9.(ii)

≤ β

‖(f(x(i))− f(x?)−∇f(x(i))(x(i) − x?))‖︸ ︷︷ ︸
(2.12)

≤ γ
2
‖x−y‖2

≤ βγ

2
‖x(i) − x?‖2.

(2.16)

This implies the convergence order two.
At last, we show, that for the sequence {x(i)}∞i=0 holds: {x(i)}∞i=0 ⊂ Bω(x?).
For i = 0 it is clear by the Equation (2.14), and inductively follows:

‖x(i+1) − x?‖ ≤ βγ

2
‖x(0) − x?‖ < βγ

2
ω2

(2.15)
< ω.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 10

Remark 2.2.12

• If the function f is twice continuously differentiable, this implies directly the condition
of the Remark 2.2.9 (iii).

• The constants β and γ come from the problem. This implies, that we need a good start
point.

• By the conditions from the Remark 2.2.9 it is possible to prove, that there exists only one
null x? on B 2

βγ
.

It is clear, that the classical Newton-Algorithm has one big drawback, it converges only in
local domain. And it is possible, that this local domain is very small. Now we consider a
modification of the Newton-Algorithm, the Damped-Newton-Algorithm in order to eliminate
this drawback.

Algorithm 2.2.13 (Damped-Newton-Algorithm)

choose a start point x(0) ∈ Rn, tol

do i=0:N

fi := f(x(i));
∇fi := ∇f(x(i));
if (‖∇fi‖ ≤ tol) stop;

compute di with ∇fi · di = −fi

set λ := 1

set x := xi + λdi (2.2.13)

if (‖∇f−1
i f(x)‖ ≤ 1− λ

2‖di‖) then

xi+1 = x;

else

λ = λ
2 ;

if (λ < 2−10) stop;
goto (2.2.13)

end

end

Remark 2.2.14
It is clear, that the Damped-Newton-Algorithm converges in the general not as fast as the
Newton-Algorithm.

Remark 2.2.15 (Realization)
Do not compute the Jacobian-Matrix in each step, compute it only in each j-th step. It is
recommanded to use a correction method. More details are given in the book from Deufelhard
and Bornemann [PD95].
We can also compute the Jacobian-Matrix approximatively with finite differences.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 11

2.3 Stepsize control

In this section, we analyze the optimal stepsize for a given descent direction. At first we
consider some theoretical aspects, then we show, that there exists an exact optimal stepsize. In
the following way, we issue two algorithms to approximate a good stepsize.
Now we give some necessary conditions for the choice of the stepsize σ. The first one are the
Goldstein conditions.

Definition 2.3.1 (Goldstein conditions)
Let f ∈ C1(D), D ⊂ Rn, x ∈ D and d ∈ Rn with, 〈∇f(x), d〉 < 0, i.e. d is a given descent
direction. Then the stepsize σ satisfies the Goldstein conditions, if the inequalities

f(x+ σd) ≤ f(x) + c1σ〈∇f(x), d〉 (2.17)

and
f(x+ σd) ≥ f(x) + c2σ〈∇f(x), d〉 (2.18)

hold. For c1 ∈ (0, 1
2] and c2 ∈ (c1, 1).

Similar conditions are the Armijo conditions.

Definition 2.3.2 (Armijo conditions)
Let f ∈ C1(D), D ⊂ Rn, x ∈ D and d ∈ Rn where, 〈∇f(x), d〉 < 0, i.e. d is a given descent
direction. Furthermore are 0 < c < 1

2 , q > 1 and 0 < σ̄ ≤ 1 given. Then the stepsize σ
satisfies the Armijo conditions, if σ is the maximum of the sequence σ̄j :=

{
σ̄q−j

}
, which

fullfiles the inequality
f(x+ σ̄jd) ≤ f(x) + c σ̄j〈∇f(x), d〉. (2.19)

The following lemma is out of the book from [Alt02] and it shows us, that there always exists
a stepsize with some properties, which we need to show a warranty of convergence.

Lemma 2.3.3
Let f be a continuously differentiable function on a convex superset of the level setLS(f, f(x0))
and the gradient of the function f is on the level set Lipschitz continuous.
Furthermore let a point x ∈ LS(f, f(x0)), a descent direction d ∈ Rn, i.e. 〈∇f(x), d〉 < 0
holds, and a constant δ ∈ (0, 1) is given.
Then there exist a τ = τ(x, d, δ) with the following properties:

(i) f(x+ σd) < f(x) + δσ〈∇f(x), d〉 for all σ ∈ (0, τ)

(ii) f(x+ τd) = f(x) + δτ〈∇f(x), d〉

(iii) τ ≥ ρ := −2(1−δ)
L

〈∇f(x),d〉
‖d|2

(iv) d
dσf(x+ σd) = 〈∇f(x+ σd), d〉 < δ〈∇f(x), d〉 for all ρ ∈ (0, τ)

Proof.

(i) Due to the continuous differentiability of the function f on the convex superset of the
level set there holds

〈∇f(x), d〉 = lim
σ→0

f(x+ σd)− f(x)
σ

,

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 12

and with δ ∈ (0, 1), 〈∇f(x), d〉 < 0 follows 〈∇f(x), d〉 < δ〈∇f(x), d〉. So there exists
a σ̄ > 0 with the following property

f(x+σd)−f(x)
σ < δ〈∇f(x), d〉, for all σ ∈ (0, σ̄),

i.e.

f(x+ σd)− f(x) < δσ〈∇f(x), d〉, for all σ ∈ (0, σ̄).

This implies, that the set T := {τ |(i) holds} is not the empty set.

(ii) If τ ∈ T and by (i) f(x + σd) < f(x) holds, i.e. (x + σd) ∈ LS(f, f(x0)) for all
σ ∈ [0, τ]. Because of the compactness of the level set LS(f, f(x0)) follows, that the
function f is bounded on this set.
But δτ〈∇f(x), d〉 → −∞ for τ → ∞ implies, that the set T is upwards bounded, and
for τ := sup(arg T) holds (ii).

(iii) By (i) and (ii) holds, f(x+ σd) ≤ f(x) and (x+ σd) ∈ LS(f, f(x0)) for all σ ∈ [0, τ].
This implies, that the function

φ : [0, τ] → R, φ(s) := f(x+ sd),

is differentiable with
φ′(s) = 〈∇f(x+ sd), d〉.

From this follows

f(x+ τ)− f(x) = φ(τ)− φ(0) =
∫ τ

0
φ′(s) ds =

∫ τ

0
〈∇f(x+ sd), d〉ds,

and we define us

A := f(x+ τd)− f(x)− τ〈∇f(x), d〉 =
∫ τ

0
[∇f(x+ sd)−∇f(x)]Td ds.

With (ii) holds
A = −(1− δ)τ〈∇f(x), d〉, (2.20)

and the Lipschitz continuity of the gradient of the function f on the level set implies

A ≤
∫ τ

0
Ls‖d‖‖d‖ ds =

1
2
τ2L‖d‖2, (2.21)

if L is the Lipschitz constant of∇f(x) for all x ∈ LS(f, f(x0)). (2.20) and (2.21) show
the statement (iii).

(iv) By the Lipschitz continuous and (iii) holds

〈∇f(x+ σd), d〉 = 〈∇f(x), d〉+ [∇f(x+ σd)−∇f(x)]Td

< 〈∇f(x), d〉+ ρ
2L‖d‖

2 (iii)
= δ〈∇f(x), d〉

for all σ ∈ (0, ρ/2). This implies (iv).

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 13

The following lemma shows, that the Goldstein conditions give us a warranty for a minimal
stepsize in each point of the level set depents of the gradient and the descent direction.

Lemma 2.3.4
Let f be a function, such that the Lemma 2.3.3 holds, let d ∈ Rn be a descent direction.
Furthermore the Definition 2.3.1 holds. Then there exists a stepsize σ such that,

σ ≥ −c〈∇f(x), d〉
‖d‖2

, (2.22)

holds, for each x ∈ LS(f, f(x0)) and a constant c > 0; c is independent on x, if for the
constants c1, c2 in the Definition 2.3.1 holds c1 ∈ (0, 1

2], c2 > c11.

Proof.
The Lemma 2.3.3 (ii) says:

f(x+ τd) = f(x) + δτ〈∇f(x), d〉

Now we choose the constant δ ∈ (0, 1), then follows by: c1 = δc̃1 and c2 = δc̃2, where
c̃1 ≤ 1

2δ and c̃2 ≥ 1, that:

f(x+ τd) ≤ f(x) + (δc̃1)︸ ︷︷ ︸
=c1

τ〈∇f(x), d〉, (2.23)

f(x+ τd) ≥ f(x) + (δc̃2)︸ ︷︷ ︸
=c2

τ〈∇f(x), d〉. (2.24)

This implies, that τ fulfill the Goldstein conditions, and τ is an acceptable stepsize. The aim
follows now directly with the Lemma 2.3.3 (iii).

The next lemma shows a similar claim for the Armijo conditions from the Definition 2.3.2.

Lemma 2.3.5
Let f be a function, such that the Lemma 2.3.3 holds, let d ∈ Rn be a descent direction.
Furthermore holds the Definition 2.3.2. Then there exists a stepsize σ such that,

σ ≥ −c̄〈∇f(x), d〉
‖d‖2

, (2.25)

holds, for each x ∈ LS(f, f(x0)) and a constant c̄ > 0, c̄ is independent on x.

Proof.
The Lemma 2.3.3 implies, that for all σ̃ ∈ (0, τ) holds

f(x+ σ̃d)− f(x) < δσ̃〈∇f(x), d〉. (2.26)

The stepsize σ of the Definition 2.3.2 is defined as σ := max {σj |for σj holds (2.19)} and
σj := σ̄q−j , q, σ̄ is defined as in the Definition 2.3.2 by this follows, that σj < σj−1 <
. . . σ1 < σ0 = σ̄ and for the stepsize σj−1 holds the (2.19) not, if σ = σj . With (2.26) follows,
that

σj ≤ τ < σj−1,

and this implies

σ = σj ≥ τ
1
q
.

The claim follows now with the Lemma 2.3.3 (iii).

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 14

At next we give in the following remark a conclusion of the last definitions and lemmas.

Remark 2.3.6

• The constants c1, c2 in the Definition 2.3.1 of the Goldstein conditions are often chosen
as c1 = 1

4 and c2 = 3
4 .

• The constant c in the Definition 2.3.2 of the Armijo conditions is often chosen as c = 1
4 .

• With the Lemma 2.3.4 and 2.3.5 it is clear, that the Definitions 2.3.1 and 2.3.2 have
the same conclusion. Both definitions ensure, that we have a monotone descent for the
function f , if we choose the stepsize such that Definition 2.3.1 or 2.3.2 holds. On the
other-side, we get a warranty, that the stepize is not to small, so that the function f can
converge to a fix point.

Now we show a theorem, which give us a warranty, that we find a local minimum, if we choose
the stepsize according as the Definition 2.3.1 or 2.3.2 and the descent direction d in the point
x ∈ LS(f, f(x0)) satisfy

−〈∇f(x), d〉 > c‖d‖‖∇f(x)‖, (2.27)

for a constant c > 0, which is independent of x and d.

Theorem 2.3.7
Let f be a continuously differentiable function on a convex super set of the level setLS (f, f(x0)),
let the gradient of f be Lipschitz-continuous on the level set. And the function f has one or
more critical points on the level set. Furthermore let dk ∈ Rn be a sequence of descent direc-
tions, which satisfys the Equation (2.27), in the point xk ∈ Ls(f, f(x0)). And the stepsize σk

for the descent direction dk is conform with the Goldstein conditions of Definition 2.3.1 or the
Armijo conditions of Definition 2.3.2.
Then holds: the sequence {xk} converges to a critical point, if xk is defined as xk+1 :=
xk + σkdk, and x0 is the start point.

Proof.
With Definition 2.1.2 follows, the point xk is a critical point, if

∇f(xk) = 0, (2.28)

holds. The Equation (2.27) implies, that

〈∇f(xk), dk〉
‖dk‖

→ 0 for k →∞, (2.29)

fulfill the Equation (2.28). If the Definition 2.3.1 or 2.3.2 holds, then there exists a constant
c̄ > 0, such that

f(xk + σkdk)− f(xk) ≤ c̄σk〈∇f(xk), dk〉 for all k ∈ N0, (2.30)

holds. The compactness of the level set implies, that the function f is bounded for all x ∈
LS(f, f(x0)) . And this combined with f(xk+1) < f(xk) implies, that

f(xk + σkdk)− f(xk) → 0 for k →∞. (2.31)

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 15

With (2.30) and (2.31) follow, that

σk〈∇f(xk), dk〉 → 0 for k →∞. (2.32)

The Lemma 2.3.4 or Lemma 2.3.5 combined with (2.29) and (2.32) give us:

σk〈∇f(xk), dk〉 ≤ −c̃〈∇f(xk), dk〉
‖dk‖2

〈∇f(xk), dk〉

= c̃

(
〈∇f(xk), dk〉

‖dk‖

)2

→ 0 for k →∞,

(2.33)

The Equation (2.33) shows the claim.

Remark 2.3.8

• A stepsize σ is called efficient stepsize, if

f(x+ σd) ≤ f(x) + c

(
〈∇f(xk), dk〉

‖dk‖

)2

,

for a constant c, which is independent of x and d, holds.

• Lemma 2.3.4 implies, that Definition 2.3.1 defines a efficient stepsize.

• Lemma 2.3.5 implies, that Definition 2.3.2 defines a efficient stepsize.

We have shown some theoretical aspects for the choice of the stepize. The problem is, that we
have not an efficient algorithm to compute an efficient stepsize, we try to correct this disadvan-
tage.
At first we specify the exact stepize, but it is clear, that this is only in special cases possible to
compute.

2.3.1 Exact stepsize control

Here we specify the exact stepsize σe for a given descent direction d, a point x ∈ LS (f, f(x0))
and a function f , which is on a convex superset of the level set continuously differentiable and
has one or more critical points on the level set.
We get the optimal stepsize, if we solve the one dimensional optimization problem

min
s≥0

ϕ(s) = f(x+ sd). (2.34)

With (2.34) follows

ϕ′(s) =
d

ds
f(x+ sd) = 〈∇f(x+ sd), d〉

{
= 0 for s = σe

< 0 for all s ∈ [0, σe)
. (2.35)

The stepsize σe is a local minimum of (2.34). If we further know, that the function f is convex,
then follows, that σe is also the global solution.
It is clear, that we can only compute σe in an analytical way in some special cases, e.g., if f is
a linear function. Otherwise we must solve the Equation (2.34) by numerical methods.
Now we show an estimate for the exact stepsize.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 16

Theorem 2.3.9
Let f be a continuously differentiable function on a convex superset of the level set, the gradient
of the function f is Lipschitz-continuous on the level set, and f has one or more critical points
on the level set. Furthermore there is a point x ∈ LS(f, f(x0) and a descent direction d ∈ Rn

given.
Then for the exact stepsize σe

σe ≥ σ̃ :=
−〈∇f(x), d〉

L‖d‖2
(2.36)

holds and

f(x+ σed) ≤ f(x)− 1
2L

(
〈∇f(x), d〉

‖d‖

)2

= f(x)− 1
2
σ̃〈∇f(x), d〉 (2.37)

Proof.
Due to f(x + σed) ≤ f(x) the point (x + σed) is element of LS(f, f(x0)). And by the
Lipschitz-continuous of the gradient from the function f follows

0 = 〈∇f(x+ σed), d〉 = 〈∇f(x), d〉〈∇f(x+ σed)− f(x), d〉
≤ 〈∇f(x), d〉+ σeL‖d‖2

(2.38)

and this implies (2.36). Analogeous to poof of Lemma 2.7 (iii) follows

f(x+ σ̃d) ≤ f(x) + σ̃〈∇f(x), d〉+
1
2
Lσ̃‖d‖2. (2.39)

The definition of of σ̃ implies

f(x+ σ̃) ≤ f(x) + σ̃

(
〈∇f(x), d〉+

1
2
Lσ̃‖d‖2

)
= f(x) +

1
2
σ̃〈∇f(x), d〉. (2.40)

Because of σe ≥ σ̃ holds f(x+ σed) = ϕ(σe) ≤ ϕ(σ̃) = f(x+ σ̃) and this shows (2.37).

In the next section we consider the Armijo method, to compute the stepsize.

2.3.2 Stepsize control of Armijo

Here we consider a first simple algorithm to compute an efficient stepsize.

Algorithm 2.3.10 (Armijo method)
choose the constants 0 < δ < 1, 0 < γ and 0 < β1 ≤ β2 < 1 fixed for all x and d
set σ0 ≥ −γ 〈∇f(x),d〉

‖d‖2
do i=0:N

if (f(x+ σi ≤ f(x) + δσi〈∇f(x), d〉)) then
σ := σi;
stop;

end
choose σi+1 ∈ [β1σi, β2σi] ;

end

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 17

Remark 2.3.11
The choice of σi in the i-th iteration, is not specified in the general Algorithm 2.3.10. Also the
constants are not specified. Here is one typical choice:

δ := 0.01

γ := 10−4 or set σ0 := 1 (fix)

β1 = β2 := 1
2 this implies also a choice of σi in the i-th step.

Remark 2.3.12
A big disadvantage is, that the Armijo method only reduces the stepsize.

We try to eliminate this disadvantage in the next subsection with the Powell method.

2.3.3 Stepsize control of Powell

Another method to choose a efficient stepsize is the Powell method. To describe this method,
we need two help functions to compute the efficiency of the actual stepsize. One big difference
to the Armijo method is, that the start interval is not only dependent on the start stepsize and
the help functions. Another difference is, that the Powell method allows to enlarge also the
stepsize.

Remark 2.3.13
Here we give the definitions of the two help-functions for the Powell method.

G1(σ) :=

{
1, if σ = 0,

f(x+σd)T−f(x)
σ∇f(x)T d

else,
(2.41)

G2(σ) :=
∇f(x+ σd)Td

∇f(x)Td
. (2.42)

Now we can consider the full algorithm.

Algorithm 2.3.14 (Powell method)

choose the constants 0 < δ < β < 1

set: σ0

if (G1(σ0) ≥ δ and G2(σ0) ≤ β) then

σ := σ0;

stop;

else if (G1(σ0) ≥ δ and G2(σ0) > β) then //i.e. σ0 ∈ I1 ⇒ σ > σ0

a0 := σ0;

` := min
`∈N0

(` : G1(2`σ0) < δ);

b0 := 2`σ0; //i.e. b0 ∈ I3

else if (G1(σ0) < δ) then //i.e. σ0 ∈ I3 ⇒ σ < σ0

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 18

` := min
`∈N0

(` : G1(2−`σ0) ≥ δ and G2(2−`σ0) > β);

a0 := 2−`σ0; //i.e. a0 ∈ I1
b0 := σ0;

end

do i=0:N

σi := 1
2(ai + bi);

if (G1(σi) ≥ δ and G2(σi) ≤ β) then

σ := σi;
stop;

else if (G1(σi) ≥ δ and G2(σi) > β) then //i.e. σi ∈ I1 ⇒ σ > σ0

ai+1:= σi;
bi+1 := bi;

else if (G1(σi) < δ) then //i.e. σi ∈ I3 ⇒ σ < σ0

ai+1:= ai;
bi+1 := σi;

end

end

Remark 2.3.15
The choice of the constants in the algorithm is not specified. In this remark we give a typical
choice for the constants:

σ0 = 1.

δ = 0.1

β = 0.9

In the next section we presentate some numerical tests with different approaches of optimiza-
tion algorithms for three test functions.

2.4 Comparison of different optimization algorithms

In this section we apply different approaches of optimization algorithms, on three test functions.
The reason for this numerical experiments is, that we get a feeling for the different algorithms.
On each test function we apply the following algorithms:

• Steepest-Descent-Algorithm with Armijo-stepsize-control (SDA-ASC)

• Steepest-Descent-Algorithm with Powell-stepsize-control (SDA-PSC)

• Conjungated-Gradient-Algorithm with Armijo-stepsize-control (CGA-ASC)

• Conjungated-Gradient-Algorithm with Powell-stepsize-control (CGA-PSC)

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 19

• Newton-Algorithm (NA)

• Damped-Newton-Algorithm (DNA)

• Nelder-Mead-Algorithm (NMA)

The runtime comparison was done on a Pentium 4 with one gigabyte main memory and the
operating system Linux with the distribution ubuntu. The time values are mean values, of
several computations. This is the configuration for each of the next three test functions.

2.4.1 The Rosenbrock-function

The Rosenbrock-function is given by the following formula:

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2. (2.43)

It is a polynom of order 4, which has one global minimum at the point (1., 1.) where the func-
tion value is zero.
The start point for the iteration is x = (−1.9, 2).

-6
-4
-2
 0
 2
 4
 6
 8
 10

-2 -1 0 1 2
-1

 0

 1

 2

 3

 4

-6
-4
-2
 0
 2
 4
 6
 8

 10

Rosenbrock-function

log of Rosenbrock-function

x

y

x

y

Rosenbrock-function

-2 -1 0 1 2

-1

 0

 1

 2

 3

 4

a. logarithm of the Rosenbrock-function b. Isolines of the Rosenbrock-function

Figure 2.1: Rosenbrock-function

The Image 2.1 shows us the characteristics of the Rosenbrock-function. With the characteris-

Algorithm Iterations function value point time factor
SDA-ASC 2361 9.99631E-006 1.00316, 1.00634 4.4938E-003 2665.3
SDA-PSC 391 8.87032E-006 1.00298, 1.00597 3.1071E-003 1842.8
CGA-ASC 149 9.69558E-006 0.99696, 0.99386 2.5960E-004 153.9
CGA-PSC 417 6.09559E-006 1.00244, 1.00485 1.6882E-003 1001.3
NA 5 4.73137E-018 1.00000, 1.00000 1.6860E-006 1.0
DNA 27 6.00622E-007 0.99927, 0.99851 1.9157E-005 11.4
NMA 72 7.20092E-006 0.99809, 0.99600 2.1280E-005 12.6

Table 2.1: Rosenbrock-function with an error < 10−5.

tics it is clear, that the methods, which are based on the gradient as descent direction, are not
the best choice. This is also shown in the Table 2.1 and 2.2.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 20

Algorithm Iterations function value point time factor
SDA-ASC 9476 9.99212E-011 1.00001, 1.00002 1.9660E-002 11660.7
SDA-PSC 6850 9.99500E-011 1.00001, 1.00002 5.6240E-002 33357.1
CGA-ASC 411 9.63266E-011 0.99999, 0.99998 6.6380E-004 393.7
CGA-PSC 2007 9.88060E-011 1.00001, 1.00002 7.0180E-003 4162.5
NA 5 4.73137E-018 1.00000, 1.00000 1.6860E-006 1.0
DNA 28 4.20201E-011 1.00000, 0.99999 2.0150E-005 12.0
NMA 93 2.01753E-012 1.00000, 1.00000 2.6260E-005 15.6

Table 2.2: Rosenbrock-function with an error < 10−10.

2.4.2 The Himmelblau-function

The Himmelblau-function is given by the following formula:

f(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2. (2.44)

The Himmelblau-function is a polynom of order 4, with one local maximum at the point
(-0.270845, -0.923039) and four local minimums, which are also global minimums and the
function value on this points are zero.
The start point for the iteration is x = (1.5, 4).

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

-4 -2 0 2 4
-4

-2
 0

 2
 4

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Himmelblau-function

x

y

x

y

Himmelblau-function

-4 -2 0 2 4

-4

-2

 0

 2

 4

a. Himmelblau-function b. Isolines of the Himmelblau-function

Figure 2.2: Himmelblau-function

The Image 2.2 shows us the characteristics of the Himmelblau-function. By the characteristics

Algorithm Iterations function value point time factor
SDA-ASC 20 8.62406E-006 3.58483, -1.84805 3.0730E-005 22.9
SDA-PSC 10 9.21111E-006 3.00028, 2.00047 7.8630E-005 58.6
CGA-ASC 11 8.63855E-006 3.58416, -1.84748 1.6150E-005 12.0
CGA-PSC 7 1.19109E-006 2.99991, 1.99982 6.0670E-005 45.2
NA 8 1.10505E-007 -2.80518, 3.13132 2.8450E-006 2.1
DNA 5 4.43162E-012 -2.80512, 3.13131 4.0900E-006 3.0
NMA 2 0. 3.00000, 2.00000 1.3420E-006 1.0

Table 2.3: Himmelblau-function with an error < 10−5.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 21

Algorithm Iterations function value point time factor
SDA-ASC 34 4.39531E-011 3.58443, -1.84813 5.1850E-005 38.6
SDA-PSC 18 1.84065E-011 3.00000, 2.00000 1.2789E-004 95.3
CGA-ASC 21 1.96806E-011 3.58442, -1.84812 2.9690E-005 22.1
CGA-PSC 11 5.25415E-011 3.00000, 2.00000 9.0250E-005 67.3
NA 9 1.02448E-016 -2.80511, 3.13131 3.1460E-006 2.3
DNA 5 4.43162E-012 -2.80512, 3.13131 4.0900E-006 3.0
NMA 2 0. 3.00000, 2.00000 1.3420E-006 1.0

Table 2.4: Himmelblau-function with an error < 10−10.

it is clear, that we have not a convex function. By the theory follows, that we can not ensure,
that we find the global minimum, or that the solution is unique. This problem is shown in the
Table 2.3 and 2.4, if we consider the points of the different methods. So we have found three
of the four minimums with the same start point, only by using different algorithms.

2.4.3 The Bazaraa-Shetty-function

The Bazaraa-Shetty-function is given by the following formula:

f(x1, x2) = (x1 − 2)4 + (x1 − 2x2)2 (2.45)

The Bazaraa-Shetty-function is polynom of order 4, with one local minimum on the point
(2, 1), which is also a global minimum, and the function value is zero at this point.
The start point for the iteration is x = (4, 2).

 0

 0.5

 1

 1.5

 2

 2.5

 1.6
 1.8

 2
 2.2

 2.4

 0.6
 0.8

 1
 1.2

 1.4

 0

 0.5

 1

 1.5

 2

 2.5

Bazaraa-Shetty-function

x
y

x

y

Bazaraa-Shetty-function

 1.6 1.8 2 2.2 2.4

 0.6

 0.8

 1

 1.2

 1.4

a. Bazaraa-Shetty-function b. Isolines of the Bazaraa-Shetty-function

Figure 2.3: Bazaraa-Shetty-function

The Image 2.3 shows us the characteristics of the Bazaraa-Shetty-function. By the characteris-
tics it is clear, that we have a convex function, this ensures us the unique convergence.
But the characteristics show also, that we have a rose flatter along the line 2x1 = x2. This
results to the problem, that the gradient based methods have a slow convergence, this is shown
in the Table 2.5 and 2.6. But in the tables it is also shown, that the convexness of the functions
give us a fast convergence by Newton-like algorithms.

