1st sheet of exercises due: 25 October 2007

Exercise 1.

- (a) Show that the set consisting of all densities is convex and $L_1(\mathbb{R}^d)$ -closed.
- (b) Consider the set of all densities which additionally lie in $L_2(\mathbb{R}^d)$. Is it $L_1(\mathbb{R}^d)$ -closed, too?

Exercise 2. (Proof of Lemma 1.1) Assume two real-valued random variables X and Y defined on the same probability space. Show that the regression function r(x) := E(Y | X = x) minimizes the term

$$E|Y - g(X)|^2$$

among all measurable functions $g: \mathbb{R} \to \mathbb{R}$ with $E|g(X)|^2 < \infty$.

Exercise 3. We assume that a density f lies in the class of densities on [0, 1] which are piecewise constant on an equidistant grid with the bin width 1/m, i.e. $f \in \mathcal{F}_m$ where

$$\mathcal{F}_m := \left\{ f \text{ density} : f(x) = \sum_{j=0}^{m-1} f_j \cdot \chi_{[j/m,(j+1)/m)}(x), x \in [0,1] \right\},\$$

where χ_I denotes the indicator function of a set *I*.

(a) As a reasonable estimator f(x) of f(x) based on the i.i.d. data X_1, \ldots, X_n having the density $f \in \mathcal{F}_m$ with known integer m > 0, we suggest

$$\hat{f}(x) := \frac{m}{n} \sum_{j=0}^{m-1} \# \{ l : X_l \in [j/m, (j+1)/m) \} \cdot \chi_{[j/m, (j+1)/m)}(x)$$

Calculate its expectation and variance for some arbitrary but fixed $x \in [0, 1]$.

(b) Now assume that $m = 2^k$ with unknown integer k > 0. Modify the estimator to handle this situation.

Exercise 4. We assume that f is an arbitrary univariate density which is supported and continuous on (0, 1). Construct a pointwise consistent estimator $\hat{f}(x)$ of f(x) based on i.i.d. real-valued data X_1, \ldots, X_n having the density f; more precisely, the convergence

$$E\left|\hat{f}(x) - f(x)\right|^2 \stackrel{n \to \infty}{\longrightarrow} 0$$

shall be satisfied for all $x \in (0, 1)$.

tip: It is helpful to consider the estimator from Exercise 3 while $m = m_n$ may now depend on the sample size n.