

UNIVERSITÄT ULM Abteilung Angewandte Analysis

Prof. Dr. W. Balser Markus Duelli WS 03/04

Übungen zu Lineare Algebra

Übungsblatt 7

Abgabetermin: Donnerstag, 4.12.2003, vor den Übungen

- (1) Es sei $A \in \mathbb{K}^{n \times n}$. Definiere $\langle x, y \rangle = \bar{x}^T A y$ für $x, y \in \mathbb{K}^n$. Zeige:
 - (a) Es gelten die Eigenschaften (S3) und (S4).
 - (b) Die Eigenschaft (S2) gilt genau dann, wenn $A = \bar{A}^T$ ist.
 - (c) Matrizen, für welche außer (S2) auch (S1) gilt, nennt man positiv definit.
 - (i) Finde eine Matrix A, welche (S2) aber nicht (S1) erfüllt.
 - (ii) Es sei $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ eine Diagonalmatrix. Wann ist D positiv definit?

(2+2+2 Punkte)

- (2) Für welche $\alpha \in \mathbb{R}$ definiert $\langle x, y \rangle = x_1y_1 + \alpha x_1y_3 + x_2y_2 + x_3y_1 + 3x_3y_3$ ein Skalarprodukt auf \mathbb{R}^3 ? (2 Punkte)
- (3) Es sei X ein Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und induzierter Norm $||x||^2 = \langle x, x \rangle$. Zeige: Es gilt die sogenannte Parallelogramm-Gleichung: Für alle $x, y \in X$ ist $2(||x||^2 + ||y||^2) = ||x y||^2 + ||x + y||^2$. (3 Punkte)
- (4) Es sei X=C[0,1] der Vektorraum der auf [0,1] stetigen Funktionen mit den üblichen punktweise definierten Verknüpfungen. Für $f\in X$ definiert $||f||=\sup\{|f(x)|:x\in[0,1]\}$ eine Norm auf X. Zeige: Es gibt kein Skalarprodukt auf X, das diese Norm induziert. (Hinweis: Benutze die Parallelogramm-Gleichung.) (2 Punkte)
- (5) Es sei $\mathcal{B} = \{b_1, \ldots, b_n\}$ eine Basis des Vektorraumes V. Man konstruiere ein Skalarprodukt auf V, bezüglich welchem \mathcal{B} eine Orthogonalbasis ist. (3 Punkte)
- (6) Es seien $u_1 = (1, 2, 2, 0)^T$, $u_2 = (0, -1, 2, 0)^T \in V = \mathbb{R}^4$. Bezeichne U die lineare Hülle dieser Vektoren. V sei mit dem kanonischen Skalarprodukt versehen. Berechne eine Orthogonalbasis von U und U^{\perp} . (3 Punkte)
- *(7) Es sei V der Vektorraum aller auf [-1,1] stetigen reellwertigen Funktionen und U sei der Unterraum aller ungeraden Funktionen in V. Auf V definieren wir das Skalarprodukt $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)\,dt$. Es sei $f=t-\cos t\in V$. Berechne die orthogonale Projektion von f auf U. (Hinweis: Benutze, daß $\int_{-1}^1 u(t)\,dt=0$ für alle $u\in U$.)

Die Übungsaufgaben findet Ihr auch im Internet unter: http://www.mathematik.uni-ulm.de/m5/mmd/linalg