2.4.4 Result of this small experiment

In this subsection we summarize the results of the last three numerical experiments.

CHAPTER 2. BASICS OF NUMERICAL OPTIMIZATION 22

Algorithm Iterations function value point time factor
SDA-ASC 177 9.83874E-006 2.05596, 1.02807 1.5919E-004 306.7
SDA-PSC 163 9.73412E-006 2.05579, 1.02800 1.0662E-003 2054.1
CGA-ASC 59 9.71482E-006 2.05562, 1.02800 4.3045E-005 82.9
CGA-PSC 25 7.46822E-009 2.00490, 1.00241 1.4415E-004 277.7
NA 9 7.32546E-006 2.05202, 1.02601 5.1905E-007 1.0
DNA 9 7.32546E-006 2.05202, 1.02601 1.2960E-006 2.5
NMA 23 3.57827E-006 2.01635, 1.00911 7.1960E-006 13.9

Table 2.5: Bazarra-Shetty-function with an error < 10−5.

Algorithm Iterations function value point time factor
SDA-ASC 10000 2.53480E-009 2.00710, 1.00355 6.3383E-003 1132.6
SDA-PSC 10000 2.50452E-009 2.00707, 1.00354 6.6983E-002 11969.8
CGA-ASC 10000 2.62658E-010 2.00403, 1.00201 6.7220E-003 1201.2
CGA-PSC 101 5.48218E-011 1.99858, 0.99929 5.6730E-004 101.4
NA 16 8.59566E-011 2.00304, 1.00152 5.5960E-006 1.0
DNA 16 8.59566E-011 2.00304, 1.00152 1.0385E-005 1.9
NMA 37 4.03296E-011 2.00222, 1.00111 1.0959E-005 2.1

Table 2.6: Bazarra-Shetty-function with an error < 10−10 or max 10000 iterations.

Gradient based algorithms

Considering the time values and the factors with respect to the other methods, one can notice,
that this algorithms are slower. In some cases we can see, that the convergence is directly
dependent on the stepsize algorithm.
But it is clear, that this three models are not objective and in general legal. An important point
is, that the convergence is dependent on the stepsize control. That is the reason, why better
stepsize controls are needed.

Uniqueness of the solution

The example of the Himmelblau-function shows very clearly the problem, if we do not have
a convex function. In this example it is not a problem, because each local minimum is also a
global one.
But in a general case it is a problem, that it is possible, that we find only a local minimum.

Conclusion

This chapter and especially the examples ought to give a small overview about the optimization
and the numerical optimization. It is clear, that we have considered only a very small part of
this topic. And many question are open, for example, how we choose the stepsize efficiently,
or which other methods are also good, and efficient.
But the main focus of this work about numerical optimization is the automatic differentiation
and the application on the flow of fluids.

Chapter 3

The Navier-Stokes equations

In this chapter we give an introduction to the Navier-Stokes equations for incompressible fluids,
which describe fluid dynamics. At first we explain the model, then we give an overview about
the numerical methods to solve these equations.

3.1 The model

In this section we give a small derivation for the flow dynamic equations, at first for the Euler
equations and then for the Navier-Stokes equations.
The derivation of this model based on the book of Landau and Lifschitz Lehrbuch der theo-
retischen Physik VI [Lan74] and Griebel, Dornseifer and Neunhoeffer Numerische Simualtion
in der Strömungsmechanik [MG95] and the lecture notes from Urban in the third part of Sci-
entyfic Computing course in winter term 2006/2007 on the University Ulm.
At first, we define some necessary notions.

Definition 3.1.1 (Fluid)
The notation fluid comes from the latin word fuldius and stands for the flow. It is a main nota-
tion for gasses and liquids.

Definition 3.1.2 (Newton-Fluid)
A Newton-Fluid is a fluid, which has some special characteristics; the shear stress τ is pro-
portional to the shear rate du

dν , where u is the velocity parallel to the wall and ν is the normal
vector to the wall.

τ = η
du

dν

The proportional constant η is called dynamic viscosity.

Remark 3.1.3 (Examples for Newton and non-Newton fluids)
Newton fluids : water, oil, gases
Non-Newton fluids : blood, glycerin

Definition 3.1.4 (Ideal fluid)
A fluid is called Ideal fluid, if the fluid fulfill no internal friction and no head conduction.

23

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 24

3.1.1 The Euler- and Navier-Stokes equations

Here we derive the Euler equations and in the following we extend the model to the Navier-
Stokes equations.
We start with a heuristic for the flow of fluids and, after this, we concretize this heuristic.

Heuristic

We consider a fluid in a domain Ω ⊂ Rd, d = 2, 3. This domain is called flow-domain. We
observe the flow of the fluid in the flow-domain over the time t ∈ [0, Tend] =: IT . With the
incompressibility of the fluid follows for the density ρ : Ω × IT → R+, that ρ(x, t) = ρ∞ =
const holds.
The flow is characterized by:

• the velocity field u : Ω× IT → Rd,

• the pressure p : Ω× IT → R and

• a external forces g : Ω× IT → Rd.

Now we present present kinds of boundary-conditions:

(i) Slip-Boundary-Condtions,

(ii) Non-Slip-Boundary-Condtions,

(iii) Inflow-Boundary-Condtions,

(iv) Outflow-Boundary-Condtions,

(v) Periodic-Boundary-Condtions.

With the help of this heuristic, we can start with the modeling of the Euler equations.

Modeling

We seperate the modeling into two parts, the conservation of mass and conservation of momen-
tum.
We consider Ωi,0 ⊂ Ω and the function φ : Ωi,0 × IT → Ωi,t ⊂ Ω, which describes the chang-
ing of the position of a particle. Ωi,t is a closed system, which means, that there exist no flow
over the borders of Ωi,t. The course of a particle c is given by the graph of the the function
t→ φ(c, t), and the velocity on fixed point x := φ(c, t) is given by

u(x, t) =
∂

∂t
φ(c, t). (3.1)

The derivation is based on the Transport theorem and the Gauss’ theorem-Gradient, this is
why we show this theorem, before we start with the modeling.

Theorem 3.1.5 (Transport theorem)
Let h be a continuous differentiable function and let h : Ωi,t × IT → R, then holds:

d

dt

∫
Ωi,t

h(x, t) dx =
∫

Ωi,t

(
d

dt
h+ div(h(u))

)
(x, t) dx. (3.2)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 25

For the proof of these theorem we need the Wronski-determinant.

Lemma 3.1.6 (Wronski-determinant)
Let A, Y : I → Rd×d be two matrix functions and I ⊂ R. And Y is a Wronski-matrix, i.e. Y
fulfill

d

dt
Y (t) = A(t)Y (t), (3.3)

then holds
d

dt
(det Y (t)) = (trA(t))(detY (t)). (3.4)

And trA :=
∑n

i=1 ai,i is the trace of A.

Proof.
Let Yi := (y1,i(t), . . . , yn,i(t)) be the i-th row of Y (t), this implies

d

dt
Yi(t)

(3.3)
=

m∑
j=1

ai,jYj(t), for i = 1, . . . , n. (3.5)

By the definition of the determinant: detA =
∑

σ∈Sn
(sgnσ)a1,σ1 · · · an,σn follows:

d

dt
(det Y (t))

product rule
=

n∑
i=1

∑
σ∈Sn

(sgnσ)y′i,σi
(t) ·

n∏
j=1 j 6=i

yj,σj (t)

=
n∑

i=1

det

(
Y1(t), . . . , Yi−1(t),

d

dt
Yi(t), Yi+1(t), . . . , Yn(t)

)T

(3.5)
=

n∑
i,j=1

ai,j(t) det (Y1(t), . . . , Yi−1(t), Yj(t), Yi+1(t), . . . , Yn(t))T︸ ︷︷ ︸
=0 for all j 6=i

=
n∑

i=1

ai,i(t) · (det Y (t))

= trA(t) · (det Y (t)).

Now we can prove the Transport theorem.

Proof of Theorem 3.1.5. With (3.1) follows:

∂

∂x

∂

∂t
φ(x, t) chain rule= ux︸︷︷︸

= ∂u
∂x

(φ(x, t), t) · φx︸︷︷︸
= ∂φ

∂x

(x, t),

and this implies
∂

∂t
φx(x, t)︸ ︷︷ ︸

=Y (t)

= ux(φ(x, t), t)︸ ︷︷ ︸
=A(t)

·φx(x, t)︸ ︷︷ ︸
=Y (t)

.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 26

We define J(x, t) := det φx(x, t), so follows with the Lemma 3.1.6:

∂

∂t
J(x, t)

(3.4)
= (tr ux(φ(x, t), t)) · (J(x, t)). (3.6)

We use the transformation Ωi,t = φ(Ωi,0, t), x(t) = φ(x̂, t) and∫
Ωi,t

h(x, t)dx =
∫

Ωi,0

h(φ(x̂, t), t) · J(x̂, t)︸ ︷︷ ︸
=det φx(x̂,t)

dx̂.

This implies

d

dt

∫
Ωi,t

h(x, t)dx
int. trafo.

=

∫
Ωi,0

∂

∂t
h(φ(x̂, t), t) · J(x̂, t)dx̂

+

∫
Ωi,0

h(φ(x̂, t), t) · ∂

∂t
J(x̂, t)dx̂

=

∫
Ωi,0

(
ht(φ(x̂, t), t) + ∇ht(φ(x̂, t), t)

∂

∂t
φ(x̂, t)︸ ︷︷ ︸

(3.1)
= u(x̂,t)

)
· J(x̂, t) dx̂

+

∫
Ωi,0

h(φ(x̂, t), t) · (div u(φ(x̂, t), t)) · J(x̂, t)dx̂

=

∫
Ωi,0

(ht + ∇h · u + h · div u︸ ︷︷ ︸
=div(h·u)

) · (φ(x̂, t)) · J(x̂, t)︸ ︷︷ ︸
=det φx(x̂,t)

dx̂

inv. trafo
=

∫
Ωi,t

(
∂

∂t
h + div(hu))(x, t)dx.

After this we consider the Gauss’ theorem-Gradient.

Theorem 3.1.7 (Gauss’ theorem-Gradient)
Let Ω ⊂ R3, a compact domain, where dim(Ω) = 3, and the boundary of Ω is piecewise
smooth, ν = (ν1, ν2, ν3)T is the standardized outer normal vector and p ∈ C1(Ω) → R, then
holds ∮

∂Ω
p · ν dS =

∫
Ω
∇p dV. (3.7)

Proof.
w.l.o.g the domain is given Ω = I1× I2× I3 and I` = [0, 1] ` = 1, 2, 3, otherwise we consider

Ωi and Ω = lim
n→∞

n⋃
i=1

Ωi and Ωi := I1,i × I2,i × I3,i with I`,i := [ai, bi] ai, bi ∈ R, ` = 1, 2, 3

and by the linearity of the integral follows the result for Ω.
Now Ω = I1 × I2 × I3 and Γi,a := {xi = a ∈ R, xj ∈ [0, 1] ∀ j ∈ {1, 2, 3} \ i}, then the

boundary of Ω, is ∂Ω =
3⋃

i=1
(Γi,0 ∪Γi,1). It is clear, that νi = 1 and ν` = 0 ` ∈ {1, 2, 3} \ i on

Γi,1 and νi = −1 and ν` = 0 ` ∈ {1, 2, 3} \ i on Γi,0.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 27

With these notations follows,∮
∂Ω
p · ν dS =

∑3
i=1

∫
Γi,0

p · ν dS +
∫
Γi,1

p · ν dS

=

∫
Γ1,1

p dS −
∫
Γ1,0

p dS∫
Γ2,1

p dS −
∫
Γ2,0

p dS∫
Γ3,1

p dS −
∫
Γ3,0

p dS

=

∫
I2

∫
I3
p(1, x2, x3) − p(0, x2, x3) dx2dx3∫

I1

∫
I3
p(x1, 1, x3) − p(x1, 0, x3) dx1dx3∫

I1

∫
I2
p(x1, x2, 1) − p(x1, x2, 0) dx1dx2

=

∫
I2

∫
I3

(∫
I1

∂
∂x1

p(x1, x2, x3) dx1

)
dx2dx3∫

I1

∫
I3

(∫
I2

∂
∂x2

p(x1, x2, x3) dx2

)
dx1dx3∫

I1

∫
I2

(∫
I3

∂
∂x3

p(x1, x2, x3) dx3

)
dx1dx2

=

∫
Ω∇p dV.

Followed by this dispositions, we start start with the modeling of the Conservation of the
mass.

3.1.2 Conservation of mass

Now we consider a fixed domain Ωi. The mass of the fluid in this domain Ωi is given by the
integral over the density ρ. By the function φ follows, that the fluid, which is in Ωi,0 on the
time t = 0, is for t ≥ 0 in the domain Ωi,t. This implies, that for all t ≥ 0 the equation:∫

Ωi,0

ρ(x, 0)dx =
∫

Ωi,t

ρ(x, t)dx, (3.8)

holds. With the Equation (3.8) follows, that the derivative of the mass with respect to the time
t is constant zero. This result implies by using the Transport Theorem 3.1.5,

0 =
∫

Ωi,t

(
∂

∂t
ρ+ div (ρu)

)
(x, t)dx for allΩi,t, t ≥ 0. (3.9)

The Equation (3.9) holds for all domains Ωi,t, in particular for arbitrary small domains, this im-
plies, that the integrant is zero. The outcome of this is the continuity equation for compressible
fluids:

∂

∂t
ρ+ div (ρu) = 0. (3.10)

And for incompressible fluids follows,

div (u) = 0. (3.11)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 28

3.1.3 Conservation of momentum

Let Ω be the domain, in which we consider the flow of a fluid, and where Ωi,t ⊂ Ω is a fixed
volume. The moment of the fluid in the domain Ωi,t is given by the integral:

m(t) :=
∫

Ωi,t

ρ(x, t)u(x, t)dx. (3.12)

Applying the 2. Newton’s law of motion on the time-based change of the momentum m(t) is
given by the sum of all forces F acting on the fluid in the domain Ωi,t,

∂

∂t
m(t) = F (x, t). (3.13)

The complete forces of the ideal fluid in Ωi are given by:

• Extern forces Fe (e.g. gravitation) are given in the following form

Fe :=
∫

Ωi,t

ρ(x, t)f(x, t)dx,

where f(x, t) is the force density per unit volume.

• Sureface forces FS(e.g. pressure, inner friction) are given in the following form

Fs :=
∫

δΩi,t

σ(x, t)ν dx,

where σ(x, t) :=

σ1,1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

σ3,1 σ3,2 σ3,3

 is the stress tensor.

This implies
F (x, t) := Fe + Fs.

By the theorem of Gauss 3.1.7 follows:

Fs(x, t) =
∮

∂Ωi,t

σ · ν dS

=
∮

∂Ωi,t

σ1,1

σ2,1

σ3,1

︸ ︷︷ ︸
=:σ(·,1)

·ν +

σ1,2

σ2,2

σ3,2

︸ ︷︷ ︸
=:σ(·,2)

·ν +

σ1,3

σ2,3

σ3,3

︸ ︷︷ ︸
=:σ(·,3)

·ν dS

=
∫

Ωi,t

∇σ(·,1) dV +
∫

Ωi,t

∇σ(·,2) dV +
∫

Ωi,t

∇σ(·,3) dV

=
∫

Ωi,t

div σ dV. (3.14)

So we can write the 2. Newton’s law of motion in the following form:

∂

∂t

∫
Ωi,t

ρ(x, t)u(x, t)dx =
∫

Ωi,t

ρ(x, t)f(x, t)dx−
∫

Ωi,t

div σ dV (3.15)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 29

Appling the product rule and the Transport Theorem 3.1.5 on the left hand side of (3.15) gives
us:∫

Ωi,t

∂

∂t
(ρu)+(u · ∇)(ρu)+(ρu)div u dx =

∫
Ωi,t

ρ(x, t)f(x, t)dx+
∫

Ωi,t

div σ dV (3.16)

The Equation (3.16) holds for all domains Ωi,t, in particular for arbitrary small domains, this
implies, that the equation holds also for the integrants. This gives the momentum equation in
an abstract form.

∂

∂t
(ρu) + (u · ∇)(ρu) + (ρu)div u− div σ − ρf = 0. (3.17)

3.1.4 Euler equations

If we consider an ideal fluid, we get the stress tensor in the following form:

σ(x, t) := −p(x, t)I.

Compressible

So we get the Euler equations for compressible fluids:

∂

∂t
(ρu) + (u · ∇)(ρu) + (ρu)div u+∇p = ρf. (3.18)

Incompressible

The Euler equations for incompressible fluids, which follows by combining the Equation
(3.11) and (3.18), is given by:

∂

∂t
(u) + (u · ∇)(u) +

1
ρ
∇p = f. (3.19)

3.1.5 Navier-Stokes equations

If we consider a viscous fluid, we get the stress tensor in the following form:

σ := (−p+ λdiv u)I + µ

[(
∂ui

∂xj
+
∂ui

∂xj

)]
i,j=1,2,3

.

With this stress tensor, the momentum Equation (3.17) is transformed in a system of partial
differential equation of second order.

Compressible

This is the momentum equation of the Navier-Sokes equations for compressible fluids:

∂

∂t
(ρu) + (u · ∇)(ρu) + (ρu)div u+∇p = (µ+ λ)∇(div u) + µ∆u+ ρf. (3.20)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 30

Incompressible

The momentum equation of the Navier-Sokes equations for incompressible fluids, which
follows by combining the Equation (3.11) and (3.20) is given by:

∂

∂t
(ρu) + (u · ∇)(ρu) +∇p = µ∆u+ ρf. (3.21)

The complete system of the Navier-Stokes equations is:

∂

∂t
(ρu) + (u · ∇)(ρu) +∇p = µ∆u+ ρf in Ω

div−→u = 0 in Ω (3.22)

u = g on δΩ

Definition 3.1.8 (Divergence)
The divergence div is a continuous operator, which is defined as: Let f ∈ C1(Ω) and Ω ⊂ Rn,
f : Ω → Rn, then

divf :=
n∑

i=1

∂fi

∂xi
(3.23)

A more detailed derivation to the Navier-Stokes equations is given in [Lan74] and [MG95].
Also we have not considered the energy transport in the Navier-Stokes equations. This is also
given in [MG95].

3.2 Numerical methods

In this section we give an introduction in two methods to solve the Navier-Stokes equations
approximatively. We consider the finite differences method and the finite volume method.

3.2.1 Finite differences method

This is a simple method to solve ODE’s and PDE’s, which approximates the derivatives with
finite differences (FD).
We start with some general topics about the finite differences method, then we consider the
finite differences method especially for the Navier-Stokes equations. A reference for the finite
differences method is for example the book from Knabner and Angermann [Kna00].

Theory of the finite differences method

Definition 3.2.1 (Finite difference)
Let f ∈ C(I) and I ⊂ R, h ∈ R f ′h is called:

– symmetric finite difference, if f ′h := f(x+h)−f(x−h)
2h and (x− h), (x+ h) ∈ I

– backward finite difference, if f ′h := f(x)−f(x−h)
h and (x− h), x ∈ I

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 31

– forward finite difference, if f ′h := f(x+h)−f(x)
h and x, (x+ h) ∈ I

If f ∈ Cn(I) and n ∈ N and h→ 0, then f ′h → f ′.

The principle of the finite difference method is to approximate a boundary value problem on
a finite number of grid points in Ω. We approximate the derivative of the PDE with finite
differences, and we approximate the function values on the inner grid points, the boundary
condition on boundary grid-points. In the Figure 3.1 a grid for finite differences is visuallized.

-2

-1

 0

 1

 2

 3

 4

 5

 6

-2 -1 0 1 2 3 4 5 6

-2

-1

 0

 1

 2

 3

 4

 5

 6

-2 -1 0 1 2 3 4 5 6

: Ωh inner grid point

-2

-1

 0

 1

 2

 3

 4

 5

 6

-2 -1 0 1 2 3 4 5 6

: ∂Ωh boundary grid point
-2

-1

 0

 1

 2

 3

 4

 5

 6

-2 -1 0 1 2 3 4 5 6

: boundary near

-2

-1

 0

 1

 2

 3

 4

 5

 6

-2 -1 0 1 2 3 4 5 6

: boundary far

Figure 3.1: Example for a finite differences grid

Lemma 3.2.2 (Approximation Order of Finite Differences)
Let I ⊇ (x − h, x + h) for x ∈ R, h > 0, then there exists a value R, which is depended on
the function f but independent of the stepsize h. For this the following estimations hold:

(i) for f ∈ C2(Ī):

f ′(x) =
f(x+ h)− f(x)

h
+ hR and |R| ≤ 1

2
‖f ′′‖∞, (3.24)

(ii) for f ∈ C2(Ī):

f ′(x) =
f(x)− f(x− h)

h
+ hR and |R| ≤ 1

2
‖f ′′‖∞, (3.25)

(iii) for f ∈ C3(Ī):

f ′(x) =
f(x+ h)− f(x− h)

2h
+ h2R and |R| ≤ 1

6
‖f (3)‖∞, (3.26)

(iv) for f ∈ C4(Ī):

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+ h2R and |R| ≤ 1

6
‖f (4)‖∞. (3.27)

Proof.
The results (i)-(iv) we prove by the Taylor series.

(i) f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x+ ξ)︸ ︷︷ ︸

≤h2

2
‖f ′′‖∞

and ξ ∈ (0, h)

this implies the Equation (3.24), for R ≥ 1
2‖f

′′‖∞.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 32

(ii) f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x− ξ)︸ ︷︷ ︸

≤h2

2
‖f ′′‖∞

and ξ ∈ (0, h)

this implies the Equation (3.25), for R ≥ 1
2‖f

′′‖∞.

(iii)

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x+ ξ), (3.28)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x− ξ) (3.29)

and ξ ∈ (0, h), combining the Equations (3.28) and (3.29) with a subtraction,
implies the Equation (3.26), for R ≥ 1

6‖f
(3)‖∞.

(iv)

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) +

h4

12
f (4)(x+ ξ), (3.30)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x) +

h4

12
f (4)(x− ξ) (3.31)

and ξ ∈ (0, h), combining the Equations (3.30) and (3.31) with a addition,
implies the Equation (3.27), for R ≥ 1

6‖f
(4)‖∞.

Remark 3.2.3
The Lemma 3.2.2 shows the problem of the finite difference method, because the results about
the approximation order need at least a twice continuously differentiable function, and for the
approximation of the second derivative we need actually four times continuously differentiable
functions.
This is a very strong condition, in the reality.

In the Example 3.2.4 we show a realization of a diffusion and convection problem with central
differences and the upwind method in two versions.

Example 3.2.4 (Staggered grid)
Let

−d
2u

dx2
+ k

du

dx
= f and x ∈ (a, b), (3.32)

and with the Dirichlet boundary conditions:

u(a) =: ua, u(b) =: ub. (3.33)

For this example we choose a = 0, b = 1, ua = 1, ub = 0 and the right hand side is given
by f(x) = −1560x38 + k · 40x39. So we know the exact solution. And the exact solution is
u(x) = 1− x40.
In the matrix vector notation we get:

Au = f, (3.34)

where A represents the finite difference matrix (dependent on the kind of finite differences), u
is the solution vector and f is the discretisation of the right hand side.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 33

(i) At first we choose central differences for the first and second derivative. We choose
equidistant grid-points for the discretisation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2 0.4 0.6 0.8 1

y

x

exact solution
25 degrees of freedom
51 degrees of freedom
75 degrees of freedom

101 degrees of freedom

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

y

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

y

x

Figure 3.2: Example 3.2.4 (i) central differnences.

(ii) Now we choose central differences for the second derivative (the diffusion term) and
backward differences for the first derivative (the convection term). We choose equidistant
grid-points for the discretisation.

(iii) Now we choose central differences for the second derivative (the diffusion term) and
backward differences for the first derivative (the convection term). We choose non equidis-

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 34

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2 0.4 0.6 0.8 1

y

x

exact solution
25 degrees of freedom
51 degrees of freedom
75 degrees of freedom

101 degrees of freedom

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

y

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

y

x

Figure 3.3: Example 3.2.4 (ii) backward differences.

tant grid-points for the discretisation. We divide the interval I = (0, 1) into two subin-
tervals I1 := (0, 0.75] and I2 := (0.75, 1) the grid-points on I1 are defined with
xi := i 0.75

(N+1)/2 , i = 1, . . . , (N + 1)/2 and the grid-points on I2 are defined with

x(N+1)/2+i := 0.75 + i 0.25
(N+1)/2 , i = 1, . . . , (N − 1)/2.

This example shows some typical points of the finite differences method.
In (i) we see the problem of oscillating shown in the Figure 3.2. In the cases (ii) and (iii), which
are shown in the Figures 3.3 and 3.4, we see, that this problem is solved by using backward

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2 0.4 0.6 0.8 1

y

x

exact solution
25 degrees of freedom
51 degrees of freedom
75 degrees of freedom

101 degrees of freedom

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2 0.4 0.6 0.8 1

y

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

y

x

Figure 3.4: Example 3.2.4 (iii) backward differences non equidistance.

differences, if the k is positive.
Another interesting point is shown in the error plots in the Figures 3.2, 3.3 and 3.4: the error
of (i) decreases quadratically and the error of (ii) and (iii) decrease only linearly. This obser-
vation is clear with the Lemma 3.2.2.
In the direct accord of (ii) and (iii), we see, that the error of (iii) decreases faster than the error
of the example (ii). The reason of this are the non equidistant grid points in (iii).

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 36

Remark 3.2.5
It is also possible to reduce the oscillations with a linear combination of the central and the
upwind differences. In this case we get the matrix A in the following form:

A := γAupwind + (1− γ)Acentral.

The parameter γ is in the interval [0, 1] and, if the convective term is big, the parameter must
chosen nearly by 1.
Another ansatz is the Donor-Cell-Schema. It is normally used by convection terms with the
following structure d(ku)

dx . For more details see [MG95].

