
Introduction to High Performance Computing

April 8, 2018

1 Syllabus

This calendar is subject to change. Anything posted in the future is certainly tentative. Also, anything
posted in the recent past may not be correct if I haven’t updated it yet.

1.1 Week 1

1. Von Neumann Architecture (VNA) Tue April 17, 2018

• Using the ULM (Ulm’s Lecture Machine) as reference model.

• Components: RAM, Data bus, CPU.

• Representation of unsigned integer numbers as decimal, binary and hexadecimal numerals.

• Instruction set (Machine code) of the ULM.

• Von Neumann Cycle: How machine code gets executed.

2. VNA: Conditional Jumps and Integer Arithmetic Fri April 20, 2018

• Assembly language for the ULM.

• Connection to C:

– pointers and (referenced) values.

– variable types.

• Signed integer (two’s complement).

• Arithmetic logical unit (ALU) and its status flags.

• Conditional jumps in machine/assembly code

1.2 Week 2

3. VNA: Control Structures Tue April 24, 2018

• Macros for assembly code

• Example: Stack

• Control structures (if-then-else, for-loops, while-loops)

1



4. VNA: Function Calls Fr April 27, 2018

• Functions and procedures:

– Passing parameters (call by value, call by reference).

– Returning from call.

– Local and global variables.

• Memory layout of a process: Text segment, data segment, stack and heap.

• Layout of a program file.

• Concept of a linker.

1.3 Week 3

5. Holiday Tue May 1, 2018

Time to work on the more intense quiz from last Friday.

6. Introduction to C (C99) Fr May 4, 2018

• How to describe the syntax of a programming language

• Tools for creating a executable program:

– Preprocessor

– Tokenizer

– Parser

– Assembler

– Linker

• Differences and similarities between ULM and actual computers:

– Virtual memory

– Processes

– Program loader

1.4 Week 4

7. C99: Control Statements and Functions Tue May 8, 2018

• Types and variables

• C control statements: if-then statements and loops.

• Special variable types: Pointers

• Functions



8. C99: Arrays, Memory Allocation and Benchmarks Fr May 11, 2018

• Dynamic memory allocation

• BLAS (Basic Linear Algebra Subprogram) Level 1 operations (as application for arrays).

• Timer for benchmarks

• Gnuplot

1.5 Week 5

9. C99: Representing matrices Tue May 15, 2018

• Full storage format for matrices (and vectors).

• Introducing some BLAS Level 2 Operations.

• Notes on testing and benchmarking BLAS operations:

– General form of a benchmark (that also tests correctness).

– Test cases with random numbers and NaNs

– Estimating the error

– Controlling test parameters through macros

10. CPU Caches Fr May 18, 2018

• Concept of CPU caches:

– Cache line, cache miss, cache hit.

– Cache associativity.

• Prefetching

1.6 Week 6

11. CPU Caches: Optimized matrix vector product Tue May 22, 2018

• Mathematical notation for blocked matrix operations.

• Simple optimization for row or column major storage.

• Advanced optimization using fused vector operations.



12. Outlook: Generic and object oriented programming Fr May 25, 2018

• Namespaces in C99 and C++.

• Generic programming (of functions):

– In C99 with macros.

– In C++ with template functions.

• Object oriented programming (OOP)

– In C99 with struct and function pointers.

– In C++ with struct (or class) and builtin language features (RAII, methods, operators).

• Combining generic programming and OOP.

• Typical pitfalls (focus on examples from generic programming).

1.7 Week 7

13. General Matrix-Matrix Product (GEMM) Tue May 29, 2018

• Definition of the GEMM operation.

• Potential for high performance.

• Relevance for other numerical linear algebra operations.

• Some obvious ways to implement the GEMM operation relatively efficient.

• Test and benchmark suite for the GEMM operation.

14. GEMM: Simple Cache Optimization. Fr June 1, 2018

• Benchmark comparing our GEMM with the Intel MKL implementation.

• Blocked and buffered computation.

1.8 Week 8

15. GEMM: Advanced Cache Optimization Tue June 5, 2018

• Exploiting the complete cache hierarchy:

– Frame function and macro/micro kernel for GEMM.

– Packing matrix blocks.

• Testing components of the overall algorithm.



16. GEMM: Advanced Cache Optimization Fr June 8, 2018

• Using a profiler: identify code spots where performance gets lost.

