5th sheet of exercises due: 10 January 2008

Exercise 17. We observe the i.i.d. data X_1, \ldots, X_n which are normally distributed with the unknown expectation $\mu \in \mathbb{R}$ and the variance 1. Use Proposition 4.1 to show that there is no estimator $\hat{\mu} = \hat{\mu}(X_1, \ldots, X_n)$ of μ so that

$$\liminf_{n \to \infty} n \cdot \sup_{\mu \in \mathbb{R}} E |\hat{\mu} - \mu|^2 = 0.$$

Exercise 18. We observe the i.i.d. data X_1, \ldots, X_n which are uniformly distributed on some interval $[0, \theta]$. Show by Proposition 4.1 that there exists no estimator $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ so that

$$\liminf_{n \to \infty} n^2 \cdot \sup_{\theta \in [\theta_0, \theta_1]} E |\hat{\theta} - \theta|^2 = 0,$$

for some fixed $0 < \theta_0 < \theta_1 < \infty$. Conclude that the estimator defined in Exercise 7 achieves optimal convergence rates in the above problem.

Exercise 19. Given the i.i.d. observations X_1, \ldots, X_n , we do not want to estimate their density f_X itself but some characteristic of f_X . In the mathematical model, we aim at estimating $\Phi(f_X)$ where Φ is a function mapping some density class \mathcal{F} to some metric space (\mathcal{L}, l) .

- (a) Show that $\int |f(x)-g(x)| dx \ge H^2(f,g)$ for all densities f, g where H denotes the Hellinger distance.
- (b) We assume there exists a uniformly consistent estimator $\hat{\phi}$ of $\Phi(f_X)$, i.e.

$$\sup_{f_X \in \mathcal{F}} E l(\hat{\phi}, \Phi(f_X)) \xrightarrow{n \to \infty} 0,$$

for some density class \mathcal{F} . Show by Proposition 4.1 that Φ is uniformly continuous with respect to the $L_1(\mathbb{R})$ -norm on \mathcal{F} and the *l*-metric on \mathcal{L} .

Exercise 20. As a non-uniform version of the assumption in Exercise 19, assume that there exists a consistent estimator $\hat{\phi}$ of $\Phi(f_X)$, i.e.

$$E l(\hat{\phi}, \Phi(f_X)) \xrightarrow{n \to \infty} 0, \quad \forall f_X \in \mathcal{F}.$$

Show that there is no simple analogous result in the individual case, i.e. Φ is not necessarily continuous on the whole of \mathcal{F} by constructing a counterexample.