Discretisation of the Navier-Stokes equations

Here we explain the discretisation of the domain, in which we consider the flow of the fluid.
To simplify the discretisation we consider only rectangular domains:

Ω := [a1, b1]× [a2, b2]× [a3, b3] ⊂ R3.

We discretisize this domain with a equidistant grid:

Ωdiscret := {(x1,i, x2,j , x3,k) ∈ Ω : xi,1 := a1 + iδx1, xj,2 := a2 + jδx2, xk,3 := a3 + kδx3}
= {(x1,i, x2,j , x3,k) : i = 0, . . . , imax, j = 0, . . . , jmax, k = 0, . . . , kmax},

where δx1, δx2, δx3 are the stepsizes in the given direction, shown in the Figure 3.5.
We choose a Staggered grid for the discretisation, i.e. we choose three grids for the discreti-

Figure 3.5: Discrete domain.

sation of the velocity, one for the distrectisation of the pressure and the energy. These four
grids are staggered. This is shown in the Figure 3.6. The lines represent the grid of the location
points xi,j,k := (xi,1, xj,2, xk,3). The staggered grids are invisible. The three grids for the
velocity are moved in coordinate direction about a half stepsize. The grid for the presure and
energy is in the middle of each cell.
The reason for this choice of disrectisation is to reduce the oscillations.
Now we start with the discretisation of the Navier-Stokes equations in the space.
Now we consider the impulse equation of the incompressible Navier-Stokes equations (3.22),
this is the first equation.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 37

6

PPPPPi

�
�

�
�

�*
x1x2

x3

ui,j,k,1, ui+1,j,k,1

ui,j,k,2, ui,j+1,k,2

ui,j,k,3, ui,j,k+1,3

pi,j,k, ti,j,k

Figure 3.6: Staggered grid.

At first we consider the Laplace operator on the point xi,j,k:

[∆u]i,j,k,` = ui+1,j,k,`−2ui,j,k,`+ui−1,j,k,`

δx1
+

ui,j+1,k,`−2ui,j,k,`+ui,j−1,k,`

δx2
+ (3.35)

ui,j,k+1,`−2ui,j,k,`+ui,j,k−1,`

δx3
+

With the staggered grid follows, that:
ui,j,k,1 is evaluated on (xi,1, xj,2 − δx2

2 , xk,3 − δx3
2),

ui,j,k,2 on (xi,1 − δx1
2 , xj,2, xk,3 − δx3

2) and
ui,j,k,2 on (xi,1 − δx1

2 , xj,2 − δx2
2 , xk,3).

The staggered grid implies, that not all variables lie on the boundary of the domain, so we need
an additional boundary layer for the values, which lie outside of the original domain.
The convective term in the impulse equation is not straight forward to discretisize. Because
this is the non linear term, the approximation is needed in the point xi,j,k, and also for high
Reynolds-Numbers this is the dominate term.

[(u · ∇)u]i,j,k,` =
3∑

m=1

[
∂(u` · um)
∂xm

]
i,j,k,`

, (3.36)

the details of the Equation (3.36) are given in the following1:

` = 1 [
∂(u2

1)
∂x1

]
i,j,k,1

=
1
δx1

((
ui,j,k,1 + ui+1,j,k,1

2

)2

−
(
ui−1,j,k,1 + ui,j,k,1

2

)2
)

+ γ
1
δx1

(
|ui,j,k,1 + ui+1,j,k,1|

2
(ui,j,k,1 − ui+1,j,k,1)

2

−
|ui−1,j,k,1 + ui,j,k,1|

2
(ui−1,j,k,1 − ui,j,k,1)

2

)
1We consider a combination of the Donor-Cell dicretisation and the central differences.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 38

[
∂(u1u2)
∂x2

]
i,j,k,1

=
1
δx2

(
(ui,j,k,2 + ui+1,j,k,2)

2
(ui,j,k,1 + ui,j+1,k,1)

2

−
(ui,j−1,k,2 + ui+1,j−1,k,2)

2
(ui,j−1,k,1 + ui,j,k,1)

2

)
+ γ

1
δx2

(
|ui,j,k,2 + ui+1,j,k,2|

2
(ui,j,k,1 − ui,j+1,k,1)

2

−
|ui,j−1,k,2 + ui+1,j−1,k,2|

2
(ui,j−1,k,1 − ui,j,k,1)

2

)

[
∂(u1u3)
∂x3

]
i,j,k,1

=
1
δx3

(
(ui,j,k,3 + ui+1,j,k,3)

2
(ui,j,k,1 + ui,j,k+1,1)

2

−
(ui,j,k−1,3 + ui+1,j,k−1,3)

2
(ui,j,k−1,1 + ui,j,k,1)

2

)
+ γ

1
δx3

(
|ui,j,k,3 + ui+1,j,k,3|

2
(ui,j,k,1 − ui,j,k+1,1)

2

−
|ui,j,k−1,3 + ui+1,j,k−1,3|

2
(ui,j,k−1,1 − ui,j,k,1)

2

)
` = 2 [

∂(u1u2)
∂x1

]
i,j,k,2

=
1
δx1

(
(ui,j,k,1 + ui,j+1,k,1)

2
(ui,j,k,2 + ui+1,j,k,2)

2

−
(ui−1,j,k,1 + ui−1,j+1,k,1)

2
(ui−1,j,k,2 + ui,j,k,2)

2

)
+ γ

1
δx1

(
|ui,j,k,1 + ui,j+1,k,1|

2
(ui,j,k,2 − ui+1,j,k,2)

2

−
|ui−1,j,k,1 + ui−1,j+1,k,1|

2
(ui−1,j,k,2 − ui,j,k,2)

2

)

[
∂(u2

2)
∂x2

]
i,j,k,2

=
1
δx2

((
ui,j,k,2 + ui,j+1,k,2

2

)2

−
(
ui,j−1,k,2 + ui,j,k,2

2

)2
)

+ γ
1
δx2

(
|ui,j,k,2 + ui,j+1,k,2|

2
(ui,j,k,2 − ui,j+1,k,2)

2

−
|ui,j−1,k,2 + ui,j,k,2|

2
(ui,j−1,k,2 − ui,j,k,2)

2

)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 39

[
∂(u2u3)
∂x3

]
i,j,k,2

=
1
δx3

(
(ui,j,k,3 + ui,j+1,k,3)

2
(ui,j,k,2 + ui,j,k+1,2)

2

−
(ui,j,k−1,3 + ui,j+1,k−1,3)

2
(ui,j,k−1,2 + ui,j,k,2)

2

)
+ γ

1
δx3

(
|ui,j,k,3 + ui,j+1,k,3|

2
(ui,j,k,2 − ui,j,k+1,2)

2

−
|ui,j,k−1,3 + ui,j+1,k−1,3|

2
(ui,j,k−1,2 − ui,j,k,2)

2

)
` = 3 [

∂(u1u3)
∂x1

]
i,j,k,3

=
1
δx1

(
(ui,j,k,1 + ui,j,k+1,1)

2
(ui,j,k,3 + ui+1,j,k,3)

2

−
(ui−1,j,k,1 + ui−1,j,k+1,1)

2
(ui−1,j,k,3 + ui,j,k,3)

2

)
+ γ

1
δx1

(
|ui,j,k,1 + ui,j,k+1,1|

2
(ui,j,k,3 − ui+1,j,k,3)

2

−
|ui−1,j,k,1 + ui−1,j,k+1,1|

2
(ui−1,j,k,3 − ui,j,k,3)

2

)

[
∂(u2u3)
∂x2

]
i,j,k,3

=
1
δx2

(
(ui,j,k,2 + ui,j,k+1,2)

2
(ui,j,k,3 + ui,j+1,k,3)

2

−
(ui,j−1,k,2 + ui,j−1,k+1,2)

2
(ui,j−1,k,3 + ui,j,k,3)

2

)
+ γ

1
δx2

(
|ui,j,k,2 + ui,j,k+1,2|

2
(ui,j,k,3 − ui,j+1,k,3)

2

−
|ui,j−1,k,2 + ui,j−1,k+1,2|

2
(ui,j−1,k,3 − ui,j,k,3)

2

)

[
∂(u2

3)
∂x3

]
i,j,k,3

=
1
δx3

((
ui,j,k,3 + ui,j,k+1,3

2

)2

−
(
ui,j,k−1,3 + ui,j,k,3

2

)2
)

+ γ
1
δx3

(
|ui,j,k,3 + ui,j,k+1,3|

2
(ui,j,k,3 − ui,j,k+1,3)

2

−
|ui,j,k−1,3 + ui,j,k,3|

2
(ui,j,k−1,3 − ui,j,k,3)

2

)
The parameter γ ∈ [0, 1] affects the choice between only central differences for γ = 0 and
pure Donor-Cell discretisation. Details to the Donor-Cell discretisation are given in the book
of Griebel [MG95].
One possible choice of the parameter is

γ ≥ max
i,j,k,`

(
ui,j,k,`δt

δx`

)
, (3.37)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 40

this choice guarantees, that, if the convective term has a strong influence in the equation, the
Donor-Cell schema avoids the oscillations.

Remark 3.2.6
The staggered grid is necessary to reduce oscillations. We have shown an example for this
oscillations in the Example 3.2.4. But in the flow simulation this is essential, because otherwise
there exist solutions of the simulation without any physical correctness. An example is given in
the book of Griebel, Dornseifer and Neunhoeffer [MG95], in the Section 3.1.2.

At next we consider the discretisation of the divergence term. This is the second equation
of the Navier-Stokes equations (3.21) and it is called the continuity equation. We realize the
discretisation by using central differences with the stepsize δx`

2

[div u]i,j,k =
[
∂u1

∂x3

]
i,j,k

+
[
∂u2

∂x2

]
i,j,k

+
[
∂u3

∂x3

]
i,j,k

(3.38)

=
ui,j,k,1 − ui−1,j,k,1

δx1
+
ui,j,k,2 − ui,j−1,k,2

δx2
+
ui,j,k,3 − ui,j,k−1,3

δx3

Remark 3.2.7
Below we use the notions:[

∂(u`um)
∂xn

]
i,j,k,`

for the convective terms,

[∆u]i,j,k,` for the diffusion terms and
[div u]i,j,k for the divergence term,

instead of the full discrete notions, which are given above.

Boundary conditions
Here we consider the different kinds of the boundary conditions, and their realization with
finite differences and a staggered grid.

(i) Slip-Boundary-Condtions:
That means the velocity is constant zero on this boundary, in the equations this is given
by the following form:

ui,j,k,1 = 0,
ui,j,k,2 = 0, (3.39)

ui,j,k,3 = 0,

for all ui,j,k = (ui,j,k,1, ui,j,k,2, ui,j,k,3) on the boundary of the discrete domain Ωdiscrete,
on which the slip conditions holds.
By the staggered grid follows, that we have not all velocity values on each boundary. On
this points, we get the value ub on the boundary by a linear averaging of the velocity uin

inside the domain and uout outside of the domain. With this follows2:

ub =
uout + uin

2
!= 0, (3.40)

and this is equivalent to
uout = −uin. (3.41)

2The variables ub, uin, uout are scalar values and the corresponding entry of the full velocity vector.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 41

The Equations (3.40) and (3.41) imply the following conditions:

ui,j,0,1 = −ui,j,1,1, ui,j,kmax+1,1 = −ui,j,kmax,1

ui,j,0,2 = −ui,j,1,2, ui,j,kmax+1,2 = −ui,j,kmax,2

}
i = 1, . . . , imax

j = 1, . . . , jmax

ui,0,k,1 = −ui,1,k,1, ui,jmax+1,k,1 = −ui,jmax,k,1

ui,0,k,3 = −ui,1,k,3, ui,jmax+1,k,3 = −ui,jmax,k,3

}
i = 1, . . . , imax

k = 1, . . . , kmax
(3.42)

u0,j,k,2 = −u1,j,k,2, uimax+1,j,k,2 = −uimax,j,k,2

u0,j,k,3 = −u1,j,k,3, uimax+1,j,k,3 = −uimax,j,k,3

}
j = 1, . . . , jmax

k = 1, . . . , kmax,

if there are slip boundary conditions. The other components follow directly from the
Equation (3.39).

(ii) Non-Slip-Boundary-Condtions:
That means , that the velocity in direction of the normal vector to the boundary is zero,
and parallel to the boundary the velocity has no friction.
In the normal vector direction we get the following condition for the velocity:

ui,j,0,3 = ui,j,kmax,3 = 0 i = 1, . . . , imax j = 1, . . . , jmax

ui,0,k,2 = ui,jmax,k,2 = 0 i = 1, . . . , imax k = 1, . . . , kmax (3.43)

u0,j,k,1 = uimax,j,k,1 = 0 j = 1, . . . , jmax k = 1, . . . , kmax,

if there are non-slip boundary conditions.
With the condition, that the normal derivative of the tangential velocity is zero, i.e.
∂utangential

∂ν = 0, follows by using the discrete derivative uin−uout
δ

!= 0:

uin = uout, (3.44)

if uin is the velocity inside of the boundary and uout is the velocity outside of the bound-
ary. The Equation (3.44) implies:

ui,j,0,1 = ui,j,1,1, ui,j,kmax+1,1 = ui,j,kmax,1

ui,j,0,2 = ui,j,1,2, ui,j,kmax+1,2 = ui,j,kmax,2

}
i = 1, . . . , imax

j = 1, . . . , jmax

ui,0,k,1 = ui,1,k,1, ui,jmax+1,k,1 = ui,jmax,k,1

ui,0,k,3 = ui,1,k,3, ui,jmax+1,k,3 = ui,jmax,k,3

}
i = 1, . . . , imax

k = 1, . . . , kmax
(3.45)

u0,j,k,2 = u1,j,k,2, uimax+1,j,k,2 = uimax,j,k,2

u0,j,k,3 = u1,j,k,3, uimax+1,j,k,3 = uimax,j,k,3

}
j = 1, . . . , jmax

k = 1, . . . , kmax,

if there are non-slip-boundary conditions. The other components follow directly from
the Equation (3.43).

(iii) Inflow-Boundary-Condtions:
That means, that the velocity on this boundary is explicitly given. For the velocity normal
to the boundary, we can set the velocity value directly. For the tangential velocities, we
do this similar to the averaging in the Equation (3.40). With this follows:

uinflow =
uin + uout

2
, (3.46)

(if uin and uout are defined as in slip or non-slip boundary conditions). This implies

uout =
uinflow − uin

2
(3.47)

for each of both tangential velocity components.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 42

(iv) Outflow-Boundary-Condtions:
That means, that the derivative of the velocity is in direction of the normal vector zero.
This is realizable by setting the function values of the velocity outside of the domain on
the value of the nearest non boundary value. In equation formulation this is given with:

ui,j,0,1 = ui,j,1,1, ui,j,kmax+1,1 = ui,j,kmax,1

ui,j,0,2 = ui,j,1,2, ui,j,kmax+1,2 = ui,j,kmax,2

ui,j,0,3 = ui,j,1,3, ui,j,kmax+1,3 = ui,j,kmax,3

 i = 1, . . . , imax

j = 1, . . . , jmax

ui,0,k,1 = ui,1,k,1, ui,jmax+1,k,1 = ui,jmax,k,1

ui,0,k,1 = ui,1,k,2, ui,jmax+1,k,2 = ui,jmax,k,2

ui,0,k,3 = ui,1,k,3, ui,jmax+1,k,3 = ui,jmax,k,3

 i = 1, . . . , imax

k = 1, . . . , kmax
(3.48)

u0,j,k,1 = u1,j,k,1, uimax+1,j,k,1 = uimax,j,k,1

u0,j,k,2 = u1,j,k,2, uimax+1,j,k,2 = uimax,j,k,2

u0,j,k,3 = u1,j,k,3, uimax+1,j,k,3 = uimax,j,k,3

 j = 1, . . . , jmax

k = 1, . . . , kmax,

if there are outflow conditions.

(v) Periodic-Boundary-Condtions:
That means, that the velocity values of two boundaries in the opposite are the same.
But here is a small difference to the continuous model. The discrete one is larger than
the periodic interval at the stepsize of the discretisation δ in this direction. The reason is,
that we set all values from the one side to the same of the opposite.
In a formula formulation follows:

ui,j,0,1 = ui,j,kmax−1,1, ui,j,kmax,1 = ui,j,1,1

ui,j,0,2 = ui,j,kmax−1,2, ui,j,kmax,2 = ui,j,1,2

ui,j,0,3 = ui,j,kmax−1,3, ui,j,kmax,3 = ui,j,1,3

pi,j,0 = ui,j,kmax−1, ui,j,kmax = ui,j,1

ti,j,0 = ui,j,kmax−1, ui,j,kmax = ui,j,1

i = 1, . . . , imax

j = 1, . . . , jmax,
(3.49)

if there are periodic boundary conditions. For the other both boundaries it is analog.

Time discretisation
Now we introduce one method for the time discretisation, here we consider only the explicit
Euler method. It is clear, that this a very simple method and has not a so good approximation
quality. But for an explanation it is well applicative.
When we consider an initial value problem:

∂u

∂t
= f(t, u). and u(t0) = u0. (3.50)

The Euler-method is basically given in the following form:

uk+1 = uk + hf(t, u), (3.51)

for tk = t0 + kh and k = 1, 2
We start with the time discretisation of the ∂u

∂t of the momentum equation. With the Euler-
method and (3.21) follows:

u
(n+1)
` = u

(n)
` + δt

[
1
Re

∆u− ((u · ∇)(u))` + f` −
∂p

∂x`

]
(3.52)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 43

for the `’s component of the velocity vector u. In the following we use the short notion:

F
(n)
` = u

(n)
` + δt

[
1
Re

∆u(n) −
(
(u(n) · ∇)(u(n))

)
`
+ f`

]
, (3.53)

with the explicit Euler method follows, that we consider the velocity at the time step n. But we
consider the pressure at the time step n + 1. So we get the full time discreticised momentum
equation in the following form:

u
(n+1)
` = F

(n)
` − δt

∂pn+1

∂x`
, (3.54)

this kind of time discretisation is called explicit in the velocity and implicit in the pressure. At
next we compute with the continuity equation the pressure.

0 !=
3∑

`=1

∂u
(n+1)
`

∂x`
=

3∑
`=1

∂F
(n)
`

∂x`
− δt

3∑
`=1

∂2p(n+1)

∂x2
`︸ ︷︷ ︸

=∆p(n+1)

, (3.55)

this Equation is equivalent to the Poisson problem for the pressure:

∆p(n+1) =
1
δt

3∑
`=1

∂F
(n)
`

∂x`
. (3.56)

Now we need boundary condition to solve the Poisson problem (3.56). The boundary condition
results from the multiplication of the time discrete momentum equation (3.54) with the outside
normal vector to the boundary of the domain. This implies the following formula:

∇p(n+1) · ν =
3∑

`=1

∂p(n+1)

∂x`
· ν` =

1
δt

(
3∑

`=1

(−u(n+1) + F
(n)
`)ν`

)
. (3.57)

This method is called Chorin-Projection-Method.
Momentum-Equation discretisation
The time and place discretised momentum equation follows now directly by using the time
discretisation and combining this with the place discrete components, this implies:

F
(n)
i,j,k,` = u

(n)
i,j,k,` + δt

(
1
Re

[
∆u(n)

]
i,j,k,`

−
[
(u(n) · ∇)(u(n))

]
i,j,k,`

+ f`

)
, (3.58)

and with this equation follows

u
(n+1)
i,j,k,` = F

(n)
i,j,k,` −

δt

δxl
(p(n+1)

i+δ1,`,j+δ2,`,k+δ3,`,`
− p

(n+1)
i,j,k,`), (3.59)

for i = 1, · · · , imax, j = 1, · · · , jmax, k = 1, · · · , kmax and ` = 1, 2, 3.
Pressure-Equation discretisation
We discretize the Laplace operator for the presure pi,j,k in the same way like the Laplace
operator for the velocity ui,j,k,` in the Equation (3.35).

[∆p]i,j,k,` =
1
δt

 3∑
`=1

F
(n)
i,j,k,` − F

(n)
i−δ1,`,j−δ2,`,k−δ3,`,`

δx`

 , (3.60)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 44

for i = 1, · · · , imax, j = 1, · · · , jmax, k = 1, · · · , kmax and ` = 1, 2, 3. On the boundary we
use the following values:

p0,j,k, pimax+1,j,k, j = 1, · · · , jmax, k = 1, · · · , kmax

pi,0,k, pi,jmax+1,k, i = 1, · · · , jmax, k = 1, · · · , kmax

pi,j,0, pi,j,kmax+1, i = 1, · · · , jmax, j = 1, · · · , kmax

F0,j,k,1, Fimax+1,j,k,1, j = 1, · · · , jmax, k = 1, · · · , kmax

Fi,0,k,2, Fi,jmax+1,k,2, i = 1, · · · , jmax, k = 1, · · · , kmax

Fi,j,0,3, Fi,j,kmax+1,3, i = 1, · · · , jmax, j = 1, · · · , kmax

These boundary values we have not considered yet. This we catch up now. We consider
exemplarily the bottom wall, i.e. ν = (0, 0,−1)T . With the boundary condition given in the
Equation (3.57) follows:

p
(n+1)
i,j,0 − p

(n+1)
i,j,1

δx3
=

1
δt

(
u

(n+1)
i,j,0,3 − F

(n)
i,j,0,3

)
. (3.61)

Combining the Equation (3.60) and (3.61), this implies:

p
(n+1)
i+1,j,1 − 2p(n+1)

i−1,j,1 + p
(n+1)
i,j,1

(δx1)2
+
p
(n+1)
i,j+1,1 − 2p(n+1)

i,j−1,1 + p
(n+1)
i,j,1

(δx2)2
+
p
(n+1)
2,j,k − p

(n+1)
1,j,k

(δx3)2

=
1
δt

(
F

(n)
i,j,1,1 − F

(n)
i−1,j,1,1

δx1
+
F

(n)
i,j,1,2 − F

(n)
i,j−1,1,2

δx2
+
F

(n)
i,j,1,3 − u

(n+1)
i,j,0,3

δx3

)
.

We see, that this equation is independent of Fi,j,0,3, so we can choose Fi,j,0,3 equal to u(n+1)
i,j,0,3 .

This implies:
p
(n+1)
0,j,k = p

(n+1)
1,j,k .

Analogically follow the other boundary values:

p0,j,k = p1,j,k, pimax+1,j,k = pimax,j,k, j = 1, · · · , jmax, k = 1, · · · , kmax

pi,0,k = pi,1,k, pi,jmax+1,k = pi,jmax,k, i = 1, · · · , jmax, k = 1, · · · , kmax

pi,j,0 = pi,j,1, pi,j,kmax+1 = pi,j,kmax , i = 1, · · · , jmax, j = 1, · · · , kmax

F0,j,k,1 = u0,j,k,1, Fimax,j,k,1 = uimax,j,k,1, j = 1, · · · , jmax, k = 1, · · · , kmax

Fi,0,k,2 = ui,0,k,2, Fi,jmax,k,2 = ui,jmax,k,2, i = 1, · · · , jmax, k = 1, · · · , kmax

Fi,j,0,3 = ui,j,0,3, Fi,j,kmax,3 = ui,j,kmax,3, i = 1, · · · , jmax, j = 1, · · · , kmax

With the boundary values and the Equation (3.35) follows:

ε1i,1

(
p
(n+1)
i+1,j,k − p

(n+1)
i,j,k

)
− ε−1

i,1

(
p
(n+1)
i,j,k − p

(n+1)
i−1,j,k

)
(δx1)2

+
ε1j,2

(
p
(n+1)
i,j+1,k − p

(n+1)
i,j,k

)
− ε−1

j,2

(
p
(n+1)
i,j,k − p

(n+1)
i,j−1,k

)
(δx2)2

+
ε1k,3

(
p
(n+1)
i,j,k+1 − p

(n+1)
i,j,k

)
− ε−1

k,3

(
p
(n+1)
i,j,k − p

(n+1)
i,j,k−1

)
(δx3)2

=
1
δt

 3∑
`=1

F
(n)
i,j,k,` − F

(n)
i−δ1,`,j−δ2,`,k−δ3,`,`

δx`

 , (3.62)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 45

for i = 1, . . . , imax, j = 1, . . . , jmax and k = 1, . . . , kmax and the Parameters ε are:

ε−1
n,` :=

{
0, n = 1
1, n > 1

, ε1n,` :=
{

1, n < nmax

0, n = nmax
,
n = i if ` = 1
n = j if ` = 2
n = k if ` = 3

.

All in all we get a linear system of equations with imaxjmaxkmax degrees of freedom. Normally
this system is solved by a iterative method, for example the SOR-method.
Stability Condition
Here we give the Courant-Friedrichs-Lewy conditions also known as CFL- conditions:

δt := τ min

(
Re

2

(
1
δx2

1

+
1
δx2

2

+
1
δx2

3

)−1

,
δx1

|u1,max|
,

δx2

|u2,max|
,

δx3

|u3,max|

)
, (3.63)

with τ ∈ (0, 1] a secure factor. This choice of the time step δt assures, that the simulation is
stable.

Algorithm

Here, we present a finite differences based algorithm in order to simulate the Navier-Stokes
equations.
This is the algorithm to simulate the Navier-Stokes equations with finite differences.

Algorithm 3.2.8 (Finite difference Navier-Stokes solver)

init u with start values
init p with start values
set boundary values
for (t=0,n=0;t < T ;t+=δt, n++)

set δt according to (3.63)
set boundary values of u(n)

calculate Fn
` for ` = 1, 2, 3 according to (3.58)

for (it=0;it < itmax and error > tol;it++)
compute iteration step of (3.62) (e.g. with the SOR-method)
compute err(p)

end
calculate u(n) according to (3.59)
output();
visual();

end

Remark 3.2.9
The here presented algorithm is realized for 2D problems in the NaSt2D3

program. But it is with more technical complexity also in 3D possible.4

3A implementation of this program NaSt2d is available on the homepage of Prof. Dr. M. Griebel under:
http://wissrech.ins.uni-bonn.de/research/projects/NaSt2D/index.html

4A 3D implementation is available on the homepage of Prof. Dr. M. Griebel under: http://wissrech.ins.uni-
bonn.de/research/projects/NaSt3DGP/download.htm .

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 46

In the next section we give an introduction into the finite volume method and the simulation of
flow with this method.

