Sample solution

Content

#include <cmath>
#include <cstddef>
#include <memory>
#include <gdk-pixbuf/gdk-pixbuf.h>
#include <printf.hpp>
#include <hpc/aux/hsvcolor.hpp>
#include <hpc/aux/rgbcolor.hpp>
#include <hpc/cuda/check.hpp>
#include <hpc/cuda/copy.hpp>
#include <hpc/cuda/gematrix.hpp>
#include <hpc/cuda/properties.hpp>
#include <hpc/matvec/gematrix.hpp>
#include <hpc/matvec/matrix2pixbuf.hpp>

using T = double;

using namespace hpc;

template<
   template<typename> class Matrix,
   typename T,
   Require< DeviceGe<Matrix<T>>, DeviceView<Matrix<T>> > = true
>
__global__ void init_matrix(Matrix<T> A) {
   std::size_t i = threadIdx.x + blockIdx.x * blockDim.x;
   std::size_t j = threadIdx.y + blockIdx.y * blockDim.y;

   const auto PI = std::acos(-T(1.0));
   const auto E = std::exp(T(1.0));
   const auto E_POWER_MINUS_PI = std::pow(E, -PI);

   std::size_t N = A.numRows();
   T value;
   if (j == N-1) {
      value = std::sin(PI * (T(i)/N)) * E_POWER_MINUS_PI;
   } else if (j == 0) {
      value = std::sin(PI * (T(i)/N));
   } else {
      value = 0;
   }
   A(i, j) = value;
}

template<typename T>
constexpr T int_sqrt(T n) {
   T result = 1;
   while (result * result <= n) {
      ++result;
   }
   return result - 1;
}

int main() {
   using namespace hpc::matvec;
   using namespace hpc::cuda;
   using namespace hpc::aux;

   const std::size_t max_threads = get_max_threads_per_block();
   const std::size_t BLOCK_DIM = int_sqrt(max_threads);
   const std::size_t GRID_DIM = 2;
   const std::size_t N = BLOCK_DIM * GRID_DIM;

   GeMatrix<T> A(N, N, Order::ColMajor);
   DeviceGeMatrix<T> devA(A.numRows(), A.numCols(), Order::ColMajor);
   copy(A, devA);
   dim3 block_dim(BLOCK_DIM, BLOCK_DIM);
   dim3 grid_dim(GRID_DIM, GRID_DIM);
   init_matrix<<<grid_dim, block_dim>>>(devA.view());
   copy(devA, A);

   auto pixbuf = create_pixbuf(A, [](T val) -> HSVColor<T> {
      return HSVColor<T>((1-val) * 240, 1, 1);
   }, 8);
   gdk_pixbuf_save(pixbuf, "jacobi.jpg", "jpeg", nullptr,
      "quality", "100", nullptr);
}