ULM C Compiler
12 November 2019

@ Ol Michael C. Lehn

https://creativecommons.org/licenses/by-sa/4.0/

Contents

|1 Synta)_cl
1 StructureofaCoprogram|. L L
1.2 Storageclassesand types|. o oL

Chapter 1

Syntax

1.1 Structure of a C program

(translation-unit)
(external-declaration-list)
(external-declaration)
(declaration)

(function-definition)

(declaration-specifiers)

L

external-declaration-list)
external-declaration)
external-declaration-list) (external-declaration)

function-definition)

(

(

(

(
(declaration)
(declaration-specifiers) (init-declarator-list) ;
(declaration-specifiers) ;

(declaration-specifiers) (declarator) (compound-statement)
(type-specifier)

(

storage-class-specifier) (type-specifier)

1.2 Storage classes and types

(storage-class-specifier) — static

(type-specifier)

— extern

— (integer-type)
— (void-type)
— (struct-specifier)

1.2 Storage classes and types 5

int8_t
intl6_t
int32_t
int64_t
uint8_t
uintl6_t
uint32_t
uint64_t

(integer-type)

LA A A A A

In the lexical analysis char gets replaced with int8_t , and int with int16_t .

(void-type) — void

(struct-specifier) struct (identifier)

struct (identifier) { (struct-declaration-list) }
struct { (struct-declaration-list) }
(struct-declaration-list)
struct-declaration-sequence)
(struct-declaration-sequence)

struct-declaration-sequence) (struct-declaration)

A

(
(struct-declaration)
(
(

(struct-declaration) type-specifier) (declarator-list) ;

(init-declarator-list) (init-declarator)
(init-declarator-list) ; (init-declarator)
(init-declarator) (declarator)
(declarator) = (initializer)
(initializer) (expression)
{}

{ (initializer-list) }
(initializer-list) (initializer-list-items)

(initializer-list-items) (initializer)

L

(initializer-list-items) , (initializer)

Syntax

(declarator)

(embedded-declarator)

—
(embedded-declarator) — (direct-declarator)
—

(pointer-declarator)

(pointer-declarator) — * (embedded-declarator)

(direct-declartor)

(type-name)

(abstract-declarator)
(embedded-abstract-declarator)

(abstract-pointer-declarator)

(abstract-direct-declarator)

Lertl

Ll

((embedded-declarator))

(identidier)

(direct-declarator) [(constant-expression)]
(direct-declarator) ((parameter-list))
(direct-declarator) ()

type-specifier)
type-specifier) (abstract-declarator)

abstract-direct-declarator)
abstract-pointer-declarator)

(

(

(embedded-abstract-declarator)

(

(

* (embedded-abstract-declarator)
*

Y

((embedded-abstract-declarator))

[(constant-expression)]

(abstract-direct-declarator) [(constant-expression)]
((parameter-list))

(abstract-direct-declarator) ((parameter-list))
(abstract-direct-declarator) ()

0

1.2 Storage classes and types

(declarator-list) (declarator)

—
— (declarator-list) , (declarator)

(parameter-list) — (parameter-declaration)
— (parameter-list) , (parameter-declaration)
—

(parameter-declaration) (type-specifier) (declarator)

(constant-expression) — (logical-or-expression)

(condition) — (assignment-expression)
—

(expression) (assignment-expression)

(assignment-expression) logical-or-expression)
unary-expression) = (assignment-expression)

unary-expression) += (assignment-expression)

L

o~ o~~~

unary-expression) -= (assignment-expression)

Syntax

(logical-or-expression)
(logical-and-expression)

(equality-expression)

(relational-expression)

(additive-expression)

(multiplicative-expression)

L

(unary-expression)

(address-of
(pointer-dereference
(unary-plus
(unary-minus
(prefix-plusplus

(prefix-minusminus

)
)
)
)
)
)

logical-and-expression)

logical-or-expression) | | (logical-and-expression)
equality-expression)

logical-and-expression) && (equality-expression)
relational-expression)

equality-expression) == (relational-expression)
equality-expression) != (relational-expression)
additive-expression)

relational-expression) < (additive-expression)

(

(

(

(

(

(

(

(

()

(relational-expression) <= (additive-expression)
(relational-expression) >= (additive-expression)
(relational-expression) > (additive-expression)
(multiplicative-expression)

(additive-expression) + (multiplicative-expression)
(additive-expression) - (multiplicative-expression)
(unary-expression)

(multiplicative-expression) * (unary-expression)
(multiplicative-expression) / (unary-expression)

(

multiplicative-expression) % (unary-expression)

postfix-expression)
address-of)
pointer-dereference)

(

(

(
(unary-plus)
(unary-minus)
(prefix-plusplus)
(prefix-minusminus)

! (unary-expression)
sizeof (unary-expression)
sizeof ((type-name))

& (postfix-expression)

* (unary-expression)

+ (unary-expression)

- (unary-expression)

++ (unary-expression)

e

-- (unary-expression)

1.2 Storage classes and types

(postfix-expression)

(function-call)

(argument-expression-list)

IR

(primary-expression)

(compound-statement)
(block-item-list)
(block-item)

(local-declaration)

(statement)

primary-expression)

function-call)

postfix-expression) [(expression)]
postfix-expression) . (identifier)
) -> (identifier)
)
)

postfix-expression

—~ e~

)
(argument-expression-list))

postfix-expression
expression)

(
(
(
(
(postfix-expression
(
(
(
(

argument-expression-list) , (expression)

identifier)
constant)

string-literal)

(
(
(
(

Ll

(assignment-expression))

{}

{ (block-item-list) }
(block-item)

block-item-list) (block-item)
local-declaration)
statement)

U A AR A A

o~ o~~~

declaration)

compound-statement)
expression-statement)

if-statement)

for-statement)
return-statement)

break-statement)

A

(
(
(
(while-statement)
(
(
(
(

continue-statement)

10 Syntax

(expression-statement) — (expression) ;

(if-statement) if ((condition)) (compound-statement)

if ((condition)) (compound-statement) else (compound-statement)

if ((condition)) (compound-statement) (else-if-list) else (compound-statement)
(else-if)

(else-if-list) (else-if)

else if ((condition)) (compound-statement)

(else-if-list)

Lrrbtd

(else-if)

(while-statement) —— while ((condition)) (compound-statement)

(for-statement) — for ((for-expressions)) (compound-statement)
(for-expressions) — (initial-clause) (for-condition) ; (for-increment)
(initial-clause) — (for-declaration)
— (expression) ;
—
(for-declaration) — (declaration)
(for-increment) — (expression)
—
(for-condition) — (condition)
—

(return-statement) — return;

(return-statement) —— return;

— return (expression) ;

1.2 Storage classes and types 11

(break-statement) —— break;
(continue-statement) — continue ;

(constant) — (integer-constant)
— (character-constant)
-

(bool-constant)

(integer-constant) —— decimal-constant
— octal-constant
— hexadecimal-constant

(character-constant) — char-constant

(bool-constant) — true
false

(string-literal) — (string-literal-items)
(string-literal-items) ~— string-literal
— (string-literal-items) string-literal

12

Syntax

	Syntax
	Structure of a C program
	Storage classes and types