3.2.2 Finite volume method

This method is a numerical method to solve PDE’s with a conservation law. A common notion
for the finite volume method is FVM. The structure of this subsection is the following; we
start with the mathematical basics, which are needed for the FVM and the main idea of this
method, at next, we illustrate the method on an explicit example, then, we consider the different
parts of the method more detailed, at last, we consider the basics for the discretisation of the
Navier-Stokes equations with the FVM.
This section is based on the book of Freziger and Perić [Fre97], the book of Knaberner and
Angermann [Kna00], the lecture note of Grundmann [Gru04] and the paper of Barth and
Ohlberger [TB04].

Definition 3.2.10 (Control volume tessellation)
Let Ω ⊂ Rn be a domain, T := {Ti : i = 1, . . . N} is called a control volume tessellation, if

1. Ti ⊂ Ω and Ti is an open, connected domain, the boundary is piecewise given with
polynomials , without slots.

2. Ti ∩ Tj = ∅ ∀i 6= j.

3.
N⋃

i=1
Ti = Ω.

hold. There exist two typical kinds of control volume tessellation; the cell-centered and the
vertex-centered. both kinds are shown in the Figure 3.7. A common shortcut for the control
volume is CV.

control volume
storage location

a. Vertex-centered b. Cell-centered

Figure 3.7: Two kinds of control volume tessellation

The idea of the finite volume methods is based on the physical conservation law. That means,
that we start with a normal PDE and we rewrite this equation into the integral formulation. And
we apply the Gauss’ theorem and the Theorem of Stokes on the integral notion.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 47

Example 3.2.11
Here we consider the `-th component of the momentum equation of the incompressible Navier-
Stokes equations (3.21). We recall this formula:

∂

∂t
(ρu`) + (u · ∇)(ρu`) +

∂p

∂x`
= µ∆u` + ρf`.

Now we integrate this equation over a control volume T , which satisfies the conditions of the
Definition 3.2.10, this implies∫

T

∂

∂t
(ρu`) dΩ +

∫
T

(u · ∇)(ρu`) dΩ +
∫
T

∂p

∂x`
dΩ =

∫
T

µ∆u` dΩ +
∫
T

ρf` dΩ. (3.64)

Now we apply the Gauss’theorems on the Equation (3.64) with this and the S := δT follow:

∂

∂t

∫
T

(ρu`) dΩ +
∫
S

ρu`u · ν dS +
∫
S

p` dS =
∫
S

µ(∇u`) · ν dS +
∫
T

ρf` dΩ. (3.65)

On this example, we have seen how to rewrite a normal PDE into the integral version and the
application of the Gauss’theorems.
At next we consider the application of the finte volume method on an explicit problem.

Example 3.2.12
Here we consider the energy transport in a given velocity field, the equation is:

∂(ρφ)
∂t

+ div(ρφu) = div
(µ

Pr
∇φ
)

+ qφ, (3.66)

this equation is equivalent to

∂

∂t

∫
Ω
ρφ dΩ +

∫
S
ρφu · ν dSν =

∫
S

Γ∇φ · ν dS +
∫

Ω
qφ dΩ, (3.67)

if µ
Pr := Γ.

In the following we consider the stationary case, i.e ∂(ρφ)
∂t = 0. This is equivalent to

∂
∂t

∫
Ω ρφ dΩ = 0, and the external force qφ is also zero. This implies, that we can write the

problem in the following form:∫
S
ρφu · ν dSν︸ ︷︷ ︸

=:F c

=
∫

S
Γ∇φ · ν dS︸ ︷︷ ︸

=:F d

. (3.68)

We solve this problem on the two dimensional case on the domain Ω = [0, 1] × [0, 1] with the
following boundary conditions:

- φ(x, y) = 0 on y = 1 and x ∈ [0, 1] (north);

- φ(x, y) = 1− y on x = 0 and y ∈ [0, 1] (west);

- ∂φ(x,y)
∂ν = 0 on y = 0 and x ∈ [0, 1] (south);

- ∇φ(x, y)Tu = 0 on x = 1 and y ∈ [0, 1] (east).

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 48

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Streamlines
Symmetry

Wall
Inlet

Outlet

Figure 3.8: Exapmle 3.2.12

Where the given velocity field is u =
(
ux

uz

)
=
(
x
−y

)
and the parameter is ρ = 1. In the

Figure 3.8 the domain is visualized with the boundary conditions.
Now we show the discretisation of this problem. At first we decompose the integrals F c and
F d in the following way:

F c = F c
north + F c

west + F c
south + F c

east (3.69)

F d = F d
north + F d

west + F d
south + F d

east (3.70)

At next we consider the parts north, west, and so on, of the integrals F c and F d:

North:
At first we consider the convective term:

F c
north =

∫
Snorth

ρφu · ν dS ≈
∫

Snorth

ρu · ν dS︸ ︷︷ ︸
=:ṁnorth

φN , (3.71)

and ṁnorth represents the flux of the mass through the north face. We can compute this
mass flux in the following form:

ṁnorth = (ρuy)north δx. (3.72)

The Equation (3.72) is exact, if the velocity (ux)north is constant along the north face.
This is satisfied in our case. So we get for the flux approximation:

F cnorth ≈
{

max{ṁnorth, 0}φcenter + min{ṁnorth, 0}φnorth for UDS5,
ṁnorth(1− λnorth)φnorth + ṁnorthλnorthφnorth for CDS6.

(3.73)

Now we consider the diffusion term:

F d
north =

∫
Snorth

Γ∇φ · ν dS ≈
(

Γ
∂φ

∂y

)
north

δx

=
Γδx

ynorth − ycenter
(φnorth − φcenter). (3.74)

Note, that ynorth = yi+1+yi

2 and ycenter = yi−1+yi

2 .
For the other faces of the control volume, we only present the solutions.

5UDS means the upwind differences scheme. We will explain it later.
6CDS means the central differences scheme. We will explain it later.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 49

West:
Convective term:

F cwest ≈
{

max{ṁwest, 0}φcenter + min{ṁwest, 0}φwest for UDS,
ṁwest(1− λwest)φwest + ṁwestλwestφwest for CDS.

and ṁwest is given by
ṁwest = − (ρux)west δy.

Diffusion term:

F d
west ≈

Γδy
xcenter − xwest

(φcenter − φwest),

with xwest = xi−1+xi

2 and xcenter = xi+1+xi

2 .

South:
Convective term:

F csouth ≈
{

max{ṁsouth, 0}φcenter + min{ṁnorth, 0}φsouth for UDS,
ṁsouth(1− λsouth)φsouth + ṁsouthλsouthφsouth for CDS.

,

and ṁsouth is given by
ṁsouth ≈ − (ρuy)south δx.

Diffusion term:

F d
south ≈

Γδx
ycenter − ysouth

(φcenter − φsouth),

with ysouth = yi−1+yi

2 and ycenter = yi+1+yi

2 .

East:
Convective term:

F ceast ≈
{

max{ṁeast, 0}φcenter + min{ṁeast, 0}φeast for UDS,
ṁeast(1− λeast)φeast + ṁeastλeastφeast for CDS.

,

and ṁeast is given by
ṁeast = (ρux)east δy.

Diffusion term:

F d
east ≈

Γδy
xeast − xcenter

(φeast − φcenter),

with xeast = xi+1+xi

2 and xcenter = yi−1+yi

2 .

Now we can compute the coeffencints of Ac and Ad:
F c UDS F c UDS F d

Ac
north = min(ṁnorth, 0) Ac

north = ṁnorthλnorth Ad
north = − Γδx

xnorth−xcenter

Ac
west = min(ṁwest, 0) Ac

west = ṁwestλwest Ad
west = − Γδy

xcenter−xsouth

Ac
south = min(ṁsouth, 0) Ac

south = ṁsouthλsouth Ad
south = − Γδx

xcenter−xsouth

Ac
east = min(ṁeast, 0) Ac

east = ṁeastλeast Ad
east = − Γδy

xeast−xcenter

With continuity coditions,

ṁnorth + ṁwest + ṁsouth + ṁeast = 0,

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

x

y

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

x

 0

 0.2

 0.4

 0.6

 0.8

 1

y

3.9a: 50× 50 cells, ρ = 1, Γ = 0.01

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0 0.2 0.4 0.6 0.8 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

x

y

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

x

 0

 0.2

 0.4

 0.6

 0.8

 1

y

3.9b: 50× 50 cells, ρ = 1, Γ = 0.001

Figure 3.9: Approximation of the problem (3.68) with the UDC method.

follows the entry of Ac
centre and Ad

centre:

Ac
centre = −(Ac

north +Ac
west +Ac

south +Ac
east)

Ad
centre = −(Ad

north +Ad
west +Ad

south +Ad
east)

Now we define:
A` := Ac

` +Ad
` , (3.75)

and ` represents one of the indices north, west, south, east.
The boundary conditions change the coeffencients at the cells next to the boundary in the fol-
lowing:

Bouandary faces:
North Anorth = 0
West Awest = 0 Q = Q−Awest · φ(0, y)
South Acenter= Acenter +Asouth Asouth = 0
East Acenter= Acenter +Aeast Anorth = Anorth + uy,eδx

2δy Aeast

Asouth = Asouth − uy,eδx
2δy Aeast Aeast = 0

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 51

-

6

centert
northt

southt
westt eastt

north westt north eastt

south westt south easttt
t
t

t
t
t

eastwest

north

south

-�

6

?

xi−2 xi−1 xi xi+1

yj−2

yj−1

yj

yj+1

y

x

� -δx

?

6
δy

Figure 3.10: 2D tessellation with quadratic cells.

Bouandary vertexes:
North West Anorth = 0 Awest = 0

Q = Q−Awest · φ(0, y)
South West Acenter= Acenter +Asouth Awest = 0

Asouth = 0 Q = Q−Awest · φ(0, y)
South East Anorth = Anorth + uy,eδx

δy Aeast Acenter = Acenter +Asouth

+(1− uy,eδx
δy)Aeast

Asouth = 0 Aeast = 0
North East Acenter= Acenter +Aeast Anorth = 0

Asouth = Asouth − uy,eδx
δy Aeast Aeast = 0.

Now we can build the system of linear equations. By solving this system, we get the approx-
imative solution of the problem (3.68) with the given boundary conditions. In the Figure 3.9
the solution of the problem is visualized with the UDC method on an equidistance grid with
50× 50 cells and the parameter Γ = 0.01 and Γ = 0.001. The realization in done in Fortran.

Approximation of the surface integrals

Here we consider different approaches to approximate the surfaces integrals. In the following
S is the surface of the control volume T . The surface of the CV is decomposable into a finite
number of plane sub-faces, i.e. S =

⋃
`∈S1 S` and the normal vector ν` on the sub-face S` is

constant, where S represent the set of subsurface indexes.
With this follows, that the integral

∫
S`
F dS is writable in the following way:∫

S
f dS =

∑
`∈S

∫
S`

f dS, (3.76)

where f is one integrand of the considered problem, e.g. the convection term of the Example
3.2.12 (ρφu · ν). In the following we assume, that we have only a 2D case and the cells are all
quadratic, because in this case it is demonstrative. For the 3D case or more complicated cell
geometries it works on the same principle, but it is only more technical.

In the Figure 3.10, we show a schematic picture in order to illustrate the tessellation in the
control volumes. To compute the Equation (3.76) exactly, we need the the integrand f every-
where on the surface S or on each subsurface S`. But this information is missing, we only

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 52

know the integrand on the center of the control volume. So we must approximate the integral.
The simplest approximation is midpoint rule:

F` =
∫

S`

f dS = f̄`δS` ≈ f`δS`, (3.77)

where f̄` represents the mean-value of f` on the surface S`, and δS` stands for the length of
S`. This is the simplest second order method. If the value of the integrand is unknown on the
point `, we must consider the other approximations for the integral. For more details about
the surface integral look on the book of Ferziger and Perić [Fre97], Stoer [Sto99] or Schwarz
[Sch97].

Approximation of the volume integrals

Now we consider methods to approximate the volume integral over the CV T , because in the
transport term it is not possible to compute all terms with the surface integrals, e.g. the right
hand side requires the volume integral. We consider an equation of the following form:

Q =
∫

T
q dΩ = q̄∆T ≈ qcenter∆T, (3.78)

where q̄ represents the mean-value of q in the CV T , qcenter represents the function value in
the middle of CV cell T , and ∆T represents the volume of the cell T . For a constant or linear
q this approximation is exact. In the other cases the approximation is of second order. For
more details see to the same reference books like the section before about Approximation of
the surface integrals.

Interpolation Practices

In this section we present two methods for the interpolation of the integrals.
Upwind Interpolation
This method is also called upwind differences scheme the shortcut is (UDS). The method
approximates the first derivative of the unknown φ with backward or forward differences de-
pendent on the velocity u. In detail this means exemplary in the 2D case for φN :

φN :=
{
φcenter if (u · ν)north > 0
φnorth if (u · ν)north < 0.

(3.79)

This choice of the φN assures, that there never accure oscillations in the solution similar to the
view in the Example (3.2.4). Considering the Taylor series, it is clear, that this is a first order
scheme. For the other boundary of a cell, it goes on the same way.
Linear Interpolation
This interpolation idea is to use a similar approach to the central differences in the finite differ-
ence method, this implies the acronym (CDS) for central differences scheme. In detail this
means exemplary in the 2D case for φN :

φN = φnorthλnorth + φcenter(1− λnorth), (3.80)

where λnorth is the linear interpolation coefficient and it is define as:

λnorth :=
yN − ycenter

ynorth − ycenter
, (3.81)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 53

and yN is the y-coordinate of the variable φnorth, if we have quadratic cells and the φ are cell
centered, as shown in the Figure 3.10. In the same way, it is possible for the other boundaries
of a cell.

Remark 3.2.13
Here we have only represented two methods for the interpolation. For other methods or a more
detailed consideration look on the book of Freziger and Perić [Fre97]. Other methods are:
quadratic upwind interpolation (QUIK), higher-order schemes, linear upwind scheme (LUDS)
and others.

Boundary conditions

In this subsection we consider the realization of the different boundary conditions with the
finite element method. We consider the Dirichlet and the Neumann boundary conditions. Now
we restrict us only on the 2D case with quadratic cells.
Dirichlet boundary condition:
In the following we consider the boundary cell T , which contacts the north boundary, and
the function value on the north boundary is given by φ = f(x). On an interior cell we can
formulate the problem in the following way:

Anorthφnorth +Awestφwest +Asouthφsouth +Aeastφeast +Acenterφcenter = Q. (3.82)

But on the north boundary cell T the value of the term φnorth is known. By this and by the
Equation (3.82) follow:

Awestφwest +Asouthφsouth +Aeastφeast +Acenterφcenter = Q−Anorth φnorth︸ ︷︷ ︸
=f

. (3.83)

The Equation (3.83) realizes the boundary conditions. For the other kinds of boundary cells it
works on the same way.
Neumann boundary condition:
In the following we consider the boundary cell T , which contacts the west boundary, and the
derivative on the west boundary is given by ∇φ = g(x, y). This implies, that in the discrete
version (

φcenter−φwest

δx
φnorth−φsouth

2δy

)
=
(
gx(x, y)
gy(x, y)

)
, (3.84)

and this implies

φcenter − φwest

δx
+
φnorth − φsouth

2δy
= gx(x, y) + gy(x, y)︸ ︷︷ ︸

:=G(x,y)

. (3.85)

This equation is equivalent to:

φwest =
[(
−G(x, y) +

φnorth − φsouth

2δy

)
(δx) + φcenter

]
. (3.86)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 54

The Equations (3.82) and (3.86) imply:(
Anorth +Awest

δx

2δy

)
φnorth (3.87)

+
(
Asouth −Awest

δx

2δy

)
φsouth +(Acenter +Awest)φcenter (3.88)

= Q+AwestG(x, y)(δx) (3.89)

For the other kinds of boundary cells it works on the same way.

Discretisation of the Navier-Stokes equations with the finite volumes method

In the following we discretize the Navier-Stokes equations with the finite volume method. At
first we write the Navier-Stokes equations (3.21) in the integral notion:∫

T

∂

∂t
(ρu`) dΩ +

∫
T
(u · ∇)(ρu`) dΩ +

∫
T

∂p

∂x`
dΩ =

∫
T
µ∆u` dΩ +

∫
T
ρf` dΩ.

We have also seen this form in the Example 3.2.11. At next we consider each part of this
integral separatly and apply the Gauss’theorem, like in the Example 3.2.11, and give some
remarks to the terms.
Diffusion term
This is the (µ∆u))` part of the Equation (3.21) in the integral notion and by the application of
the Gauss’theorem follows:∫

T

µ∆u` dΩ =
∫
T
µ
(∂2u`
∂x2︸ ︷︷ ︸

:= ∂
∂xψx

+
∂2u`
∂y2︸ ︷︷ ︸

:= ∂
∂yψy

)
dΩ =

∫
T

µ
∂

∂x
ψx dΩ︸ ︷︷ ︸

:=
∫
S
µψx dS

=
∫
S
µ∂u`

∂x dS

+
∫
T

µ
∂

∂y
ψy dΩ︸ ︷︷ ︸

:=
∫
S
µψy dS

=
∫
S
µ∂u`

∂y dS

=
∫
S
µ(∇u`) · ν dS. (3.90)

We can decompose the last term in the following way:∫
S
µ(∇u`) · ν dS =

∫
Snorth

µ∂u`
∂y dS −

∫
Swest

µ∂u`
∂x dS

−
∫
Ssouth

µ∂u`
∂y dS +

∫
Seast

µ∂u`
∂x dS (3.91)

One possible discretisation is:∫
Snorth

µ
∂u`

∂y
dS ≈ µ

[
∂u`

∂y

]
δSnorth, (3.92)

where
[

∂u`
∂y

]
represents the discrete derivative and δSnorth represents the length of the interval.

And u` represents the velocity in x or y direction. For the other boundaries it goes on the same
way.
Convective term
The conservation term is the ((u · ∇)(ρu))` part of the Equation (3.21) in the integral notion
and the application of the Gauss’theorem follows:∫

T
(u · ∇)(ρu`) dΩ =

∫
T

(
∂(ρu`ux)

∂x
+
∂(ρu`uy)

∂y

)
dΩ =

∫
S
ρu`u · ν dS (3.93)

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 55

We can decompose the last term of the Equation (3.93) in the following way:∫
S
ρu`u · ν dS =

∫
Snorth

ρu`unorth dS −
∫
Swest

ρu`uwest dS

−
∫
Ssouth

ρu`usouth dS +
∫
Seast

ρu`ueast dS (3.94)

One possible discretisation is:∫
Snorth

ρu`unorth dS = ρu`unorthδSnorth (3.95)

Pressure term
The pressure term is the (∇p)` part of the Equation (3.21) in the integral notion and by the
application of the Gauss’theorem follows:∫

T

∂p

∂x`
dΩ =

∫
S`

p dS (3.96)

We can decompose the last term of the Equation (3.96) in the following way:∫
S`

p dS =
∫
Snorth

pnorth dS −
∫
Ssouth

psouth dS if ` = x∫
S`

p dS =
∫
Seast

peast dS −
∫
Swest

pwest dS if ` = y

(3.97)

One possible discretisation is:∫
Snorth

pnorth dS = pnorthδSnorth, (3.98)

where δSnorth is the length of the interval.

Remark 3.2.14 (Derivative approximation)
The approximation of the derivative for the diffusion term is possible as in the Example 3.2.12
or a method of the Section 3.2.1.

Remark 3.2.15 (Value approximation)
The approximation of the values on the boundaries are possible with the UDS or CDS method
as shown in the Example 3.2.12.

Remark 3.2.16 (Right hand side)
The approximation of the right hand side is straight forward, because this term is explicitly
known. We must only compute the integral over the the CV or approximate it with a numerical
quadrature.

Remark 3.2.17 (Staggered grid)
In the finite volume method a staggered grid is common to reduce oscillations. This is realized
to a similar way like the finite differences.

CHAPTER 3. THE NAVIER-STOKES EQUATIONS 56

Time discretisation
Here we present no special method. Two possible methods are the explicit or implicit Euler-
method, also possible there are high order methods.
A more detailed consideration is given by the section about finite differences, the method there
is an explicit method in the velocity and implicit in the pressure. If we change the spatial dis-
cretisation with the finite differences by finite volumes, this time discretisation is also possible.
Other methods are presented in the book of Freziger and Perić [Fre97].
An Algorithm to compute the Navier-Stokes equations is realizable in a similar way like the
Algorithm 3.2.8. We must change the approximation of the momentum and the continuity
equation from finite differences to finite volumes.
More details to this are given in the book of Freziger and Perić [Fre97].

Chapter 4

Automatic differentiation

In the following we use the conventional shortcut AD for automatic differentiation.
The idea of AD is to compute the exact derivative in a computer program, without differen-
tiating the program code by hand. The principle of AD is to compute the derivative of an
expression, that is created by elementary functions, by combining the derivative of the elemen-
tary functions with the chain rule.
The structure of this chapter is abutted on the lecture notes from Fischer [Fis05] and on my
seminar [Lei06]. Now we define two notations, which we need to define the AD in a simple
and mathematical correct form.

Definition 4.0.18 (Independent variable)
Let Ω ⊂ Rn, f ∈ C1(Ω), x := (x1, . . . , xn) ∈ Ω. Then a variable xi is called an independent
variable, if ∂f

∂xi
is the desired derivative.

Definition 4.0.19 (Elementary function)
A function fi is called an elementary function if

fi :=

y ◦ z ◦ ∈ { +, −, ∗, /, ∗∗, . . . }
g(y) g(·) ∈ {sin(), cos(), exp(), . . . }
g(y, z) g(·, ·) ∈ { atan2(), mod(), . . . }

with i ∈ N, and y, z ∈ {x1, . . . , xn, f1, . . . , fi−1, a1, . . . , a`}.
x1, . . . , xn are independent variables and a1, . . . , a` are constants. Then y, z are called mem-
ber of fi.

It is necessary to distinguish between two kinds of AD, the forward mode and the reverse mode.
In the next section we give an introduction to the forward mode.

4.1 Forward mode

Now we define the forward mode of AD in a theoretical form and then we explain it with an
example and derive the correct algorithm.

Definition 4.1.1 (Forward mode)
The forward mode is a kind of AD, which computes mutually the evaluation and the derivative
of each elementary function.

57

CHAPTER 4. AUTOMATIC DIFFERENTIATION 58

x -sin f1

y PPPq

z ���1/ f2

PPPq f6exp

- f7
3 ·

�
�

�3

-
f4·

Q
Q

Qs

�
�

�3
· f3

PPPq

���1
· f8

�
�

�3

XXXXXXXXXz+ f5

�
�

�
�

�
�

�
�

�3

@
@

@R− f9

Figure 4.1: Function dependence graph

The Figure 4.1 shows a function dependence graph, of the function

f(x, y, z) := sinx
y

z
+ xy − ez3y, (4.1)

to illustrate the dependence of the independent variables and the elementary functions of the
function f(x, y, z).

Example 4.1.2
We consider the function (4.1):

f(x, y, z) = sin(x)︸ ︷︷ ︸
=:f1

· (y/z)︸ ︷︷ ︸
=:f2︸ ︷︷ ︸

=:f3

+x · y︸︷︷︸
=:f4

︸ ︷︷ ︸
=:f5

− exp(z)︸ ︷︷ ︸
=:f6

· (3 · y)︸ ︷︷ ︸
=:f7︸ ︷︷ ︸

=:f8

︸ ︷︷ ︸
=:f9

and differentiate this one by using the forward mode.

f1 = sin(x), ∇f1 =
(
cos(x) 0 0

)T

f2 = y/z, ∇f2 =
(
0 1/z −y/(z2)

)T

f3 = f1 · f2, ∇f3 = ∇f1 · f2 +∇f2 · f1

f4 = x · y, ∇f4 =
(
z 0 x

)T

f5 = f3 + f4, ∇f5 = ∇f3 +∇f4

f6 = exp(z), ∇f6 =
(
0 0 exp(z)

)T

f7 = 3 · y, ∇f7 =
(
0 3 0

)T

f8 = f6 · f7, ∇f8 = ∇f6 · f7 +∇f7 · f6

f9 = f5 − f8, ∇f9 = ∇f5 −∇f8

CHAPTER 4. AUTOMATIC DIFFERENTIATION 59

The analytical solution is: ∇f(x, y, z) =

cos(x) · (y/x) + y

sin(x)/z + x− 3 · exp(z)

(− sin(x) · y)/z2 − exp(z) · (3 · y)

If we apply recursively the ∇fi for i = 1, . . . , 8 in f9 it is trivial to see, that the solution of the
forward mode is correct.

Algorithm 4.1.3 (Forward mode)
Let a1, . . . , a` be constants, x1, . . . , xm be the independent variables, and f1, . . . , fn beele-
mentary functions for `,m, n ∈ N.
Now we write g(y, z), if we mean the expression of the elementary function fi where i ∈
{1, . . .m}. If the expression of the elementary function is a unitary expression, then z is empty,
else y, z ∈ {a1, . . . , a`, x1, . . . , xm, f1, . . . , fi−1}. Let fn be the function, whose derivative is
in demand. The calculation specification to compute the derivative of fn is:

for i = 1, . . . , n

fi = g(y, z)

∇fi = (∂
∂yg(y, z)

∂y
∂x1

+ ∂
∂zg(y, z)

∂z
∂x1

, . . . , ∂
∂yg(y, z)

∂y
∂xm

+ ∂
∂zg(y, z)

∂z
∂xm

)T

end

Remark 4.1.4 (Computational complexity)

1. In the forward mode we can estimate the computation complexity for a elementary func-
tion

fk : Rd → R,

where d = 1, if the elementary function is an unitary operation or function, else d = 2.
The complexity is bounded with max(6, 3n+4), where n represents the dimension of the
gradient vector, this estimation follows from the Table 4.1, which lists the computuation
complexity of the elementary functions.
For a given elementary function we get the exact computation complexity from the Table
4.1.

2. For a function
f : Rm×n → R,

where n represents the number of the independent variables, m is the number of the
variables, whose derivative is not searched, and ` ∈ N is the number of the elementary
function to compute the function f , we can estimate the computation complexity in the
following way ` ·max(6, 3n+ 4).