• Instruction pipeline optimizations: Enable compilers to unroll loops.

• Enable compilers to inline functions.

1.9 Week 9

17. GEMM: Optimized Micro Kernel Tue June 12, 2018

• Single Instruction Multiple Data (SIMD).

• GEMM micro kernel in assembly code exploiting SIMD processor features.

18. GEMM: Optimized Micro Kernel Fr June 15, 2018

• Manual loop unrolling in the assembly micro kernels.

• Manual instruction pipeline optimizations.

• Manual cache prefetching.

1.10 Week 10

19. Building libraries (ulmBLAS) Tue June 19, 2018

• Static and dynamic libraries.

• Creating and working with static libraries:

– Split a project in different compile units (and provide header files).

– Identify and resolve linker problems.

– Awareness of issues with inline functions.

• Concept of functional programming in Makefiles.

• Special features of GNU make:

– Text functions.

– Recursions.

20. ulmBLAS: Providing a Fortran interface Fr June 22, 2018

• Short introduction of Fortran.

• Calling Fortran functions from C.

• Calling C functions from Fortran.



1.11 Week 11

21. LU Factorization (LU) Tue June 26, 2018

• Mathematical background: LU factorization with and without pivoting.

• Using the factorization to solve linear matrix equations.

• LU factorization of non-square matrices.

• Exercise: Setup a test and benchmark suite.

22. LU: Unblocked Fr June 29, 2018

• Deriving unblocked variants (i.e. based on BLAS level 2 operations) of the LU factorization.

1.12 Week 12

23. LU: Blocked Tue July 3, 2018

• Deriving blocked variants (i.e. based on BLAS level 3 operations and a unblocked variant) of the
LU factorization.

24. Triangular Solvers (TRS) Fr July 6, 2018

1.13 Week 13

25. TRS: Unblocked Tue July 10, 2018

26. TRS: Blocked Fr July 13, 2018

1.14 Week 14

27. TRS: Blocked Tue July 17, 2018

28. Final Benchmarks and Outlook on Multithreading Fr July 20, 2018



2 Von Neumann Architecture (VNA)

The historical Von Neumann architecture (VNA) can be regarded as a model that describes how nowadays
computers work in principle. It consists of four main components, namely a memory, some input/output
devices, the central processing unit (CPU) and a data bus. We will use the fictional Ulm Lecture Machine
(ULM) as an example of a VNA for the following reasons:

• In the computer lab we will work with the Intel64 architecture. The assembly language for the
ULM has many similarities with the assembly language that will be used later for the Intel64
architecture.

• A UNIX process has many similarities with a program running on the ULM

Memory I/O

(Data) Bus

CPU

Figure 1: Components of the ULM (Ulm Lecture Machine) which we use as a reference model for the
Von Neumann Architecture.

2.1 Integers

Computers are programmed through numbers and work with numbers. These numbers are represented
as binary numerals. Hence, for truly understanding how a computer works we need a good understanding
of this matter.

2.1.1 Unsigned Integers

Definition 2.1 (Positional Numeral Notation)
For constants b, n ∈ N0 with b > 1 and values a0, . . . , an−1 ∈ {0, . . . , b− 1} we define

(an−1, . . . , a0)b := an−1b
n−1 + · · ·+ a1b + a0 =

n∑
k=0

akb
k. (1)

We will denote b as the base or radix, values a0, . . . , an−1 as the digits and (an−1, . . . , a0)b as the (posi-
tional) numeral notation of the number defined by (1).

Often we do not explicitly distinguish between the terms number and numeral. However, this is formally
not correct. Numbers are elements of some algebraic structures like N0 and numerals are labels for these
elements. The set N0 for example can be characterized through the Peano axioms.

Numerals are just names for the elements of an algebraic structure. So for instance, the different
numerals ‘null’, ‘zero’ or ‘0’ can be used to refer to the same number in N0. From the postulated axioms
it follows that each element has a successor that is different from all its predecessors. Commonly we
denote with 1 (or ‘one’) the successor or 0, with 2 (or ‘two’) the successor of 1, etc.

A digit is a number for which we will use a numeral that consists of a single symbol. If b is not larger
than ten we use the decimal numerals 0, 1, . . . , 9 to represent a digit. Otherwise we extend the set of
symbols, like in the following example for hexadecimal numerals.