3. It is clear, that this estimations are very coarse, but a priori it is not possible to give an
better approximation, but, if the code is given, it is possible to analyze the code and give
a determination of the exact computation complexity or a better approximation.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 60

Operator Value fk derivative f ′k Complexity
+ fi + fj f ′i + f ′j n+ 1
+ fi + a fi 1
− fi − fj f ′i − f ′j n+ 1
− fi − a f ′i 1
− a− fi −f ′i n+ 1
· fi · fj f ′i · fj + fi · f ′j 3n+ 1
· a · fi a · f ′i n+ 1
/ fi/fj (f ′i − fkf

′
j)/fj 3n+ 1

/ fi/a f ′i/a n+ 1
/ a/fj (−fk · f ′j)/fj n+ 3
√ √

fi f ′i/(2fk) n+ 2
ˆ fi

fj f ′i(fkfj/fi) + (ln(fi)fk)f ′j 3n+ 4
ˆ fi

a f ′i(fka/fi) n+ 3
ˆ afj (ln(a)fk)f ′j n+ 3

Function Value fk derivative f ′k Complexity
exp exp fi f ′ifk n+ 1
ln ln fi f ′i/fi n+ 1
sin sin fi f ′i cos fi n+ 2
cos cos fi f ′i(− sin fi) n+ 3
tan tan fi f ′i/ cos2 fi n+ 3

arcsin arcsin fi f ′i/
√

1− f2
i n+ 4

arccos arccos fi f ′i/(−
√

1− f2
i) n+ 5

arctan arctan fi f ′i/(1 + f2
i) n+ 3

sinh sinh fi f ′i cosh fi n+ 2
cosh cosh fi f ′i sinh fi n+ 2
tanh tanh fi f ′i/ cosh2 fi n+ 2

Table 4.1: Computation complexity of elementary functions in the forward mode

Remark 4.1.5 (Storage complexity)
In the forward mode, we can estimate the storage complexity for AD-types in the following
way:
` is the number of AD variables
n is the dimension of the derivative
c is a constant for some control parameter in a AD type
S is the storage size of the values, it is dependent on the precision
Sall is the maximum of the storage size for all AD-types, in the running program.

Sall ≤ ` ∗ ((n+ 1) ∗ S + c)

Now we explain the reverse mode.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 61

4.2 Reverse mode

This section is structured like the section before, firstly we define the reverse mode, then an
example follows and at last, the algorithm and some remarks are given.

Definition 4.2.1 (Reverse mode)
The reverse mode is a kind of AD, which computes the value of each elementary function,
directly, and logs the elementary function with its value. The derivative will be computed at a
given point of the program. The computation of the derivative starts with the last elementary
function and finishes with the first one.

Example 4.2.2
We consider the function (4.1).

f(x, y, z) := sin(x)︸ ︷︷ ︸
=:f1

· (y/z)︸ ︷︷ ︸
=:f2︸ ︷︷ ︸

=:f3

+x · y︸︷︷︸
=:f4

︸ ︷︷ ︸
=:f5

− exp(z)︸ ︷︷ ︸
=:f6

· (3 · y)︸ ︷︷ ︸
=:f7︸ ︷︷ ︸

=:f8

︸ ︷︷ ︸
=:f9

f9 = f5 − f8, f8 = f6 · f7, f7 = 3 · y,
f6 = exp(z), f5 = f3 + f4, f4 = x · y,
f3 = f1 · f2, f2 = y/z, f1 = sin(x),

∂f9

∂f9
= 1

∂f9

∂f8
= −1

∂f9

∂f7
= ∂f9

∂f8

∂f8

∂f7
= (−1) · f6

∂f9

∂f6
= ∂f9

∂f8

∂f8

∂f6
= (−1) · f7

∂f9

∂f5
= 1

∂f9

∂f4
= ∂f9

∂f5

∂f5

∂f4
= 1 · 1

∂f9

∂f3
= ∂f9

∂f5

∂f5

∂f3
= 1 · 1

∂f9

∂f2
= ∂f9

∂f3

∂f3

∂f2
= 1 · f1

∂f9

∂f1
= ∂f9

∂f3

∂f3

∂f1
= 1 · f2

∂f9

∂z = ∂f9

∂f2

∂f2

∂z + ∂f9

∂f6

∂f6

∂z = f1 · (−y/z2) + (−f7) · exp(z)
∂f9

∂y = ∂f9

∂f2

∂f2

∂y + ∂f9

∂f4

∂f4

∂y + ∂f9

∂f7

∂f7

∂y = f1 · (1/z) + 1 · x+ (−f6) · 3
∂f9

∂x = ∂f9

∂f1

∂f1

∂x + ∂f9

∂f4

∂f4

∂x = f2 · cos(x) + 1 · y

The analytical solution is: ∇f(x, y, z) =

 cos(x) · (y/x) + y
sin(x)/z + x− 3 · exp(z)

(− sin(x) · y)/z2 − exp(z) · (3 · y)

It is trivial to see, that the solution of the reverse mode is correct.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 62

Now we look at a technical algorithm to compute the reverse mode.

Algorithm 4.2.3 (Reverse mode)
Let x1, . . . , xn be the independent variables, and f1, . . . , fm be elementary functions for n,m ∈
N. And Mi is the set of all indices of elementary functions, whereof fi is a member. ηi is the
number of elements in Mi. Mxi is the set of all indices of elementary functions, whereof xi is
a member. ηxi is the number of elements in Mxi .

Mi := {` ∈ {m− 1, . . . , i+ 1} | fi member of f`} , ηi :=]Mi

Mxi := {` ∈ {m, . . . , 1} | xi member of f`} , ηxi :=]Mxi

Let fm be the function, whose derivative is in demand.
The calculation’s specification to compute the derivative of fm is :

∂fm

∂fm
= 1

∂fm

∂fm−1
= ∂fm

∂fm−1

∂fm

∂fm−2
=

∂fm

∂fm−1

∂fm−1

∂fm−2
if fm−2 a member of fm−1

∂fm

∂fm−2
else

...

∂fm

∂fi
=

ηi∑
j=1

∂fm

∂f`j

∂f`j

∂fi
for `j ∈Mi and `i 6= `j∀i 6= j

...

∂fm

∂f1
=

η1∑
j=1

∂fm

∂f`j

∂f`j

∂f1
for `j ∈M1 and `i 6= `j∀i 6= j

∂fm

∂xn
=

∂fm

∂xn
if Mxn = ∅

ηxn∑
j=1

∂fm

∂f`j

∂f`j

∂xn
for `j ∈Mxn and `i 6= `j∀i 6= j else

...

∂fm

∂x1
=

∂fm

∂x1
if Mx1 = ∅

ηx1∑
j=1

∂fm

∂f`j

∂f`j

∂x1
for `j ∈Mx1 and `i 6= `j∀i 6= j else

(∂fm

∂x1
, . . . , ∂fm

∂xn
) is the searched solution.

Remark 4.2.4 (Computational complexity)

1. For an elementary function we can estimate the computation complexity with the Ta-
ble 4.2, which lists the operations and their computation complexity. The computation
complexity is bounded by 9.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 63

Operation Value fk derivative f̄i derivative f̄j Complexity
+ fi + fj f̄i+ = f̄k f̄j+ = f̄k 3
+ fi + a f̄i+ = f̄k - 2
− fi − fj f̄i+ = f̄k f̄j− = f̄k 3
− fi − a f̄i+ = f̄k - 2
− a− fi f̄i− = f̄k - 2
· fi · fj f̄i+ = f̄k · fj f̄j+ = f̄k · fi 5
· a · fi f̄i+ = f̄k · a - 3
· fi · a f̄i+ = f̄k · a - 3
/ fi/fj f̄i+ = f̄k/fj f̄j− = f̄k · fk/fj 7
/ fi/a f̄i+ = f̄k/a - 3
/ a/fi f̄i− = f̄k · fk/fi - 4
√ √

fi f̄i+ = f̄k/(2fk) - 4
ˆ fi

fj f̄i+ = f̄k · fkfj/fi f̄i+ = f̄k · ln fi · fk 9
ˆ fi

a f̄i+ = f̄k · fka/fi - 5
ˆ afi f̄i+ = f̄k · ln a · fk - 5

Function Value fk derivative f̄i Complexity
exp exp fi f̄i+ = f̄kfk 3
ln ln fi f̄i+ = f̄k/fk 3
sin sin fi f̄i+ = f̄k cos fi 4
cos cos fi f̄i− = f̄k sin fi 4
tan tan fi f̄i+ = f̄k(1 + f2

k) 5

arcsin arcsin fi f̄i+ = f̄k/
√

1− f2
i 6

arccos arccos fi f̄i− = f̄k/
√

1− f2
i 6

arctan arctan fi f̄i+ = f̄k/(1− f2
i) 5

sinh sinh fi f̄i+ = f̄k cosh fi 4
cosh cosh fi f̄i+ = f̄k sinh fi 4
tanh tanh fi f̄i+ = f̄k/ cosh2 fi 5

Table 4.2: Computation complexity of elementary functions in the reverse mode

2. For a function
f : Rm×n → R,

where n represents the number of the independent variables, m is the number of the
variables whose derivative is not searched, and ` ∈ N is the number of the elementary
function to compute the function f . We can estimate the computation complexity in the
following way 9 · `.

3. A problem is: that, if we have two functions f, g, whose derivative is searched, and they
have some equal temporary steps (elementary functions), we must use the evaluation for
the derivative of each function. I.e., if `1 is the number of elementary functions of f and
`2 is the one of g, then we must do `1 + `2 evaluations.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 64

Remark 4.2.5 (Storage complexity)
In the reverse mode, we can estimate the storage complexity for AD-types in the following way:
n is the number of elementary functions of each path
nmax is the number of elementary functions
p is the number of derivative paths
c is a constant for some control parameter in a AD-type
S is the storage size of the values, it is dependent on the precision
Sall is the maximum of the storage size for all AD-types, in the running program.

Sall ≤ nmax · S +
p∑

i=1

ni(S + c)

4.3 Operator overloading

Operator overloading is a kind of implementation of the AD, which is a library of the computer
language.

4.3.1 Functionality of operator overloading

The idea of the operator overloading is to create a new data type and define for this type the
operators, like +,-,*,/,. . . and also the mathematical functions like sin, cos,. . . and
now it is possible to work with this type similar like a double.
Now we show an example of the application of operator overloading on a simple program.
In the next chapter we give a more detailed overview about an implementation of operator
overloading AD tool in Fortran.

Example 4.3.1 (Operator overloading)
We consider the function (4.1).

Listing 4.1: AD operator overloading sourcecode f.
1 program example
2
3 use AD
4
5 t y p e (f o rward) : : x , y , z
6 t y p e (f o rward) : : f
7 r e a l (kind (1 . d0)) : : a , i n i t v , i n i t d (3)
8
9 a = 3 .

10
11 i n i t d = 0 .
12 i n i t d (1) = 1 .
13 i n i t v = 1 . 1
14 c a l l i n i t A D (x , i n i t v , i n i t d , . t r u e .)
15 i n i t d = 0 .
16 i n i t d (2) = 1 .
17 i n i t v = 2 . 1
18 c a l l i n i t A D (y , i n i t v , i n i t d , . t r u e .)
19 i n i t d = 0 .
20 i n i t d (3) = 1 .
21 i n i t v = −0.1
22 c a l l i n i t A D (z , i n i t v , i n i t d , . t r u e .)
23
24 f = s i n (x) ∗ (y / z) + x∗y − exp (z) ∗ a∗y
25
26 end program example

CHAPTER 4. AUTOMATIC DIFFERENTIATION 65

Listing 4.2: Original source code.
1 program example
2
3 r e a l (kind (1 . d0)) : : x , y , z
4 r e a l (kind (1 . d0)) : : f
5 r e a l (kind (1 . d0)) : : a
6
7 a = 3 .
8
9 x = 1 . 1

10 y = 2 . 1
11 z = −0.1
12
13 f = s i n (x) ∗ (y / z) + x∗y − exp (z) ∗ a∗y
14
15 end program example

4.3.2 Advantages and disadvantages

Here we give an overview about the advantages and the disadvantages of the operator over-
loading method. At first we show the advantages.

Advantages

The main advantage of the operator overloading method is, that the source code has a clear
form. This allows, that we can change and develop the program directly with AD, i.e. it is
possible to develop a new program with AD in the same way as without AD, there is only one
difference we must use for all variables, which have an influence on the end value, the AD-
type.
Now we show the disadvantages.

Disadvantages

A big disadvantage of the operator overloading method is, that it is not available for each
programming language, because the program language must support the operator overloading.
This is the reason, why it is not possible to use this method on Fortran 77 and C, but it is
possible in Fortran 90/95 and C++. Another problem is a performance’s damage, because it is
not possible, that the compiler optimizes the overloaded operators so good. It is also not trivial
to use operator overloading on a complete and big program, because it is not simple to find the
dependence on the necessary and unnecessary code.

4.4 Source transformation

Source transformation is a kind of implementation of AD, which is an independent program.

4.4.1 Functionality of source transformation

This program works like a preprocessor, it reads the source of the program, searches all relevant
program lines and writes new lines in the program, which computes the derivative.
In the following we show some simple examples for the source transformation, which are
created by the AD transformation tool tapenade1.

1Tapenade is AD tool for source transformation developed by the INRIA.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 66

Example 4.4.1 (Source transformation for the + operator)
Here we show the source transformation for the + operator, the Listing 4.3 is the original
source code and the Listing 4.4 is the transformed source code.

Listing 4.3: Original sourcecode from a + subroutine.
1 s u b r o u t i n e add (f , x , y)
2 r e a l , i n t e n t (out) : : f
3 r e a l , i n t e n t (in) : : x , y
4 f = x+y
5 end s u b r o u t i n e add

Listing 4.4: AD transformed sourcecode from a + subroutine.
1 ! Generated by TAPENADE (INRIA, Tropics team)
2 ! Tapenade - Version 2.2 (r1239) - Wed 28 Jun 2006 04:59:55 PM CEST
3 ! Differentiation of add in forward (tangent) mode:
4 ! variations of output variables: f
5 ! with respect to input variables: x y
6 SUBROUTINE ADD D(f , fd , x , xd , y , yd)
7 IMPLICIT NONE
8 REAL , INTENT (OUT) : : f
9 REAL , INTENT (OUT) : : f d

10 REAL , INTENT (IN) : : x
11 REAL , INTENT (IN) : : xd
12 REAL , INTENT (IN) : : y
13 REAL , INTENT (IN) : : yd
14 f d = xd + yd
15 f = x + y
16 END SUBROUTINE ADD D

Example 4.4.2 (Source transformation for the ∗∗ operator)
Here we show the source transformation for the ∗∗ operator, the Listing 4.5 is the original
source code and the Listing 4.6 is the transformed source code.

Listing 4.5: Original sourcecode from a sin subroutine.
1 s u b r o u t i n e pow (f , x , y)
2 r e a l , i n t e n t (out) : : f
3 r e a l , i n t e n t (in) : : x , y
4 f = x∗∗y
5 end s u b r o u t i n e pow

Listing 4.6: AD transformed sourcecode from a sin subroutine.
1 ! Generated by TAPENADE (INRIA, Tropics team)
2 ! Tapenade - Version 2.2 (r1239) - Wed 28 Jun 2006 04:59:55 PM CEST
3 ! Differentiation of pow in forward (tangent) mode:
4 ! variations of output variables: f
5 ! with respect to input variables: x y
6 SUBROUTINE POW D(f , fd , x , xd , y , yd)
7 IMPLICIT NONE
8 REAL , INTENT (OUT) : : f
9 REAL , INTENT (OUT) : : f d

10 REAL , INTENT (IN) : : x
11 REAL , INTENT (IN) : : xd
12 REAL , INTENT (IN) : : y
13 REAL , INTENT (IN) : : yd
14 IF (yd . EQ . 0 . 0 . OR . x . LE . 0 . 0) THEN
15 IF (xd . EQ . 0 . 0) THEN
16 f d = 0 . 0
17 ELSE
18 f d = y∗x∗∗(y−1)∗xd
19 END IF
20 ELSE IF (xd . EQ . 0 . 0) THEN
21 f d = LOG(x)∗ x∗∗y∗yd
22 ELSE
23 f d = x∗∗y∗(LOG(x)∗ yd+y∗xd / x)
24 END IF
25 f = x∗∗y
26 END SUBROUTINE POW D

CHAPTER 4. AUTOMATIC DIFFERENTIATION 67

Example 4.4.3 (Source transformation for the sin-function)
Here we show the source transformation for the sin-function, the Listing 4.7 is the original
source code and the Listing 4.8 is the transformed source code.

Listing 4.7: Original sourcecode from a sin subroutine.
1 s u b r o u t i n e s i n (f , x)
2 r e a l , i n t e n t (out) : : f
3 r e a l , i n t e n t (in) : : x
4 f = s i n (x)
5 end s u b r o u t i n e s i n

Listing 4.8: AD transformed sourcecode from a sin subroutine.
1 ! Generated by TAPENADE (INRIA, Tropics team)
2 ! Tapenade - Version 2.2 (r1239) - Wed 28 Jun 2006 04:59:55 PM CEST
3 ! Differentiation of sin_ in forward (tangent) mode:
4 ! variations of output variables: f
5 ! with respect to input variables: x
6 SUBROUTINE SIN D (f , fd , x , xd)
7 IMPLICIT NONE
8 REAL , INTENT (OUT) : : f
9 REAL , INTENT (OUT) : : f d

10 REAL , INTENT (IN) : : x
11 REAL , INTENT (IN) : : xd
12 INTRINSIC SIN
13 f d = xd∗COS(x)
14 f = SIN (x)
15 END SUBROUTINE SIN D

Example 4.4.4 (Source transformation for the sqrt-function)
Here we show the source transformation for the sqrt-function, the Listing 4.9 is the original
source code and the Listing 4.10 is the transformed source code.

Listing 4.9: Original sourcecode from a sqrt subroutine.
1 s u b r o u t i n e s q r t (f , x)
2 r e a l , i n t e n t (out) : : f
3 r e a l , i n t e n t (in) : : x
4 f = s q r t (x)
5 end s u b r o u t i n e s q r t

Listing 4.10: AD transformed sourcecode from a sqrt subroutine.
1 ! Generated by TAPENADE (INRIA, Tropics team)
2 ! Tapenade - Version 2.2 (r1239) - Wed 28 Jun 2006 04:59:55 PM CEST
3 ! Differentiation of sqrt_ in forward (tangent) mode:
4 ! variations of output variables: f
5 ! with respect to input variables: x
6 SUBROUTINE SQRT D (f , fd , x , xd)
7 IMPLICIT NONE
8 REAL , INTENT (OUT) : : f
9 REAL , INTENT (OUT) : : f d

10 REAL , INTENT (IN) : : x
11 REAL , INTENT (IN) : : xd
12 INTRINSIC SQRT
13 IF (xd . EQ . 0 . 0 . OR . x . EQ . 0 . 0) THEN
14 f d = 0 . 0
15 ELSE
16 f d = xd / (2 . 0∗ SQRT (x))
17 END IF
18 f = SQRT (x)
19 END SUBROUTINE SQRT D

CHAPTER 4. AUTOMATIC DIFFERENTIATION 68

4.4.2 Advantages and disadvantages

In this subsection we discuss the advantages and disadvantages of the source transformation.

Advantages

A big advantage of the source transformation is, that in finished code it is not so easy to find
each dependence between the variables, if the code is big or not so good readable, and by a
source transformation tool this is done automatically. This concept is also possible for each
programming language.

Disadvantages

A disadvantage of the source transformation is, that the transformed source code is not good
readable, because the tool inserts many lines and new variables. This is the reason why a
transformed code is not so good for continuous developments, and new developments are not
so easy realizable with source transformation. Another problem is, that there it is possible to
get problems with variable names.

4.5 Complexity comparison of different approaches on two func-
tions

In this section we analyze the time and the storage complexity of different approaches of AD on
two functions, dependent of their dimensions. We also compare time and storage complexity
of AD with the program without AD, and the numerical differentiation (finite differences).
The functions for this tests are chosen, such that we use most of the elementary functions, in
order to get an idea to choose the right AD approach in more complex problems.
We have done the experiment on computers with the following configuration: AMD Athlon 64
3500+ processor with 2GB RAM and the operating system is the linux distribution ubuntu.
The programming language is Fortran 90/95, and we have used the Intel Fortran compiler ifort
without any optimizations.
It is important to say, that the results are dependent on the AD tool, that is used for each AD
approach, but the characteristically behavior is independent of it. In our case we have used a
self written operator overloading tool2, because we did not find a finished tool. For the source
transformation we have used tapenade.
At first we consider a function, where the preimage is the Rn

+, and the image is the R.

4.5.1 Function f from the Rn
+ to the R

Here we consider a function, which maps from Rn
+ to R.

f(x) :=
sin
(

n∏
i=1

√
xi + 1

)
exp

(
−
√

n∑
i=1

cos2 (xi)

) (4.2)

2We explain this tool in the Chapter 5.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 69

It is clear, that this function f is in C, the space of continuously functions. And it is also easy
to see, that f is continuous differentiable for all

x ∈ R \
{
xi = nπ +

π

2
: n ∈ Z, for all i = 1, . . . , n

}
.

We have chosen the values of the vector x at each program start with same random numbers,
and we have checked, that the derivative exists for this values. And we have solved the Equation
(4.2) 100,000 times.
We analyze the complexity for dimensions n = 1, . . . , 200.
The basis of the program, to solve the Equation (4.2), is the same for all approaches. We only
have to change the necessary sequences.

Time complexity

Now we interpret the results of the time complexity of the Equation (4.2), which are visualized
in the Figure 4.2.
The first finding is, that operator overloading is in Fortran significant slower than source trans-
formation, but the numerical differentiation is slowest. The next is, that the reverse mode of the
operator overloading is worse than the forward mode of the operator overloading also in high
dimensions.
An interesting result in the source transformation is that the forward mode is better than the re-
verse mode until about dimension 20. It is good to see, that the reverse mode is only a constant
slower than the program code without computing a derivative, and this result holds also in high
dimensions.

Storage complexity

The storage complexity depends on the dimension n of the Equation (4.2) as shown in the
Figure 4.3. The storage complexity of the both approaches for the forward mode increases by
a moderate factor. The storage complexity of the operator overloading reverse mode increases
very strongly dependent on the dimension. The interesting point is, that the storage complexity
of the source transformed reverse mode is nearly constant. The reason for this observation
is, that this function is simple, so it is possible, that the transformation tool can transform
the program in a way, which does not need the full tree of the function. That the storage
complexity of the program without computing derivatives and the finite difference approach
are nearly constant, is clear.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 70

 0

 10
0

 20
0

 30
0

 40
0

 50
0

 60
0 0

 50
 10

0
 15

0
 20

0

speed-down factor

dim
en

sio
n n

Es
tim

ati
on

s o
f th

e s
pe

ed
-d

ow
n f

ac
tor

 0 50 10
0

 15
0

 20
0

 25
0

 30
0

 35
0

 40
0 0

 50
 10

0
 15

0
 20

0

speed-down factor

dim
en

sio
n n

Co
mp

ar
iso

n o
f th

e s
pe

ed
-d

ow
n f

ac
tor

 0 50 10
0

 15
0

 20
0

 25
0

 30
0

 35
0

 40
0 0

 20
 40

 60
 80

 10
0

 12
0

 14
0

 16
0

 18
0

 20
0

speed-down factor

dim
en

sio
n n

Fin
ite

 D
iffe

re
nc

es

 10 20 30 40 50 60 70 80 90 10
0 0

 20
 40

 60
 80

 10
0

 12
0

 14
0

 16
0

 18
0

 20
0

speed-down factor

dim
en

sio
n n

Fo
rw

ar
d m

od
e

 0 50 10
0

 15
0

 20
0

 25
0

 30
0 0

 20
 40

 60
 80

 10
0

 12
0

 14
0

 16
0

 18
0

 20
0

speed-down factor

dim
en

sio
n n

Re
ve

rse
 m

od
e

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 0
 2

0
 4

0
 6

0
 8

0
 1

0
0

 1
2
0

 1
4
0

 1
6
0

 1
8
0

 2
0
0

speed-down factor

d
im

e
n
s
io

n
 n

R
u
n
ti
m

e
 c

o
m

p
a
ri
s
o
n
 o

f
fo

rt
ra

n
 9

0
 p

ro
g
ra

m
s

e
s
ti
m

a
ti
o
n
 f
o
r

fi
n
it
e
 d

if
fe

re
n
e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s

w
o
rs

t
c
a
s
e
 e

s
ti
m

a
ti
o
n
 f
o
rw

a
rd

 m
o
d
e

p
ro

b
le

m
 e

s
ti
m

a
ti
o
n
 f
o
rw

a
rd

 m
o
d
e

o
p
e
ra

to
r

o
v
e
rl
o
a
d
in

g
 f
o
rw

a
rd

 m
o
d
e

s
o
u
rc

e
 t
ra

n
s
fo

rm
a
ti
o
n
 f
o
rw

a
rd

 m
o
d
e

e
s
ti
m

a
ti
o
n
 o

p
e
ra

to
r

o
v
e
rl
o
a
d
in

g
 r

e
v
e
rs

e
 m

o
d
e

e
s
ti
m

a
ti
o
n
 r

e
v
e
rs

e
 m

o
d
e

o
p
e
ra

to
r

o
v
e
rl
o
a
d
in

g
 r

e
v
e
rs

e
 m

o
d
e

s
o
u
rc

e
 t
ra

n
s
fo

rm
a
ti
o
n
 r

e
v
e
rs

e
 m

o
d
e

Fi
gu

re
4.

2:
Ti

m
e

co
m

pl
ex

ity
of

th
e

E
qu

at
io

n
(4

.2
).

CHAPTER 4. AUTOMATIC DIFFERENTIATION 71

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160 180 200

 s
to

ra
ge

 [k
b]

dimension n

Storage comparison of fortran 90 programs

 500

 520

 540

 560

 580

 600

 620

 640

 0 20 40 60 80 100 120 140 160 180 200

 s
to

ra
ge

 [k
b]

dimension n

Storage comparison of fortran 90 programs

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160 180 200

 s
to

ra
g

e
 [

k
b

]

dimension n

Storage comparison of fortran 90 programs

only function value
finite differences

estimation forward mode
operator overloading forward mode

source transformation forward mode
estimation reverse mode

operator overloading reverse mode
source transformation reverse mode

Figure 4.3: Storage complexity of the Equation (4.2).

4.5.2 Function f from the R to the Rn

Here we consider a function, which maps from R to Rn.

f(x) :=
(

sin(x · i)
exp(x+ i)

+ (n · x)i · exp(x · i)− i · x+ cos
(x · x

n

))n

i=1

(4.3)

It is clear, that this function f is in C1, the space of continuously differentiable functions. The
values of x we have choosen at each program start with the same random number. And we
solve the Equation (4.3) 100,000 times.
We analyze the complexity for dimensions n = 1, . . . , 200.
The basis of the program, to solve the Equation (4.3), is the same for all approaches. We only
have to change the necessary sequences.

Time complexity

The Figure 4.4 shows the time complexity of the different approaches of AD to solve the
Equation (4.3). A good result is, that the forward mode with source transformation is only a
little bit slower than the program without cthe omputation of derivatives.

CHAPTER 4. AUTOMATIC DIFFERENTIATION 72

 1 2 3 4 5 6 7 8 9

 0
 50

 10
0

 15
0

 20
0

speed-down factor

dim
en

sio
n n

Es
tim

ati
on

s o
f th

e s
pe

ed
-d

ow
n f

ac
tor

 5 10 15 20 25

 0
 50

 10
0

 15
0

 20
0

speed-down factor

dim
en

sio
n n

Co
mp

ar
iso

n o
f th

e s
pe

ed
-d

ow
n f

ac
tor

 0.
5 1 1.
5 2 2.
5 3 3.
5 0

 20
 40

 60
 80

 10
0

 12
0

 14
0

 16
0

 18
0

 20
0

speed-down factor

dim
en

sio
n n

Fin
ite

 D
iffe

re
nc

es

 1 2 3 4 5 6 7

 0
 20

 40
 60

 80
 10

0
 12

0
 14

0
 16

0
 18

0
 20

0

speed-down factor

dim
en

sio
n n

Fo
rw

ar
d m

od
e

 5 10 15 20 25

 0
 20

 40
 60

 80
 10

0
 12

0
 14

0
 16

0
 18

0
 20

0

speed-down factor

dim
en

sio
n n

Re
ve

rse
 m

od
e

 5

 1
0

 1
5

 2
0

 2
5

 3
0

 0
 2

0
 4

0
 6

0
 8

0
 1

0
0

 1
2
0

 1
4
0

 1
6
0

 1
8
0

 2
0
0

speed-down factor

d
im

e
n
s
io

n
 n

R
u
n
ti
m

e
 c

o
m

p
a
ri
s
o
n
 o

f
fo

rt
ra

n
 9

0
 p

ro
g
ra

m
s

e
s
ti
m

a
ti
o
n
 f
o
r

fi
n
it
e
 d

if
fe

re
n
e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s

w
o
rs

t
c
a
s
e
 e

s
ti
m

a
ti
o
n
 f
o
rw

a
rd

 m
o
d
e

p
ro

b
le

m
 e

s
ti
m

a
ti
o
n
 f
o
rw

a
rd

 m
o
d
e

o
p
e
ra

to
r

o
v
e
rl
o
a
d
in

g
 f
o
rw

a
rd

 m
o
d
e

s
o
u
rc

e
 t
ra

n
s
fo

rm
a
ti
o
n
 f
o
rw

a
rd

 m
o
d
e

p
ro

b
le

m
 e

s
ti
m

a
ti
o
n
 r

e
v
e
rs

e
 m

o
d
e

e
s
ti
m

a
ti
o
n
 r

e
v
e
rs

e
 m

o
d
e

o
p
e
ra

to
r

o
v
e
rl
o
a
d
in

g
 r

e
v
e
rs

e
 m

o
d
e

s
o
u
rc

e
 t
ra

n
s
fo

rm
a
ti
o
n
 r

e
v
e
rs

e
 m

o
d
e

Fi
gu

re
4.

4:
Ti

m
e

co
m

pl
ex

ity
of

th
e

E
qu

at
io

n
(4

.3
).

CHAPTER 4. AUTOMATIC DIFFERENTIATION 73

Storage complexity

 580

 590

 600

 610

 620

 630

 640

 650

 660

 0 20 40 60 80 100 120 140 160 180 200

 s
to

ra
ge

 [k
b]

dimension n

Storage comparison of fortran 90 programs

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

s
p

e
e

d
-d

o
w

n
 f

a
c
to

r

dimension n

Runtime comparison of fortran 90 programs

estimation for finite differenes
finite differences

worst case estimation forward mode
problem estimation forward mode

operator overloading forward mode
source transformation forward mode

problem estimation reverse mode
estimation reverse mode

operator overloading reverse mode
source transformation reverse mode

Figure 4.5: Storage complexity of the Equation (4.3).

We see in the Figure 4.5, that the storage complexity by solving the Equation (4.3) is not
significant dependent on the chosen approach.
But this result depends on the fact, that the Equation (4.3) is a very simple function, and in
bigger realistic problems this storage complexity is not so clear.

4.6 AD is not a silver bullet

In this section we show, that AD is not applieable on each problem, where the derivative is
defined.

4.6.1 The problem

Now we explain and define the problem, on which we try to apply AD. We consider the
Laplace-problem in two dimensions, on Ω = [0, 1]2, with Dirichlet boundary conditions, for a
given right side, f(x, y) ∈ C2.

−∆u(x, y) = f(x, y), (x, y) ∈ Ω
u(x, y) = 0, (x, y) ∈ δΩ (4.4)

Now we discretisize this equation with finite differences, on the discrete domain

Ωh := {xi := ih : i = 0, . . . , N + 1} × {yi := ih : i = 0, . . . , N + 1}, (4.5)

so we get the following linear system of equations, to solve (4.4) with finite differences:

ANxN = fN , (4.6)

Then AN from (4.6) has the following structure

AN =
1
h2

TN −IN 0 · · · 0
−IN TN −IN 0 · · · 0

0 −IN TN −IN 0 · · · 0
...

. · · ·
...

0 · · · 0 −IN TN

 ∈ RN2×N2
, (4.7)

CHAPTER 4. AUTOMATIC DIFFERENTIATION 74

where h := 1
N+1 is the stepsize andN the degree of freedoms, in each dimension, IN ∈ RN×N

is the identity matrix and the matrix TN from (4.7) has the following structure

TN =

4 −1 0 · · · 0
−1 4 −1 0 · · · 0
0 −1 4 −1 0 · · · 0
...

. · · ·
...

0 · · · 0 −1 4

 ∈ RN×N , (4.8)

The right hand side vector fN is given by discretisation of

f(x, y) := 2y(1− y) + 2x(1− x), (4.9)

in the following way

fN :=
(
f(1,1), f(2,1), . . . , f(N,1), f(1,2), . . . , f(N,N)

)T
= (f(x1, y1), . . . , f(xN , y1), f(x1, y2), . . . , f(xN , yN))T . (4.10)

The vector uN is indicated on the same way, u(i,j) is the approximated solution on the point
(xi, yj).
And this linear system of equations we solve with the Gauß-Seidel-Algorithm.

4.6.2 Application

By using the Gauß-Seidel-Algorithm to solve the equation, we get the following formula to
compute u(i,j) in each iteration step.

u(i,j) =
1
4
(
h2f(i,j) + u(i−1,j) + u(i+1,j) + u(i,j−1) + u(i,j+1)

)
(4.11)

If for the index i ± 1 ∈ {0, N + 1} or j ± 1 ∈ {0, N + 1} holds, then we set the value of u
zero, because this is the boundary condition.
By applying AD on (4.11), there results

∇u(i,j) =
1
4
(
h2∇f(i,j) +∇u(i−1,j) +∇u(i+1,j) +∇u(i,j−1) +∇u(i,j+1)

)
, (4.12)

but this is the discrete solution of
−∆(∇u) = ∇f, (4.13)

with this follows, that we need boundary conditions for (4.13) and in the normal way we do
not have this, if we have dirichlet boundary conditions by (4.4).
That is the reason, why we can not apply AD on this problem.

Chapter 5

An implementation of an operator
overloading AD tool

In this chapter we present the implementation of an operator overloading AD tool, which is
implemented in Fortran. The reason why we present a Fortran tool, is, that for C or C++ there
exist many tools but not for Fortran. So it is more interesting to give an overview about a
Fortran tool, developed by myself.
In this chapter we don’t give an explanation of the principle functioning of the AD. The idea
and the basics of this are given in the Chapter 4, for details look there. Here we explain the
realization of AD in the programming language Fortran.
For details about programming language Fortran look in the Book [Aki03].

5.1 Forward mode

We start with the forward mode, because this implementation is more demonstrative and so it
is later easier to understand the implementation of the reverse mode. It is clear, that we do not
show the full source code, because this are many lines of code. Any parts of this are nearly the
same, only for different operators and functions.

5.1.1 Main parts

In the Listing 5.1 we describe the main part of the forward mode operator overloading AD tool.
Here we have only reduced some includes in the source code. But this parts are explained in
the next subsections.
The forward mode operator overloading tool is realized in a module. This is similar to a
class in C++.

75

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 76

Listing 5.1: AD forward mode module.
1 module AD
2 i m p l i c i t none
3 i n t e g e r , parameter : : ADPrec i s ion = kind (1 . d0)
4 i n t e g e r , parameter : : Dimen = 2
5 r e a l (ADPrec i s ion) , parameter : : NAN = t r a n s f e r (2 1 4 0 0 0 0 0 0 0 , 1 . 0)
6 r e a l (ADPrec i s ion) , parameter : : ADTol = 1 . E−20
7
8 type , p u b l i c : : f o r w a r d
9 p r i v a t e

10 r e a l (ADPrec i s ion) : : v a l u e
11 r e a l (ADPrec i s ion) , dimension (Dimen) : : d e r i v a t i v e
12 l o g i c a l : : i n i t
13 end type
14 !
15 ! includes files for operators and function interfaces
16 !
17 c o n t a i n s
18
19 f u n c t i o n A D f o r w a r d d e r i v a t i v e (arg , num) r e s u l t (d e r i v a t i v e)
20 type (f o r w a r d) , i n t e n t (i n o u t) : : a r g
21 i n t e g e r , i n t e n t (in) : : num
22 r e a l (ADPrec i s ion) : : d e r i v a t i v e
23 d e r i v a t i v e = a r g%d e r i v a t i v e (num)
24 end f u n c t i o n A D f o r w a r d d e r i v a t i v e
25
26 f u n c t i o n valueAD (a r g) r e s u l t (v a l u e)
27 type (f o r w a r d) , i n t e n t (in) : : a r g
28 r e a l (ADprec i s i on) : : v a l u e
29 v a l u e = a r g%v a l u e
30 end f u n c t i o n valueAD
31
32 f u n c t i o n getAD (a r g) r e s u l t (v a l u e)
33 type (f o r w a r d) , i n t e n t (in) : : a r g
34 r e a l (ADprec i s i on) : : v a l u e (Dimen +1)
35 v a l u e (1) = a r g%v a l u e
36 v a l u e (2 : Dimen +1) = a r g%d e r i v a t i v e
37 end f u n c t i o n getAD
38
39 s u b r o u t i n e i n i tAD (arg , va lue , d e r i v a t i v e , a c t i v)
40 type (f o r w a r d) , i n t e n t (i n o u t) : : a r g
41 r e a l (ADprec i s i on) , i n t e n t (in) : : v a l u e
42 r e a l (ADprec i s i on) , i n t e n t (in) : : d e r i v a t i v e (Dimen)
43 l o g i c a l , i n t e n t (in) : : a c t i v
44 a r g%v a l u e = v a l u e
45 a r g%d e r i v a t i v e = d e r i v a t i v e
46 a r g%i n i t = a c t i v
47 end s u b r o u t i n e i n i tAD
48 !
49 ! includes files for operators and function implementation
50 !
51 end module AD

In the lines 2 until 6 are the definitions of some global variables, which describe the precision,
and some tolerances for the whole tool. In the 3rd line we define the dimension of the derivative
fixed, because so we can work later without dynamic memory allocation, and it isn’t necessary
to check the dimension to runtime, this points are important for the performance.
In the lines 8 until 13 we define our new data type type(forward). It contains the value and
the derivative vector and a boolean for active. The activity variable enable, that we start the
computation of the derivative on an arbitrary point in the program.
The next three lines 14 - 16, represent the list of include directives, for the interface declara-
tions.
The command contains in line 17 start the implementation block of the module.
In the lines 19 until 24 the implementation of a function is called
AD_forward_derivative, which returns the num-th entry of the derivative vector of an
given AD-variable.
The next function valueAD, in the lines 26 until 30, returns the function value of a given
AD-variable.

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 77

The function getAD, in the lines 32 until 37, returns the function value in the first entry of a
vector with length Dimen+1. In the entries form 2 until Dimen+1 the derivatives are con-
tained.
In the lines 39 until 47, the subroutine initAD is implemented, which sets start values and
start derivatives on a given AD-variable. Setting the start values for the derivative is important,
if we have results from earlier calculations or, if the AD-variable is an independent variable,
then we set the corresponding entry on the value 1.
The three lines 48 - 50, represent the list of include directives, for the interface implemen-
tation.

5.1.2 Redefinition of a mathematical function

Here we show the redefinition of a mathematical function exemplarly on the sinus function, for
other mathematical functions it is analogical.

Listing 5.2: AD forward mode interface sinus.
1 !sin
2 i n t e r f a c e s i n
3 module p r o c e d u r e A D f o r w a r d s i n f
4 end i n t e r f a c e

The Listing 5.2 is the realization of the interface for the sinus function, with a AD-variable as
an argument. In the third line it is given, which procedure implements the sinus function.

Listing 5.3: AD forward mode implementation sinus.
1 !sin
2 f u n c t i o n A D f o r w a r d s i n f (a r g) r e s u l t (t h i s)
3 type (f o r w a r d) , i n t e n t (in) : : a r g
4 type (f o r w a r d) : : t h i s
5 t h i s%v a l u e = s i n (a r g%v a l u e)
6 t h i s%i n i t = . f a l s e .
7 t h i s%d e r i v a t i v e = 0
8 i f (a r g . i n i t) then
9 t h i s%i n i t = . t r u e .

10 t h i s%d e r i v a t i v e = a r g%d e r i v a t i v e ∗cos (a r g%v a l u e)
11 end i f
12 end f u n c t i o n A D f o r w a r d s i n f

The Listing 5.3 is the realization of the implementation of the sinus function including the
derivative.
In the line 5 the normal function value of the sinus is computed.
The lines 6 and 7 set the init of the result to false and their derivative to 0. If the init
of the argument is true, we set the init of the result on true and compute the derivative
of the result, by using the chain-rule, in the lines 9 and 10.
In a similar way, we must do this for the other mathematical functions like cos, tan.

5.1.3 Redefinition of an operator

Here we show the redefinition of an operator, exemplary on the * (multiplication) operator, for
the other operators and the different kinds of left-hand-side and right-hand-side arguments it is
analogical.
We consider two cases for the arguments, at first both arguments AD-variables, and second on
the left-hand-side an AD-variable and on the right-hand-side a real-variable.

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 78

Listing 5.4: AD forward mode interface multiplication.
1 !mul
2 i n t e r f a c e operator (∗)
3 module p r o c e d u r e A D f o r w a r d m u l f f
4 end i n t e r f a c e
5 i n t e r f a c e operator (∗)
6 module p r o c e d u r e A D f o r w a r d m u l r f
7 end i n t e r f a c e
8 !...

The Listing 5.4 shows the implementation of the interface declarations for the pure AD-variable
case in line 2 until 4 and then real-variable and AD-variable case in the line 5 until 7.

Listing 5.5: AD forward mode implementation multiplication.
1 !mul
2 f u n c t i o n A D f o r w a r d m u l f f (l h s , r h s) r e s u l t (t h i s)
3 type (f o r w a r d) , i n t e n t (in) : : l h s , r h s
4 type (f o r w a r d) : : t h i s
5 t h i s%v a l u e = l h s%v a l u e ∗ r h s%v a l u e
6 t h i s%d e r i v a t i v e = 0 .
7 t h i s%i n i t = . f a l s e .
8 i f (l h s%i n i t . o r . r h s%i n i t) then
9 t h i s%i n i t = . t r u e .

10 t h i s%d e r i v a t i v e = l h s%d e r i v a t i v e ∗ r h s%v a l u e + &
11 r h s%d e r i v a t i v e ∗ l h s%v a l u e
12 end i f
13 end f u n c t i o n A D f o r w a r d m u l f f
14
15 f u n c t i o n A D f o r w a r d m u l f r (l h s , r h s) r e s u l t (t h i s)
16 type (f o r w a r d) , i n t e n t (in) : : l h s
17 r e a l (ADPrec i s ion) , i n t e n t (in) : : r h s
18 type (f o r w a r d) : : t h i s
19 t h i s%v a l u e = l h s%v a l u e ∗ r h s
20 t h i s%d e r i v a t i v e = 0 .
21 t h i s%i n i t = . f a l s e .
22 i f (l h s%i n i t) then
23 t h i s%i n i t = . t r u e .
24 t h i s%d e r i v a t i v e = l h s%d e r i v a t i v e ∗ r h s
25 end i f
26 end f u n c t i o n A D f o r w a r d m u l f r
27 !...

In the Listing 5.5 we show the implementation of the both overloading variables, between the
lines 2 until 13 for the pure AD-variable case, and in the lines 15 until 26 for the real-variable
and AD-variable case.
The first block of both functions is very similar and analogical to the implementation of the
overloading sinus which is given in the Listing 5.3. The main difference is the computation of
the derivative, in first case it is the product-rule, and in the second case it is only a smultiplica-
tion of the derivative by a factor.

Remark 5.1.1
Now it is easy to see, that the implementation of an operator overloading tool for the forward
mode is not so complicated. The main work is desk work.

5.2 Reverse mode

Now we start with the reverse mode, this is not so straight-forward like the forward mode. We
start with main part of the reverse mode module.
As in the forward mode we do not show the full code, but only the structure and some exem-
plary parts.

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 79

5.2.1 Main parts

The reverse mode needs more internal structure for the evaluation of the function value and the
derivative. So we have devided the module in more parts, in order to explain the program in a
coherent way.
The main parts are diveded in six subparts.

Module

In this section we explain the Listing 5.6, which contains the structure and type declarations
for the operator overloading reverse mode module.
The lines 2 until 14 are a cutting of the full list with operator-code’s definitions. For each
mathematical elementary function (in terms of the Chapter 4) we need an unique identification
number for the computation of the derivative.
In the lines 15 until 18, we define some other constants for the module.
At next we define the new type Element, in the lines 20 until 31. An Element in the reverse
mode is an entry in a list, and this list is called trace. To compute the derivative with the reverse
mode the following informations are needed: the left and right hand side argument, if these do
not exist this pointers are NULL, these variables are defined in the lines 23 and 24. We need
also the value, the derivative, information about the dimension and the operator code. These
variables are defined in the lines 27 until 30. The other variables are necessary for the structure
of this tool. In particular, the before variable is necessary for evaluating the trace, and the
variables trace and tmp are needed for a correct deleting of the trace.
In the lines 33 until 36 we define the new type reverse, this type is necessary, because of the
reverse mode we need a list of all temporary results, so we have not to copy the variables we
can only change the pointer destination.
Next, both variables, defined in line 38 and 39, are help variables for the list.
Then three lines follow, which represent the including of the interfaces. And the commands
after the contains represent the main subroutines of this module, which we explain in the
next sections.

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 80

Listing 5.6: AD reverse mode module.
1 module reverseAD
2 i n t e g e r , parameter : : Ass i = 0
3 i n t e g e r , parameter : : Ind = 1
4 i n t e g e r , parameter : : Cons t = 2
5 i n t e g e r , parameter : : Add = 3
6 i n t e g e r , parameter : : Sub = 4
7 i n t e g e r , parameter : : Mul = 5
8 i n t e g e r , parameter : : Div = 6
9 i n t e g e r , parameter : : Pow = 7

10 i n t e g e r , parameter : : ADSin = 8
11 i n t e g e r , parameter : : ADCos = 9
12 i n t e g e r , parameter : : ADTan = 10
13 i n t e g e r , parameter : : ADExp = 11
14 !...
15 i n t e g e r , parameter : : TraceNumber = 1
16 i n t e g e r , parameter : : TraceDimens ion = 1
17 rea l , parameter : : nan = 1
18 rea l , parameter : : ADTol = 0 . 1
19
20 type : : Element
21 p r i v a t e
22 type (Element) , p o i n t e r : : b e f o r e => n u l l ()
23 type (Element) , p o i n t e r : : l h s => n u l l ()
24 type (Element) , p o i n t e r : : r h s => n u l l ()
25 l o g i c a l , dimension (TraceDimens ion) : : t r a c e = . f a l s e .
26 i n t e g e r : : tmp = 0
27 r e a l : : v a l u e = 0
28 r e a l : : d e r i v a t i v e = 0
29 i n t e g e r : : d e r i v a t i v e D i m = −1
30 i n t e g e r : : o p e r a t o r C o d e = −1
31 end type
32
33 type : : Reve r se
34 p r i v a t e
35 type (Element) , p o i n t e r : : s t o r a g e => n u l l ()
36 end type
37
38 type (Element) , p o i n t e r : : l a s t => n u l l ()
39 type (Element) , t a r g e t : : constDummy
40 !
41 ! includes files for operators and function interfaces
42 !
43 c o n t a i n s
44 !
45 !newIndependent
46 !
47 !newReverse
48 !
49 !reverseSweep
50 !
51 !deleteCheck
52 !
53 !deleteTrace
54 !
55 ! includes files for operators and function implementation
56 !
57 end module reverseAD

New independent

In the Listing 5.7 the subroutine is shown, which is necessary to create a new independent (in
the sense of Chapter 4) variable.
In the first line we have the header of the subroutine and the delivery variables, this are the
reverse type, function value, trace and the derivative dimension.
In the lines 8 until 11 we allocate the Element of the argument, and check if the allocation is
successful.
Then we link the pointer this on this Element.
Then we set the private variables of this Element on the input parameters, the operator code

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 81

to Ind for an independent variable, and hang the Element in the trace list.

Listing 5.7: AD reverse mode new independent.
1 s u b r o u t i n e newIndependen t (arg , va lue , t r a c e , d e r i v a t i v e D i m)
2 type (Reve r se) , t a r g e t , i n t e n t (i n o u t) : : a r g
3 rea l , i n t e n t (in) : : v a l u e
4 l o g i c a l , dimension (TraceNumber) , i n t e n t (in) : : t r a c e
5 i n t e g e r , i n t e n t (in) : : d e r i v a t i v e D i m
6 i n t e g e r : : err
7 type (Element) , p o i n t e r : : t h i s
8 a l l o c a t e (a r g%s t o r a g e , s t a t = err)
9 i f (err / = 0) then

10 s top
11 end i f
12 t h i s => a r g%s t o r a g e
13 t h i s%v a l u e = v a l u e
14 t h i s%t r a c e = t r a c e
15 t h i s%tmp = 1
16 t h i s%d e r i v a t i v e D i m = d e r i v a t i v e D i m
17 t h i s%o p e r a t o r C o d e = Ind
18 t h i s%b e f o r e => l a s t
19 l a s t => t h i s
20 end s u b r o u t i n e newIndependen t

New reverse

The Listing 5.8 shows the creation of a new reverse element, which is not an independent vari-
able.

Listing 5.8: AD reverse mode new reverse.
1 s u b r o u t i n e newReverse (a r g)
2 type (Reve r se) , t a r g e t , i n t e n t (i n o u t) : : a r g
3 i n t e g e r : : err
4 type (Element) , p o i n t e r : : t h i s
5 a l l o c a t e (a r g%s t o r a g e , s t a t = err)
6 i f (err / = 0) then
7 s top
8 end i f
9 t h i s => a r g%s t o r a g e

10 t h i s%b e f o r e => l a s t
11 l a s t => t h i s
12 end s u b r o u t i n e newReverse

At first the subroutine allocates the Element. And then this element is hanged in the list of
the trace.

Reverse sweep

The reverse sweep is the most important function by the reverse mode, because this routine
evaluates the derivative.
The source of this subroutine is very long. This is the reason, why we only show the structure.
And we show the full implementation on some exemplary points. Elisions are marked with
"!...", the calculus rules are given in the Table 4.2.

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 82

Listing 5.9: AD reverse mode reverse sweep.
1 f u n c t i o n r e v e r s e S w e e p (arg , t r a c e) r e s u l t (t r a c e V e c t o r)
2 type (Reve r se) , i n t e n t (in) : : a r g
3 i n t e g e r , i n t e n t (in) : : t r a c e
4 type (Element) , p o i n t e r : : t h i s , l h s , r h s
5 rea l , dimension (TraceDimens ion) : : t r a c e V e c t o r
6 l o g i c a l : : f l a g
7 t h i s => a r g%s t o r a g e
8 f l a g = . f a l s e .
9 i f (a s s o c i a t e d (t h i s)) then

10 t h i s%d e r i v a t i v e = 1
11 do whi le (a s s o c i a t e d (t h i s))
12 i f (t h i s%t r a c e (t r a c e) . eqv . . t r u e .) then
13 t h i s%t r a c e (t r a c e) = f l a g
14 l h s => t h i s%l h s
15 r h s => t h i s%r h s
16 s e l e c t case (t h i s%o p e r a t o r C o d e)
17 case (Ass i) ; l h s%d e r i v a t i v e = t h i s%d e r i v a t i v e
18 case (Ind) !none
19 case (Cons t) !none
20 case (Add) !...
21 case (Sub) !...
22 case (Mul)
23 l h s%d e r i v a t i v e = l h s%d e r i v a t i v e + t h i s%d e r i v a t i v e &
24 ∗ r h s%v a l u e
25 r h s%d e r i v a t i v e = r h s%d e r i v a t i v e + t h i s%d e r i v a t i v e &
26 ∗ l h s%v a l u e
27 case (Div) !...
28 case (Pow) !...
29 case (ADSin)
30 l h s%d e r i v a t i v e = l h s%d e r i v a t i v e + &
31 t h i s%d e r i v a t i v e ∗ cos (l h s%v a l u e)
32 case (ADCos) !...
33 case (ADTan) !...
34 case (ADExp) !...
35 case (ADLog) !...
36 case (ADLog10) !...
37 case (ADAsin) !...
38 case (ADAcos) !...
39 case (ADAtan) !...
40 case (ADAtan2) !...
41 case (ADSinh) !...
42 case (ADCosh) !...
43 case (ADTanh) !...
44 case (ADAbs) !...
45 case (ADSqrt) !...
46 case (ADCeil) !...
47 case (ADFloor) !...
48 case (ADMod) !...
49 case (ADModulo) !...
50 case (ADAint) !...
51 case (ADNint) !...
52 end s e l e c t
53 e l s e
54 end i f
55 t h i s => t h i s%b e f o r e
56 end do
57 end i f
58 t h i s => a r g%s t o r a g e
59 i f (a s s o c i a t e d (t h i s)) then
60 do whi le (a s s o c i a t e d (t h i s))
61 i f ((t h i s%o p e r a t o r C o d e == Ind)) then
62 t r a c e V e c t o r (t h i s%d e r i v a t i v e D i m) = t h i s%d e r i v a t i v e
63 end i f
64 t h i s%d e r i v a t i v e = 0
65 t h i s => t h i s%b e f o r e
66 end do
67 end i f
68 end f u n c t i o n r e v e r s e S w e e p

The input arguments of the reverseSweep are the arguments, whose derivative is in interest.
And furthermore we get the trace of this derivative.
We pass the trace by beginning at the storage point of the argument in the trace, with a loop.
In this loop we decide for each entry with the operator code and the trace variable, in which
case we consider this entry. If the trace variable is not true we ignore this entry and goto the

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 83

next one. Otherwise we decide dependent on the operator code, how we compute the derivative
for the left and the right-hand argument. For the * operator (multiplication) and for the sinus
function it is shown, in the Listing 5.9, in the lines 22 until 26 and 29 until 31.
After the case command we link the actual trace entry to his precursor, and, if this one is NULL,
the loop stops.
Then we pass the trace a second times, and look, if the operator code is Ind, an independent
variable, we copy the value in the result vector on the entry of the derivation dimension of the
independent variable.