Example 2.2 (Further Conventions for Numeral Notation)

a) (Decimal Numerals)

10 := (1, 0)10 = 1 · 101 + 0 · 100

123 := (1, 2, 3)10 = 1 · 102 + 2 · 101 + 3 · 100



b) (Binary Numerals)

Also will use the following terms:

i. With bit we denote a binary digit and

ii. with bit pattern the list of bits in a binary numeral.

iii. Furthermore, a byte is a bit pattern consisting of eight bits. A word refers to two bytes, a
long word to four bytes and a quad word to eight bytes.

c) (Hexadecimal Numerals)

Lemma 2.3
Numbers representable through (1) as numerals with n digits and base b, i. e.

M =
{

(an−1, . . . , a0)b : a0, . . . , an−1 ∈ {0, . . . , b− 1}
}

are non-negative integers and more precise

M = [0, . . . , bn − 1) ⊂ Z

Proof. The inclusion M ⊆ [0, . . . , bn−1) follows from

0 ≤ (0, . . . , 0)b = (an−1, . . . , a0)b ≤ (b− 1, . . . , b− 1)b =

n−1∑
k=0

(b− 1) bk = bn − 1.

Next we show that also M ⊇ [0, . . . , bn − 1) holds. So let z ∈ [0, . . . , bn − 1) be fixed but arbitrary:
n = 1: Because of 0 ≤ z < b we can choose a0 := z and get z = (a0)b ∈M .
n n + 1: For z ∈ [0, . . . , bn − 1) we can find integers k, r with k ≥ 0 and 0 ≤ r < bn−1

such that z = k · bn + r. From the induction hypothesis follows a repre-
sentation k = (an−1, . . . , a0)b and choosing an = k gives z = kbn + r =
anb

n + (an−1, . . . , a0)b = (an, an−1, . . . , a0)b ∈M .

Obviously, one gets k and r through Euclidean division (i. e. integer division with quotient and
reminder)

ak :=
⌊ z

bk

⌋
− b

⌊ z

bk+1

⌋
(0 ≤ k < n)

This motivates the following definition.

Definition 2.4 (Range of an n digit unsigned Integer)
With Un,b := {0, . . . , bn − 1} we denote the range of unsigned integers that can be represented with an
n digit numeral for base b. As binary numerals are of particular interest to us, we define

Un := {0, . . . , 2n − 1}

for the range of an n bit unsigned integer.

Example 2.5
On computers numbers are represented through a certain number of bytes. On the ULM (and basically
any computer in the real world) the number of bytes is a power of two). As each byte consists of eight
bits the following ranges are foremost relevant:

a) Unsigned integer with 1 byte

U8 = {0; . . . ; 255}

b) Unsigned integer with 2 bytes (also denoted as 1 word)

U16 = {0; . . . ; 65,536}



c) Unsigend integer with 4 bytes (also denoted as 1 long word)

U32 = {0; . . . ; 4,294,967,295}

d) Unsigned integer with 8 bytes (also denoted as 1 quad word)

U64 = {0; . . . ; 18,446,744,073,709,551,615}

Example 2.6 (Convertion of numerals to different base)
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
210 = 1024
211 = 2048
212 = 4096
213 = 8192
214 = 16,384
215 = 32,768
216 = 65,536

160 = 1
161 = 16
162 = 256
163 = 4096
164 = 65,536

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

1. (Conversion between decimal and binary)

2. (Conversion between decimal and hexadecimal)

3. (Conversion between binary and hexadecimal)

Lemma 2.7 (Shift operations on unsigend Integers) 1. (Left shift) x · b = (an−1, . . . , a0, 0)b.



2. (Right shift)
⌊
x
b

⌋
= (an−1, . . . , a1)b.

3. (Rounding downwards to powers of b) y = (an−1, . . . , as, 0, . . . , 0) is dividable by bs, y ≤ x and
furthermore y = max{u ∈ Un : u ≤ x}.

a)

1 0 0
+ 0 1 1

1 1 1

b)

0 0 1
+ 0 1 1
0 1 1 0

0 0 1

c)

0 0 1
+ 0 1 1

CF 0 1 0
1 0 0

d)
1 0 0

+ 0 1 1
1 1 1

e)
0 0 1

+ 0 1 1
1 0 0

2.1.2 Signed Integers

2.1.3 Integer Arithmetic