Delete check

The function deleteCheck in the Listing 5.10 is necessary for the memory efficiency. But
we must be careful because of the deception, which variable is deleteable and which we need
in a later point to claim a clear structuring of the data.
This function only decides above candidates, which are given from the function deleteTrace,
which is presented in the Listing 5.11. We explain this function in the next section.

Listing 5.10: AD reverse mode delete check.
1 f u n c t i o n d e l e t e C h e c k (t r a c e , d e l e t e a b l e) r e s u l t (t h i s)
2 l o g i c a l , dimension (TraceNumber) , i n t e n t (in) : : t r a c e
3 i n t e g e r , i n t e n t (in) : : d e l e t e a b l e
4 l o g i c a l : : t h i s
5 i n t e g e r : : i
6 i f (d e l e t e a b l e / = 0) then
7 t h i s = . f a l s e .
8 re turn
9 end i f

10 do i =1 , TraceNumber
11 i f (t r a c e (i) . eqv . . t r u e .) then
12 t h i s = . f a l s e .
13 re turn
14 end i f
15 end do
16 t h i s = . t r u e .
17 end f u n c t i o n d e l e t e C h e c k

This function gets two arguments, the deleteable variable and the trace variable, a vector of
logicals. The result is a logical variable which says delete or not.
At first, we check, wheather this variable is deleteable, that means, if it is an temporary variable,
or not.
Then we check in a loop over the trace dimension, wheather the variable is needed by another
trace for evaluating their derivative.

Delete trace

The problem of this subroutine is, we must check each entry in the trace list, wheather it is
deleteable, this is done by the function deleteCheck, in the Listing 5.10.
We pass the trace into several steps: the first step is to delete each deleteable element until we
find the first not deleteable element. This is then the new last element of the trace. On this
point we skip this loop and restart with the new last element. The second loop deletes also each
deleteable element.
The real deleting step follows in three steps, firstly to mark the element with a pointer, secondly
to hang it out of the list, the last is to deallocate the element.
Now we have explained the structure of the reverse mode operator overloading tool, but this

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 84

structure is in the basic method similar to the evaluation part of a source transformation tool,
also, if it is possible, that we get sometimes a direct formula, by using a smart algorithm. At
next, we start to explain the overloading for an operator and a mathematical function.

Listing 5.11: AD reverse mode delete trace.
1 s u b r o u t i n e d e l e t e T r a c e ()
2 type (Element) , p o i n t e r : : t h i s , d e l e t e , o l d
3 l o g i c a l , dimension (TraceNumber) : : t r a c e = . f a l s e .
4 t h i s => l a s t
5 o l d => l a s t
6 do whi le (a s s o c i a t e d (t h i s))
7 i f (d e l e t e C h e c k (t h i s%t r a c e , t h i s%tmp)) then
8 d e l e t e => t h i s
9 o l d => t h i s%b e f o r e

10 l a s t => t h i s%b e f o r e
11 t h i s => t h i s%b e f o r e
12 d e a l l o c a t e (d e l e t e)
13 e l s e
14 t h i s => t h i s%b e f o r e
15 e x i t
16 end i f
17 end do
18 do whi le (a s s o c i a t e d (t h i s))
19 i f (d e l e t e C h e c k (t h i s%t r a c e , t h i s%tmp)) then
20 d e l e t e => t h i s
21 o l d%b e f o r e => t h i s%b e f o r e
22 d e a l l o c a t e (d e l e t e)
23 e l s e
24 o l d => t h i s
25 end i f
26 t h i s => t h i s%b e f o r e
27 end do
28 end s u b r o u t i n e d e l e t e T r a c e

5.2.2 Redefinition of a mathematical function

Here we explain the redefinition of the sinus function. We start with definition of the interface
for the sinus function and then we come to the implementation.

Listing 5.12: AD reverse mode interface sinus.
1 !sin
2 i n t e r f a c e s i n
3 module p r o c e d u r e A D r e v e r s e s i n r
4 end i n t e r f a c e

In the Listing 5.12 the definition of the interface for the sinus function is given. This interface
definition is straight forward defined. We are more interested in the implementation, which we
consider in the following.

Listing 5.13: AD reverse mode implementation sinus.
1 !sin
2 f u n c t i o n A D r e v e r s e s i n r (a r g) r e s u l t (t h i s)
3 type (Reve r se) , i n t e n t (in) : : a r g
4 type (Reve r se) : : t h i s
5 type (Element) , p o i n t e r : : t t h i s , t a r g
6 c a l l newReverse (t h i s)
7 t t h i s => t h i s%s t o r a g e
8 t a r g => a r g%s t o r a g e
9 t t h i s%v a l u e = s i n (t a r g%v a l u e)

10 t t h i s%l h s => t a r g
11 t t h i s%t r a c e = t a r g%t r a c e
12 t t h i s%o p e r a t o r C o d e = ADSin
13 end f u n c t i o n A D r e v e r s e s i n r

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 85

The function, which is shown in the Listing 5.13, gets a reverse element as an argument and
returns also a reverse element.
We start with the creation of the return object, in line 6.
Then we link the element in the trace of the argument and the return object. This is done in the
lines 7 and 8.
In the following we evaluate the value, set the trace, the left hand side argument and the operator
code.

5.2.3 Redefine of an operator

The last description of the reverse mode operator overloading tool is the redefinition of the *
(multiplication) operator. Similarly to the other redefinitions, we start with the interfaces and
then we consider the implementations.

Listing 5.14: AD reverse mode interface multiplication.
1 !mul
2 i n t e r f a c e operator (∗)
3 module p r o c e d u r e A D r e v e r s e m u l r r
4 end i n t e r f a c e
5 i n t e r f a c e operator (∗)
6 module p r o c e d u r e A D r e v e r s e m u l r r e a l
7 end i n t e r f a c e
8 !...

The Listing 5.14 shows only the interface definition for the multiplication for the two cases left
and right hand side are reverse elements and left hand side is areverse element and right hand
side is a real variable.

Listing 5.15: AD reverse mode implementation multiplication.
1 !mul
2 f u n c t i o n A D r e v e r s e m u l r r (l h s , r h s) r e s u l t (t h i s)
3 type (Reve r se) , i n t e n t (in) : : l h s
4 type (Reve r se) , i n t e n t (in) : : r h s
5 type (Reve r se) : : t h i s
6 type (Element) , p o i n t e r : : t t h i s , t l h s , t r h s
7 c a l l newReverse (t h i s)
8 t t h i s => t h i s%s t o r a g e
9 t l h s => l h s%s t o r a g e

10 t r h s => r h s%s t o r a g e
11 t t h i s%v a l u e = t l h s%v a l u e ∗ t r h s%v a l u e
12 t t h i s%l h s => t l h s
13 t t h i s%r h s => t r h s
14 t t h i s%t r a c e = t l h s%t r a c e . and . t r h s%t r a c e
15 t t h i s%o p e r a t o r C o d e = Mul
16 end f u n c t i o n A D r e v e r s e m u l r r
17
18 f u n c t i o n A D r e v e r s e m u l r r e a l (l h s , r h s) r e s u l t (t h i s)
19 type (Reve r se) , i n t e n t (in) : : l h s
20 rea l , i n t e n t (in) : : r h s
21 type (Reve r se) : : t h i s , r h s 2
22 type (Element) , p o i n t e r : : t t h i s , t l h s , t r h s
23 c a l l newReverse (r h s 2)
24 c a l l newReverse (t h i s)
25 t r h s => r h s 2%s t o r a g e
26 t r h s%v a l u e = r h s
27 t r h s%o p e r a t o r C o d e = Cons t
28 t t h i s => t h i s%s t o r a g e
29 t l h s => l h s%s t o r a g e
30 t t h i s%v a l u e = t l h s%v a l u e ∗ r h s
31 t t h i s%l h s => t l h s
32 t t h i s%r h s => t r h s
33 t t h i s%t r a c e = t l h s%t r a c e
34 t t h i s%o p e r a t o r C o d e = Mul
35 end f u n c t i o n A D r e v e r s e m u l r r e a l

CHAPTER 5. AN IMPLEMENTATION OF AN OPERATOR OVERLOADING AD TOOL 86

The realization of the operator overloading is demonstrated with two functions, for the both
kinds of the different arguments. But the proceeding is very similar.
In both cases we create a return object, see lines 7 and 24.
In the first case, we set the left and right hand arguments, the trace and the operator code, and
evaluate the value of the multiplication.
In the second case we do this also, but we must create an object for the real variable to storage
the value of this variable before, we set the operator code of this variable on Const for a
constant variable.

Remark 5.2.1
By the overloading of the assumption operator we must be careful, because we must change
sometimes a variable from a temporary variable to a not temporary variable, or in the other
direction.

Remark 5.2.2
It is clear, that not each part of an operator overloading tool is detailed explained. But we have
considered the most important point of the implementation.
It is also clear, that this both implementations of operator overloading tools are not the best
possible implementations, in point of efficiency and simplicity. It is considered as a proof of
concept, for this in the programming language Fortran 90/95 and as an experimental version.

Chapter 6

Application of AD on flow simulation

In this chapter we present the applications of AD in fluid dynamics.

6.1 2D Example Caffa

The program Caffa is a program from Freziger and Perić, which solves the Navier-Stokes
equations with a finite volume method and is written in Fortran. The name Caffa stands for
Computer Aided Fluid Flow Analysis.

6.1.1 Program structure

Now we explain the structure of the program Caffa, which we use in the following for the
application of AD.
We show a very simplified algorithm of Caffa.

Algorithm 6.1.1 (Caffa)
read input
initialisation
do i=1,numberGrid //grid loop

extrapolate from the coarse to the fine grid
do t=0,maxT //time loop

set boundary conditions
move grid
do j=1,maxIt //outer iterations loop

compute momentum components
compute pressure correction
compute transport equation

end
save results

end
end

87

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 88

6.1.2 Variable inflow

Here we present a simple problem, to test the justification of the application of AD in the fluid
dynamics. For this test we use the program Caffa in a modified version. That means, that we
have excluded all parts of the program, which we have not required. Especially in this case we
exclude the part of the moving grid.
Now we explain the configuration of the problem, in the Figure 6.1 the geometry is shown.
Here we consider a Naca0015 profile in a channel with non-slip boundary conditions on the

Inflow
Outflow
Wall

Figure 6.1: Geometry of the example

boundary of the channel and on the profile. On the left side we have inflow boundary conditions
and the right side is sedated with outflow conditions.
The Figure 6.2 visualizes the inflow profile dependent on the inflow parameter.

The inflow profile is given by the following formula:

u(x, y, c) := −c ∗
(

0.68− |y|
0.68

)2

· x,

where x, y are the coordinates of the grid, x ∈ [−7,−1] and y ∈ [−0.68, 0.68], the variable c is
the inflow parameter. The inflow parameter c is the parameter, respect to which we differentiate
the output parameter. The output parameters are the force in the x direction and the force in
the y direction on the airfoil.

The Figure 6.3 shows the developing of the forces in x direction acting on the plane over
the full simulation time. After about 440 seconds we can monitor a huge oscillating in the
derivatives, the reason for this is, we get a noise in the force values on the basis of summation
of rounding errors over the time, and this strengthen each other in the derivative.
The Figure 6.4 represents the extract of the Figure 6.3, in which the noise is not significant.
The Figure 6.5 evinces the force and their derivation dependent on the inflow parameter c, in

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 89

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.98 1
 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

-0.8
-0.6

-0.4
-0.2

 0
 0.2

 0.4
 0.6

 0.8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Velocity

Inflow velocity in X-direction

Velocity in X-direction

Inflow parameterPossition in Y

Velocity

Figure 6.2: Inflow profile

Figure 6.3: Force and derivative on the foil in x direction over the time

the same time interval, which is demonstrated in Figure 6.4.
The Figure 6.6 shows the validation of the derivatives, which are computed with AD, with

finite differences.
For the forces and their derivatives in y direction we have the same results, like the forces and
their derivatives in x direction.
The conclusion of this example is, it is possible to apply AD to the simulation of fluid dynamics.
The Figure 6.6 shows, that the values of the derivative, computed by AD, are in the same order
of magnitude like the computed finite differences. A disadvantage is, that the computation of
the derivative is very sensitive respecting to numerical noise in the values.

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 90

Figure 6.4: Force and derivative on the foil in x direction over the time

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

Fo
rc

e
an

d
fo

rc
e

de
riv

at
iv

e

inflow parameter

Force and force derivative respect to the inflow parameter in X-direction

force x
derivative force x

Figure 6.5: Force and derivative on the foil in x direction respect to the inflow parameter

 0.0074

 0.0076

 0.0078

 0.008

 0.0082

 0.0084

 0.0086

 0.0088

 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

de
riv

at
iv

e
an

d
fin

ite
 d

iff
er

en
ce

inflow parameter

Derivative and finite difference respect to the inflow parameter of the force in X-direction

derivative force x
finite difference force x

Figure 6.6: Derivative and FD on the foil in x direction respect to the inflow parameter

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 91

6.1.3 Angle of attack

In this subsection, we consider the angle of attack of an Eppler 420 profile. The geometry and
the boundary conditions are same as in the section before but the profil has changed.
The Figure 6.7 illustrate the angle of attack. We have a look for two topics here. At first we

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0
'-'

'-' u (-cos($1+1)+1):(sin($1+1))
'eppler420.txt' u ($1*cos(alpha)-$2*sin(alpha)+0.04):($1*sin(alpha)+$2*cos(alpha)+0.275)

α

Figure 6.7: Angle of attack

compute the value, first and second derivatives of the forces in y direction, then we verify the
derivatives by comparison with the finite differences. We evaluate the force and their first and
second derivative for a angle of attacks between 0 and -0.69 radian, in -0.01 steps, this is equiv-
alent to an angle of 0 until about -39.5 degree in -0.57 degree steps.
At next we maximize the force in y direction with the Newton-Algorithm. From the engineer
science in fluid dynamics it is known, that, for a given velocity and a given profile, the forces
in y direction respect to the angle of attack have only one maximum.
So we search the zero-point of the first derivative with the Newton-Algorithm.

Verification of first and second derivatives

Here we represent the values of the forces in y direction and their first and second derivatives,
in dependence of the angle of attack.
The Figure 6.8 shows us the forces on the airfoil in y direction with respect to the angle of

attack α, we see, that the developing of the values are relative smooth.
The first picture of the Figure 6.9 shows us the comparison of the first derivative of the forces

in y direction with respect to the angle of attack. The conclusion of this picture is, that the
range of the derivatives, computed with AD, and of the finite differences is the same, but we
see also, that the finite differences have some outlier and the AD has an smoothing effect.
The second picture presents the comparison of the 2nd finite differences, finite differences of
the first derivative, computed with AD, and the 2nd derivative, computed with AD. The infor-
mations are clear: we see as in the first picture the smoothing effect of AD. And we see, that
the values tend to result in the same range, but the 2nd finite differences have begun to oscillate
and the finite differences of the first derivative have some outlier.
This graphics show demonstratively, why it is for some application necessary to use deriva-
tives, computed with AD, instead of finite differences.
Now we explain the structure of the program for the optimization.

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 92

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

angle of attack

forces y

Figure 6.8: Curve of the forces in y direction on the airfoil.

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

angle of attack

finite differences forces y
derivative forces y

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

angle of attack

2. finite differences forces y
finite differences of derivative forces y

2. derivative forces y

Figure 6.9: Comparison of finite differences and derivatives.

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 93

Maximization of the forces in y direction

Now we give the algorithm for this especial optimization (maximization) problem.

Algorithm 6.1.2 (Angle of attack maximization)
1. choose start angle of attack α
2. choose abort parameter tol
3. do until (f ′y < tol)

3.1 create the grid
3.2 compute forces in y direction (caffa 2 derivative version)
3.3 compute new angle of attack

end

Here we give some remarks to the program.

Remark 6.1.3

(i) By the Newton-Algorithm, we have constrained the maximal change of the angle of attack
in each step, on 0.1 radian. The reason for this limitation is, to avoid a grid, which is too
much deformed, so that the program diverges.

(ii) The start point for the Newton algorithm is chosen -0.03 radian. This we have done,
because the second derivative is for 0 very small but positive and the first derivative is
negative. A reason for this is, it is possible, that the second derivative is not hundred
percently converges. And the Newton-Algorithm converged only locally.

In the Table 6.1 we have presented the values of the angle of attack, the forces in y direction
and their first and second derivative. To show the convergent of the Newton-algorithm.
The Figure 6.10 shows the force points on the developing of the force respect to the iterations.

The conclusion of this numerical experiment is, that the application of AD for numerical opti-
mization in flow simulation is possible and works well.

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 94

Iteration angle of attack α Force fy 1. derivative f ′y 2. derivative f ′′y
0. -0.03000000 0.001811820383 -0.0132745781000000000 -0.007028305677
1. -0.13000000 0.003151422923 -0.0111443324400000000 -0.03487816619
2. -0.23000000 0.004119586926 -0.0060333775440000000 -0.05273238525
3. -0.33000000 0.004451043681 0.0004825580166000000 -0.05614455376
4. -0.32140508 0.004453181174 -0.0000011305598590000 -0.05640617265
5. -0.32142512 0.004453217306 0.0000000844061688300 -0.05640560206
6. -0.32142362 0.004453240372 0.0000000755028276400 -0.05640569324
7. -0.32142229 0.004453258784 0.0000000471279242200 -0.05640570905
8. -0.32142145 0.004453271488 0.0000000375825516900 -0.05640571972
9. -0.32142078 0.004453278911 0.0000000361535010000 -0.05640576372

10. -0.32142014 0.004453288589 0.0000000065792592790 -0.05640570186
11. -0.32142003 0.004453291663 0.0000000237156276200 -0.05640573354
12. -0.32141961 0.004453297321 0.0000000014507328120 -0.05640568955
13. -0.32141958 0.004453299546 0.0000000101950427000 -0.05640569150
14. -0.32141940 0.004453303001 -0.0000000010719954670 -0.05640565649
15. -0.32141942 0.004453304748 0.0000000029741928190 -0.05640564385
16. -0.32141937 0.004453304989 0.0000000070559291260 -0.05640565943
17. -0.32141924 0.004453303753 0.0000000118916028200 -0.05640570519
18. -0.32141903 0.004453305336 -0.0000000029493869330 -0.05640568673
19. -0.32141908 0.004453306561 -0.0000000023858489500 -0.05640566599
20. -0.32141912 0.004453307574 -0.0000000023514392310 -0.05640564774
21. -0.32141917 0.004453304047 0.0000000183921768400 -0.05640572960
22. -0.32141884 0.004453307763 -0.0000000160892771500 -0.05640565956

Table 6.1: History of the force and their derivatives in y direction respect to the iterations

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

forces y

Figure 6.10: History of the force in y direction respect to the iterations

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 95

6.2 3D Example Comet

Here we consider the simulation of the Navier-Stokes equations in 3D with the commercial
software Comet.
The program Comet is a program from CD-Adapco, which solves the Navier-Stokes equations,
by a finite volume method and is written in Fortran, C and C++.
At first, we explain the structure of the program. Here we do not give any details but the basic
structure, then we show the application of AD on Comet.

6.2.1 Program structure

It is clear, that we can not give all details about the program, because it is a commercial code.
But we explain the structure to use the program as an user, and show the point for the prepara-
tion of AD on the code. And then we explain the validation of the results.

• Description of a problem to solve it with Comet.
In principle there exists more than one method to describe a problem to simulate it
with Comet, but here we consider only the simplest method, with the shell program
Cometpp. We can decompose this point in three sub-points:

– Geometry description:
The description of the simulation geometry is possible in many ways: with mesh
creators, CAD programs and command line program Cometpp.

– Problem description:
Here we define different regions to set the boundary conditions, material properties,
maximal number of iterations, convergence criterial and number and size of the
time steps, if we have a non static problem. All this things we do with commands
in Cometpp, it is also possible to do this with a graphic user interface.

– Usercoding:
It is possible to expand the program with usercoding. This usercoding uses defined
interfaces of the program

• Link the executable program:
After finishing the preprocess we must link the executable program for this problem. The
linking and compilation of the usercoding is done with the script lcomet. The script
lcomet needs the following informations: name of the executable program, precision
(i.e. single or double precision), does usercoding exist or not, and information about
serial or parallel computing is desired.

• Execute the program:
Start the compiled program and input the name of the problem.

• Visualization of the results:
The results are visualizable with the program Cometpp or by explicitly saving in files
with another program for example gnuplot.

Now we explain the ansatz of the AD on comet. The first step is to prepare the usercodes and
the interfaces. This means, that we have to define the quantity, which should be differentiated
and we have to prepare the interfaces in such a way, that the independent variable is on all
important points in the program available. We explain this by the following example:

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 96

Example 6.2.1
Now we prefer to get the derivatives of the forces on an airfoil with respect to the inflow
velocity.
The computation of the forces over the airfoil is possible in the usercoding file post.f, with
a loop over the boundary elements of the airfoil. The initialization of the inflow velocity is
possible in two ways:

• In the problem definition with the script language of Cometpp, but here the problem
for each configuration is, we must use the preprocess and we do not get the information
about the inflow changing in the program, i.e. we can not differentiate the program in a
easy way.

• Set the inflow velocity in the usercoding, this is possible in the file userbc.f. Now we
must ensure, that the factor which has influence on the inflow velocity is available from
the main program until in this subroutine because the availability is necessary for the
AD-tool.

At next we can use the AD-tool, e.g. tapenade on the source code. If we want, that this
tool does not differentiate or consider all subroutines, we must out-command the calls for this
subroutines. After this we must cancel the out-command, and align the output.

6.2.2 Moving grid

Here we explain an example with a moving grid, i.e. we consider the forces on the airfoil with
respect to the angle of attack. In the Figure 6.12 the domain is shown. The domain has two

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

alpha

derivative of the y-forces
finite differences of the y-forces

Figure 6.11: Derivatives and finite differenes of the Example 6.2.2

parts the fixed part is shown in the picture b.) and the moved part shown in the picture a.).
The picture c.) shows the topview of the domain in the pictures d.) and e.) we see a 3D view
of the domain.
The picture 6.12 f.) shows the boundaries of the domain: we have inflow boundary conditions
on the left side, outflow boundary conditions on the right side, and we have slip boundary
conditions on the top and the bottom and we have non slip boundary conditions in the middle
on the airfoil. One problem is, that it is non trivial to get the derivatives of the grid depending

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 97

a.) Moving part b.) Fixed part

c.) topview of the domain d.) 3D view of the domain

e.) 3D view of the domain f.) Boundaries of the domain

Figure 6.12: Domain for the comet example 6.2.2

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 98

on the angle of attack.
That is the reason why we have initialized the values of the grid’s derivative with respect to
the angle of attack with finite differences. That is the reason why we have got the strong
oscillations on the derivatives of the forces on the airfoil. This is shown in the Figure 6.11.
The conclusion of this example is, that very probably it is possible to apply the AD on the
simulation of the 3D case of the Navier-Stokes equations with a moved grid.
At next we show an 3D example, with which it has worked well.

6.2.3 Variable inflow

In this example we choose another approach to avoid the problems of the moving grid example.
Here we explain an example with a variable inflow, i.e. we consider the forces on an airfoil for
different inflow velocities, different with respect to the amount of the velocity and the direction
of the velocity.
At first we explain the geometry of this example and then we present and explain the results of
this example.
In the Figure 6.13 the geometry of this example is shown. We consider an Eppler 420 profile

a.) topview of the domain b.) 3D view of the domain

c.) 3D view of the domain d.) 3D view of the domain

Figure 6.13: Domain for the comet example 6.2.3

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 99

and as the fluid we consider the air. The boundary conditions are nonslip boundary condition
on the airfoil (yellow), we cut the circle into two regions. On the left side there are inflow
conditions (red) and on the right side there are outflow conditions (green) and the plane faces
are symmetry boundary conditions (blue).
Now we explain the both cases.

Variable velocity amount

Here we consider an inflow, the directions uy and uz are zero and the velocity in x direction
ux is the variable inflow. In our explicit case ux ∈ [0.1, 0.2] and is given by the function
ux(α) = 0.1 + α and α ∈ [0, 0.1].
Our considered quantity is the forces over the airfoil in x and y direction. For this quantity we
consider the derivative respect to α.
We have chosen a stepsize of 0.0001 for α.
The Figure 6.14 shows the process of the forces on the airfoil respect to α, and the associated
derivatives and finite differences. Now we explain the results, which are shown detailed in the
Figure 6.14. In 6.14 a) we see the process of the derivative of the forces in x direction respect
to α, and 6.14 b) shows the same for the forces in y direction. We see, that the derivatives,
computed with AD, have the same range as the finite differences. For the most values of α
the derivative values, computed with AD, are covered of the FD values. And we see a small
dispersion of the FD values. Only for values of α between about 0.005 and 0.025, we see a
stronger deviation.
In 6.14 c) the derivatives of the forces in x and y direction are shown respect to α. In 6.14 d)
the finite differences of the forces in x and y direction are shown respect to α.
In 6.14 e) the forces in x and y direction are shown respect to α.

Remark 6.2.2
This simple example has shown, that the application of AD on a simulation of the 3D Navier-
Stokes equations is possible and the results make sense.

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 100

-4-3-2-1 0 1 2 3 4 5 6

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

-6-4-2 0 2 4 6 8 10 12

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

 0 1 2 3 4 5 6 7 8

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

a.
)

D
er

iv
at

iv
e

an
d

fin
ite

di
ff

er
en

ce
s

in
x

di
re

ct
io

n
b.

)
D

er
iv

at
iv

e
an

d
fin

ite
di

ff
er

en
ce

s
in

y
di

re
ct

io
n

c.
)

D
er

iv
at

iv
es

-6-4-2 0 2 4 6 8 10 12

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0 0.
1

 0.
2

 0.
3

 0.
4 0

 0.
01

 0.
02

 0.
03

 0.
04

 0.
05

 0.
06

 0.
07

 0.
08

 0.
09

 0.
1

force

alp
ha

-6-4-2 0 2 4 6 8

 1
0

 1
2

 0
 0

.0
1

 0
.0

2
 0

.0
3

 0
.0

4
 0

.0
5

 0
.0

6
 0

.0
7

 0
.0

8
 0

.0
9

 0
.1

force

a
lp

h
a

0
x
-f

o
rc

e
s

d
e
ri
v
a
ti
v
e
 o

f
th

e
 x

-f
o
rc

e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s
 o

f
th

e
 x

-f
o
rc

e
s

y
-f

o
rc

e
s

d
e
ri
v
a
ti
v
e
 o

f
th

e
 y

-f
o
rc

e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s
 o

f
th

e
 y

-f
o
rc

e
s

d.
)

Fi
ni

te
di

ff
er

en
ce

s
e.

)
Fo

rc
es

Fi
gu

re
6.

14
:F

or
ce

s,
de

riv
at

iv
es

an
d

fin
ite

di
ff

er
en

ce
s

of
ex

am
pl

e
6.

2.
3

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 101

Variable velocity direction

Here we consider an inflow, which is constant with respect to the absolute amount of the ve-
locity (i.e. ‖u‖ = const), and the direction is variable in the x and y direction and constant
respect to the z direction.
The input velocity is given with:

u =

ux

uy

uz

 =

0.15 cos(α)
0.15 sin(α)

0

 . (6.1)

Our considered quantity is the forces over the airfoil in x and y direction. For this quantity, we
consider the derivative with respect to α.
In the Figure 6.15 we see the process of the forces on the airplane for a inflow velocity, which
turns. The direction of the turn inflow velocity is given by the Equation (6.1) and α is between
0 and 0.1, the stepsize is 0.0001.
In 6.15 a) and b) we give a comparison of the derivatives, computed with AD, and the finite
differences of the forces in x and y direction with respect to the angle α. The graphic 6.15 c)
shows the curves of derivatives of the forces in x and y direction respect to α and the same is
shown for the finite differences in the graphic d).
The forces in x and y direction respect to α is shown in 6.15 e).
In the Figure 6.16 we show the same problem like in the Figure 6.15. But the range of α and
the stepsize of α is changed now α ∈ [−0.4, 0.75] and the stepsize is 0.0005.
In the Figure 6.16 e.) we see, that the flow is stalled at the point α ≈ 0.53.
At the stall point we see in the derivatives and in the finite differences a strong discontinuity.
This is shown in the Figures 6.16 a-d.). We have a small discontinuity in the derivatives and
in the finite differences on α ≈ −0.04 . For 0.53 < α < 0.75 and −0.4 < α < −0.04 the
derivatives and the finite differences are not so smooth, the reason of this is a small oscillations
in the forces. For α ∈ [−π,−0.4) and α ∈ (0.76, π) we have not shown the forces and the
derivatives, because in this ranges the forces are discontinuous and the values of the derivatives
are not defined.

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 102

-3-2-1 0 1 2 3 4

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

 0 2 4 6 8 10 12 14

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

-2 0 2 4 6 8 10

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

a.
)

D
er

iv
at

iv
e

an
d

fin
ite

di
ff

er
en

ce
s

in
x

di
re

ct
io

n
b.

)
D

er
iv

at
iv

e
an

d
fin

ite
di

ff
er

en
ce

s
in

y
di

re
ct

io
n

c.
)

D
er

iv
at

iv
es

-4-2 0 2 4 6 8 10 12 14

 0
 0.

01
 0.

02
 0.

03
 0.

04
 0.

05
 0.

06
 0.

07
 0.

08
 0.

09
 0.

1

derivative

alp
ha

-0
.4

-0
.3

-0
.2

-0
.1 0 0.
1

 0.
2

 0.
3 0

 0.
01

 0.
02

 0.
03

 0.
04

 0.
05

 0.
06

 0.
07

 0.
08

 0.
09

 0.
1

force

alp
ha

-4-2 0 2 4 6 8

 1
0

 1
2

 1
4

 0
 0

.0
1

 0
.0

2
 0

.0
3

 0
.0

4
 0

.0
5

 0
.0

6
 0

.0
7

 0
.0

8
 0

.0
9

 0
.1

a
lp

h
a

0
x
-f

o
rc

e
s

d
e
ri
v
a
ti
v
e
 o

f
th

e
 x

-f
o
rc

e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s
 o

f
th

e
 x

-f
o
rc

e
s

y
-f

o
rc

e
s

d
e
ri
v
a
ti
v
e
 o

f
th

e
 y

-f
o
rc

e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s
 o

f
th

e
 y

-f
o
rc

e
s

.)
Fi

ni
te

di
ff

er
en

ce
s

e.
)

Fo
rc

es

Fi
gu

re
6.

15
:F

or
ce

s,
de

riv
at

iv
es

an
d

fin
ite

di
ff

er
en

ce
s

of
ex

am
pl

e
6.

2.
3

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 103

-4-2 0 2 4 -0
.4

-0
.2

 0
 0.

2
 0.

4
 0.

6

derivative

alp
ha

-1
0-5 0 5 10

-0
.4

-0
.2

 0
 0.

2
 0.

4
 0.

6

derivative

alp
ha

-1
0-5 0 5 10

-0
.4

-0
.2

 0
 0.

2
 0.

4
 0.

6

derivative

alp
ha

a.
)

D
er

iv
at

iv
e

an
d

fin
ite

di
ff

er
en

ce
s

in
x

di
re

ct
io

n
b.

)
D

er
iv

at
iv

e
an

d
fin

ite
di

ff
er

en
ce

s
in

y
di

re
ct

io
n

c.
)

D
er

iv
at

iv
es

-1
0-5 0 5 10

-0
.4

-0
.2

 0
 0.

2
 0.

4
 0.

6

derivative

alp
ha

-2-1
.5-1-0
.5 0 0.
5 1 1.
5 2 2.
5 -0

.4
-0

.2
 0

 0.
2

 0.
4

 0.
6

force

alp
ha

-1
0
0

-5
0 0

 5
0

 1
0
0

 1
5
0

 2
0
0

-0
.4

-0
.2

 0
 0

.2
 0

.4
 0

.6

force

a
lp

h
a

0
x
-f

o
rc

e
s

d
e
ri
v
a
ti
v
e
 o

f
th

e
 x

-f
o
rc

e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s
 o

f
th

e
 x

-f
o
rc

e
s

y
-f

o
rc

e
s

d
e
ri
v
a
ti
v
e
 o

f
th

e
 y

-f
o
rc

e
s

fi
n
it
e
 d

if
fe

re
n
c
e
s
 o

f
th

e
 y

-f
o
rc

e
s

d.
)

Fi
ni

te
di

ff
er

en
ce

s
e.

)
Fo

rc
es

Fi
gu

re
6.

16
:F

or
ce

s,
de

riv
at

iv
es

an
d

fin
ite

di
ff

er
en

ce
s

of
ex

am
pl

e
6.

2.
3

CHAPTER 6. APPLICATION OF AD ON FLOW SIMULATION 104

6.2.4 Conclusion for the 3D case

Now we give a conclusion to the numerical experiments in the 3D case.

• In the Subsection 6.2.3 we have seen, that the application of AD on 3D flow simulation
is possible, and make sense. And is a good ansatz, which should be advanced.

• Here we have used the AD only to check, if it is possible to use. The next step is to use
the AD for the optimization in the 3D case.

• In the Subsection 6.2.3 we have seen, that the application of AD on 3D flow simulation
with a moving grid is not trivial. And it not so easy to get the initial derivative for the
grid, if the moving is realized in a separate program or tool, which is controlled by a
script language.

• A problem is, that the application of AD on the 3D fluid flow simulation software Comet
is only possible, if the source code is available and this is normally not given, another
idea is, you get the finished program, which is already prepared with AD, but here the
problem is, that the application of AD is in the most cases a special version for a fixed
problem.

Chapter 7

Results, problems and outlook

This chapter shows the results, the problems and the outlooks of this diploma thesis.

7.1 Results

Now we recall the results of this diploma thesis. We decompose this section in subpoints and
then we make a conclusion of all this points.

7.1.1 Basics

Here we present the results of the chapters about the numerical optimization and the Navier-
Stokes equations.

Numerical optimization

In this chapter we have explained the most important theoretical basics about optimization and
numerical optimization. And we have presented some algorithms for the numerical optimiza-
tion. And we have given a small comparison of the different approaches for three standard
problems.
The issue of this comparison is, that we should normally use optimization algorithms, which
use informations about the function, so that we get normally a better efficiency.

Navier-Stokes equations

This chapter has two parts. The first is the part about the derivation of the Navier-Stokes
equations, there we give a short derivation of the Navier-Stokes equations by starting with the
physical rules and finishing by a mathematical formulation. The second part presents two nu-
merical approaches to compute an approximative solution of the Navier-Stokes equations. We
have presented the finite differences method and the finite volume method, we have started by
the basics of these methods, have shown some problems of these methods and the application
on the Navier-Stokes equations.
The issue of this chapter is, that the simulation of the Navier-Stokes equations is a non trivial
problem and the efficient optimization in the simulations is important.

105

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 106

7.1.2 Automatic differentiation

This is one of the main topics of this diploma-thesis. Here we have introduced the automatic
differentiation in a formal correct way. Then we have presented different kinds of AD and have
compared this kinds with two test examples. The result of this comparison is, that the runtime
of a source transformed code in Fortran 90/95 is more efficient than the operator overloading.
The answer to the choice of forward or backward mode is not so easy to say, because this is
dependent on the problem.
The second part is the presentation of a realization of an operator overloading tool in Fortran
90/95. The message in this chapter is an instruction to realize the operator overloading in a
programming language.

7.1.3 Application

Here we have applied the knowledge of the chapter before, i.e. we have applied the AD on the
simulation of the Navier-Stokes equations with the target optimization. We have separated this
point in two subpoints the 2D case and the 3D case.

2D case

On this point we have considered some different examples. At first we have done a simple
example to check, wheather the application of AD on the flow simulation is possible. We have
verified this by the consideration of the changing of the forces on a airfoil with respect to the
inflow velocity. Then we have compared the finite differences with the values of the automatic
differentiation. This example has shown, that the application make sense in the 2D case.
The next example, the optimization of the angle of attack, is a little bit more complex. Here
we have considered a constant inflow and have changed the angle of attack, i.e. the grid has
moved. An issue of this example is, that a moving grid is not so easy for the application of
AD, because, if we change the grid fast, we get convergence for the values, but not for the
derivatives.
But this example has also shown, that the computation of derivatives with AD has a regulariza-
tion effect compared with the finite differences. A possible explanation for this effect is, that a
small error in the values can imply a big error in the finite differences, but a small error on the
values does not imply a big error in the derivatives computed with AD.
The last result of this example is, that the use of optimization algorithms with informations
about the derivative are more efficient than others, also in the simulation of fluid flow.

3D case

In this case, we are limited to the application of AD and the validation on the simulation,
because this is a non trivial problem.
We have considered two different kinds of problems the first one with a moving grid the second
one without a moving grid. The results of the example with moving grid are not so fine because
the initialization of geometry variables with a starting derivation is not so easy because the
moving of the grid is realized in a separate tool. By initializing the grid geometry with finite
differences of the grid geometry, we have got derivatives for the forces over the airfoil in the
same range as the finite differences of the forces over the airfoil, but the oscillating of the AD
values are very big and larger than the oscillating of the finite differences.

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 107

But in the example with a fixed grid and a variable inflow, we have seen, that the application
of AD on the 3D simulation of fluid flow is possible. On this example we have seen the
regularization effect of the automatic differentiation like in the 2D case.

7.1.4 Conclusion of the results

The main conclusion over all points of precedent results of this work is:
The application of AD in flow simulation for optimization is general possible and useful. But
the application is not trivial. The application of the automatic differentiation produces a lot of
work for each problem at the moment, but here there exists already an idea to eliminate this
problem, more information about this we give in the section outlook with the hybrid method.
We have answered many basic questions, but there exists still many work to make optimization
with AD in the flow simulation ready for the practical application.

7.2 Problems

In this section we discuss the problems, which exist by the application of AD on a mathematical
problem.

7.2.1 Programming problems

Here we show problems, which come out by the application of AD on programs.

Fortran 77

A problem by this programming languages are, that there exist only one method to apply AD
on a program, namely the source transformation. The problem by applying this method is,
that the transformed program code is not easy to change after the application of AD, because
the transformed code is not easy humanly readable, if the considered problem is a non trivial
problem.

C/C++

One problem is the dynamic memory allocation by the programing language C/C++. This
can be a problem, if we use an operator overloading tool with the following structure of the
ADType:

...
class ADType
{
public:
double value;
double *derivative;

...

And then in the program we use also dynamic memory allocation in the form of **x. And
after the allocation of the memory for **x, we change the size of *derivative and then
we give the memory of **x free. If we do so, it is possible, if the realization of the function to
give the memory free it is not good realized, that we get a memory leak.

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 108

Existing programs

A big problem is the application of AD on existing programs, which are not designed for the
application, of AD. This is the case, if more than one programming language is mixed via an
interfaces or an similar way.
Another problem is, that the convergence criteria must be fulfilled also for the AD values.
But an important problem is the initialization of the values by reading files or user input, be-
cause all this points must be changed by hand, if we need also initialization for the automatic
differentiation.

7.2.2 Mathematical problems

One of the main problems of the application of AD on a problem is, that it is not already clear,
that the derivative is well defined. And it is normally not easy to check this, so it is necessary
to make a validation of the results with finite differences. But this is also not a warranty, that
the results are every times well defined, because it is possible, that in a not checked case, we
need e.g. the derivative of

√
x for the value x = 0 and this is not defined. The reason, why it is

not easy to check is, that AD is normally not used on small problems.

7.3 Outlook

In this section we present and discuss ideas, which are becoming during the work on this
diploma-thesis and especially by the application of AD on finished source code and flow sim-
ulation software.

7.3.1 Development of new approaches in AD

Here we present two ideas for the developing of the AD approaches.

Simplifying in source transformation

The idea of this point is combining a source transformation tool with a computer algebra system
(e.g. maple, mathematica). The reason of the approach is, that the existing source transforma-
tion tools sometimes produce correct derivatives, but the formulas are not simplified. And a
computer algebra tool support derivative and also a simplifying functionality. So it is possible
to differentiate and simplifying the equation (for reducing the computational complexity) in
one step.
To realize this we need a tool, which translates the equations from the programming language
in the computer algebra syntax and back. And we also need a functionality to check the depen-
dence, but this is also needed in the normal source transformation.

Hybrid methods

The main focus for this idea is the development of new programs with AD. This approach en-
able it to separate the development of the algorithm and the application of AD.
In the following we explain the AD hybrid approach on a very simple problem, with the prim-
itivist realization. It is clear, that this kind of realization, with the C preprocessor, is not com-
fortable enough for a productive work.

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 109

At first we must deconstruct the problem in the following parts;
(i) variable declaration,
(ii) variable initialization,
(iii) input,
(iv) output,
(v) algorithm.

In the parts (i)-(iv) there exist normally a difference between program with and without AD,
but the part (v) is the important part.

Listing 7.1: AD hybrid main program.
1 program hybridAD
2
3 # i n c l u d e"defFile.h"
4
5 !alpha, x1,x2, y1,y2,y3
6 # i n c l u d e"variablesH.f"
7 r e a l (kind (1 . d0)) i n i t A l p h a , i n i t X 1 , i n i t X 2
8
9 !init variables

10 i n i t A l p h a = 2 . 3
11 i n i t X 1 = 3 . 4
12 i n i t X 2 = −1.2
13 # i n c l u d e"initvariablesH.f"
14
15
16 y1 = s i n (a l p h a∗x1)
17 y2 = x1∗x2+x1∗∗2+ s i n (x2)
18 y3 = a l p h a∗x1+ cos (a l p h a∗x2)
19
20 !output
21 # i n c l u d e"outputH.f"
22
23 end program hybridAD

In the Listing 7.1 we show a typical deconstruction of a model problem. In the line 3 we
insert the control file this file contains only the #define MACRO 1, and the word MACRO
represents, which kind of the program is interested. Line 6 includes the variable declaration
part, line 13 the variable initialization and line 21 the output part. It is not necessary to separate
the different parts in separate files, but it is clearer. The lines 16-18 are the algorithm and we
see, that this part is independent from the case AD or non AD. Now we explain the different
parts:

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 110

Listing 7.2: AD hybrid variables.
1 # i f d e f NONAD
2 ! w h i t h o u t AD
3 # undef ADalpha
4 # undef ADx
5 r e a l (k ind (1 . d0)) a l p h a
6 r e a l (k ind (1 . d0)) x1 , x2
7 r e a l (k ind (1 . d0)) y1 , y2 , y3
8 # e n d i f
9 # i f d e f ADalpha

10 ! d e r i v a t i v e r e s p e c t t o t h e v a r i a b l e s a l p h a
11 # undef ADx
12 use AD
13 t y p e (f o r w a r d) a l p h a
14 t y p e (f o r w a r d) y1 , y3
15 r e a l (k ind (1 . d0)) y2
16 r e a l (k ind (1 . d0)) x1 , x2
17 r e a l (k ind (1 . d0)) i n i t d (1)
18 # e n d i f
19 # i f d e f ADx
20 ! d e r i v a t i v e r e s p e c t t o t h e v a r i a b l e s x1 , x2
21 use AD
22 t y p e (f o r w a r d) x1 , x2
23 t y p e (f o r w a r d) y1 , y2 , y3
24 r e a l (k ind (1 . d0)) a l p h a
25 r e a l (k ind (1 . d0)) i n i t
26 r e a l (k ind (1 . d0)) i n i t d (2)
27 # e n d i f

The Listing 7.2 represent the variable declaration (i) part. The realization is very simple. For
each possible case the variables are declarated and with the seated MACRO we exchange, what
is the needed. It is possible to combine this part with a source transformation tool, so that it is
enough to say this is a independent and this is a search AD variable and the implicit dependent
variables are detected automatically.

Listing 7.3: AD hybrid initialize.
1 # i f d e f NONAD
2 ! w h i t h o u t AD
3 a l p h a = i n i t A l p h a
4 x1 = i n i t X 1
5 x2 = i n i t X 2
6 # e n d i f
7 # i f d e f ADalpha
8 ! d e r i v a t i v e r e s p e c t t o t h e v a r i a b l e s a l p h a
9 i n i t d (1) = 1 .

10 c a l l in i tAD (a lpha , i n i t A l p h a , i n i t d , . t r u e .)
11 x1 = i n i t X 1
12 x2 = i n i t X 2
13 # e n d i f
14 # i f d e f ADx
15 ! d e r i v a t i v e r e s p e c t t o t h e v a r i a b l e s x1 , x2
16 a l p h a = i n i t A l p h a
17 i n i t d (1) = 1 .
18 i n i t d (2) = 0 .
19 c a l l in i tAD (x1 , i n i t X 1 , i n i t d , . t r u e .)
20 i n i t d (1) = 0 .
21 i n i t d (2) = 1 .
22 c a l l in i tAD (x2 , i n i t X 2 , i n i t d , . t r u e .)
23 # e n d i f

The Listing 7.3 represent the variable initialization (ii) part. It is clear, that this part depends
directly on the case, which we consider.

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 111

Listing 7.4: AD hybrid output.
1 # i f d e f NONAD
2 !whithout AD
3 w r i t e (∗ ,∗) ’ y1 = ’ , y1 , ’ y2 = ’ , y2 , ’ y3 = ’ , y3
4 # e n d i f
5 # i f d e f ADalpha
6 !derivative respect to the variables alpha
7 w r i t e (∗ ,∗) ’ y1 = ’ , valueAD (y1) , ’ y2 = ’ , y2 , ’ y3 = ’ , valueAD (y3)
8 w r i t e (∗ ,∗) ’ y1d = ’ , derAD (y1) , ’ y3d = ’ , derAD (y3)
9 # e n d i f

10 # i f d e f ADx
11 !derivative respect to the variables x1,x2
12 w r i t e (∗ ,∗) ’ y1 = ’ , valueAD (y1) , ’ y2 = ’ , valueAD (y2) , ’ y3 = ’ , valueAD (y3)
13 w r i t e (∗ ,∗) ’ y1d = ’ , derAD (y1) , ’ y2d = ’ , derAD (y2) , ’ y3d = ’ , derAD (y3)
14 # e n d i f

The Listing 7.4 represent the output (iv) part. We see, that the output changes on the case,
because by using AD we are interested normally also on the derivatives.

Listing 7.5: AD hybrid non AD version.
1 program hybridAD
2 !alpha, x1,x2, y1,y2,y3
3 !whithout AD
4 r e a l (kind (1 . d0)) a l p h a
5 r e a l (kind (1 . d0)) x1 , x2
6 r e a l (kind (1 . d0)) y1 , y2 , y3
7 r e a l (kind (1 . d0)) i n i t A l p h a , i n i t X 1 , i n i t X 2
8 !init variables
9 i n i t A l p h a = 2 . 3

10 i n i t X 1 = 3 . 4
11 i n i t X 2 = −1.2
12 !whithout AD
13 a l p h a = i n i t A l p h a
14 x1 = i n i t X 1
15 x2 = i n i t X 2
16 y1 = s i n (a l p h a∗x1)
17 y2 = x1∗x2+x1∗∗2+ s i n (x2)
18 y3 = a l p h a∗x1+ cos (a l p h a∗x2)
19 !output
20 !whithout AD
21 w r i t e (∗ ,∗) ’ y1 = ’ , y1 , ’ y2 = ’ , y2 , ’ y3 = ’ , y3
22 end program hybridAD

The Listing 7.5 represent the a compilable program for the non AD case. This is file we get by
set the MACRO on NONAD and use the gcc with the following options
gcc -o tmpFileName -E -P FileName. The file tmpFileName is now directly
compilable with a fortran compiler.

7.3.2 Application of AD on flow simulation

Now we give a outlook of the application of AD on flow simulation. It is clear, that in this topic
we have not answered all open questions, now we give some outlook about important results.

A general outlook

A general outlook for the application of AD on flow simulation is to expand the problems in
3D for the numerical optimization. In details, that means, we must prepare the code in a form,
so that an interface between the simulation tool and the optimization program exist. Also it is
necessary to prepare optimization relevant problems for AD.
Another outlook is to eliminate the problems by the moving grid case to enable the considera-
tion of more complex problems.
It is also necessary to make the application of the AD independent of the problem, that means,
that we do not need to apply the AD tool for each problem.

CHAPTER 7. RESULTS, PROBLEMS AND OUTLOOK 112

Optimal grid generation for AD

In this point we give an idea to avoid the problem of the application of AD on fluid flow simu-
lation with moving grids.
The idea is very simple, but the realization is not so trivial. The idea is to write a grid genera-
tion tool for the simulation of the Navier-Stokes equations, which is directly designed for the
automatic differentiation. That means, that the data structure is designed for automatic differ-
entiation types. And the moving of the grid is realized, such that we get the informations for
the derivative in the moving grid directly.

Bibliography

[Aki03] Ed Akin. Object-Oriented Programming Via Fortran 90/95. Cambridge University
Press, 01 2003.

[Alt02] Walter Alt. Nichtlineare Optimierung. Eine Einführung in Theorie, Verfahren und
Anwendungen. Vieweg, 08 2002.

[Cau47] M. Augustin Cauchy. Méthode générale pour la résolution des systèmes d’équations
simultanées. Comptes Rendus de l’acadèmie des sciences, Paris, 1847.

[Fis05] Herbert Fischer. Algorithmisches Differenzieren. Lecture notes, 2005.

[Fre97] Computational Methods for Fluid Dynamics. Springer, Berlin, 1997.

[Gru04] Roger Grundmann. Cfd lehrbrief. Studienbrief zur Vorlesung Numerische Methoden
(CFD) Technische Universität Dresden, 2004.

[Kna00] Numerik partieller Differentialgleichungen. Springer, Berlin, 2000.

[Lan74] Hydrodynamik. Lehrbuch der theoretischen Physik Band VI. Akademie Verlag,
Berlin, 10 1974.

[Lei06] Ralf Leidenberger. Implementierung von algorithmischem differenzieren. Note, 05
2006.

[MG95] Tilman Neunhoeffer Michael Griebel, Thomas Dornseifer. Numerische Simulation in
der Strömungsmechanik. Vieweg Verlagsgesellschaft, 11 1995.

[PD95] Adreas Hohmann Peter Deufelhard. Numerische Mathematik :eine algorithmisch
orientierte Einführung. de Gruyter, Berlin, 1995.

[Rie95] Ulrich Rieder. Operations research I. University Ulm, 1995.

[Sch97] Numerische Mathematik. B. G. Teubner, Stuttgart, 1997.

[Sto99] Josef Stoer. Numerische Mathematik 1. Springer, Berlin, 8 edition, 05 1999.

[TB04] Mario Ohlberger Timothy Barth. Finite volume methods: foundation and analysis.
Encylopedia of Computational Mechanics., 2004.

[Urb05] Karsten Urban. Numeric i. lecture notes of numeric I, 2004-2005.

[Urb06] Karsten Urban. Numeric ii. lecture notes of numeric II, 2005-2006.

[WF07] Dieter Hoffmann Wilhelm Forst. Optimization - theory and practice. preprint, 2007.

113

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und
auch noch nicht veröffentlicht.

Ich bin mir bewusst, dass eine unwahre Erklärung rechtliche Folgen haben wird.

Ulm, den August 30, 2007

(Unterschrift)

