
Measuring the Effectiveness of a Test
(Converting Software Testing from an Art to a Science)

Harry M. Sneed
Software Test Engineer

ANECON GmbH., Vienna, Austria

Abstract: The proposed paper presents a set of metrics developed by the author while
working as a test consultant for a Viennese software house from 1998 until 2003.  They were
intended to be used to measure the performance of the test department there, but they are
equally valid  for measuring test operations anywhere. In fact, with these metrics it should be
possible to convert software testing from an art as perceived by Glenford Meyers in 1975 to a
science as defined by Lord Kelvin in 1875. The metrics were obtained using the
Goal/Question/Metric Method of Basili and Rombach and were refined through many years
of practical application. They are supported by a set of tools designed for both static and
dynamic analysis as well as for evaluating the results of both.
Keywords: Test Management, Test Objectives, Defect Analysis, Test Coverage, Software
Metrics, Test Metrics.



1) Lord Kelvin on Measurement
2) Tom DeMarco on Measurement
3) Test Metric Categories
4) Testability at the Unit Test Level
5) Testability at the Integration Test Level
6) Testability at the System Test Level
7) Measuring the Complexity of Test Cases
8) Measuring the Quality of Test Cases
9) Test Case Analysis Report for FIVS

10) FIVS Test Case Quantity
11) FIVS Test Case Complexity & Quality
12) Calculating Test Costs
13) Estimating the Number of Test Cases
14) Calculating Test Effort with COCOMO-II
15) Metrics for Measuring Test Coverage
16) Metrics for Evaluating Test Effectiveness
17) Ratio of Tester to User Error Reports
18) Test Metrics from the GEOS Project
19) Defect Analysis in the GEOS Project
20) Test Metric Conclusion
21) More Research on Test Metrics required

PRESENTATION



„When you can measure what you are 
speaking about, and express it in 

numbers, you know something about 
it, but when you cannot measure it, 

when you can not express it in 
numbers, then your knowledge is of a 

meagure and unsatisfactory kind.“
from Lord Kelvin

British physicist, 1882 

Lord Kelvin on Measurement



„You can not control what you can not 
measure. Mesurement is the

prerequisite to management control. “

from Tom DeMarco
American Consultant, 1982 

Tom DeMarco on Measurement



• Metrics for assessing the testability of 
the software

• Metrics for evaluating test cases
• Metrics for calculating test costs
• Metrics for measuring test coverage
• Metrics for assessing test effectiveness

Test Metric Categories



• Unit Complexity = Size * Cohesion * Coupling
• Control path complexity = Control flow branches /

Statements
• Interface complexity = Interfaces + Parameters / 

Statements
• Data complexity = Conditional variables / 

Variables used
• Unit Testability = 1 - Average 

(Unit-Complexity, Control-Flow-Complexity, 
Interface-Complexity, Data-Complexity)

Testability at the Unit Test Level



• Interface volume = Interfaces / 
Interfaces + Components

• Interface complexity = Parameters / 
Parameters + Interfaces

• Database access frequency = Components  without
Database accesses / Components

• Interface Visibility = invisible Interfaces / Interfaces
• Integration Testability = 1 - Average 

(Interface-Volume, Interface-Complexity, Database-
Access Frequency, Interface-Visibility)

Testability at the Integration Test Level



• User Interface Volume = User Interfaces + Controls /
System Variables

• System Interface Volume = System Interfaces + Data
Elements / System Variables

• Database Volume = Tables + Attributes / 
System Variables

• UseCase Volume = UseCases / System Functions
• System Testability = 1 - Average 

(User-Interface-Volume, System-Interface-Volume, 
Database-Volume, UseCase-Volume)

Testability at the System Test Level



• Test data complexity = test data types / 
test data instances

• Test data density = test control variables / test data
• Test case volume  = 1 – (test cases / 

test data instances)
• Test case intensity  = 1 – (use cases / test cases)
• Test case complexity = Average 

(Test data complexity, Test data density, Test case 
volume, Test case intensity)

Measuring the Complexity of Test Cases



• Test case impact =  1 – ( test cases / 
impacted functions )

• Test case reusability  =  ( automated test cases /
test cases )

• Test case conformity  = ( formally correct test
case attributes / total test case attributes )

• Test case affectivity  = ( weighted errors detected /
test cases executed )

• Test case quality = Average 
(Test case impact, test case reusability, test case 
conformity, test case affectivity)

Measuring the Quality of Test Cases



+-----------------------------------------------------+
| Module:   GWMBRACO Number of Test Cases = 106 |
| Module:   GWMDERIV Number of Test Cases = 761   |
| Module:   GWMEMIBE Number of Test Cases = 128   |
| Module:   GWMEMISS Number of Test Cases = 325   |
| Module:   GWMEXDAT Number of Test Cases = 167   |
| Module:   GWMFETAG   Number of Test Cases = 139   |
| Module:   GWMFI Number of Test Cases = 3070 |
| Module:   GWMFIBEZ Number of Test Cases = 880   |
| Module:   GWMFIKAT Number of Test Cases = 597 |
| Module:   GWMFIKNU Number of Test Cases = 341   |
| Module:   GWMIDENT Number of Test Cases = 886   |
| Module:   GWMINDX Number of Test Cases = 838   |
| Module:   GWMINSKA Number of Test Cases = 168   |
| Module:   GWMINVRL Number of Test Cases = 40 |
| Module:   GWMKURS Number of Test Cases = 133   |
| Module:   GWMRAFWZ Number of Test Cases = 240   |
+-----------------------------------------------------+
| Modules =    167 Number of Test Cases = 58931 |
+-----------------------------------------------------+

Test Case Analysis Report for FIVS



Test Case Quantity
+-----------------------------------------------------+
| FIVS     Total Number of Functions tested = 217 |
| FIVS     Total Number of Modules  tested = 167 |
| FIVS     Total Number of Projects tested = 10 |
| FIVS     Total Number of System TestProcs = 259 |
| FIVS     Total Number of System TestCases = 13634 |
| FIVS     Total Number of Online TestCases = 5689 |
| FIVS     Total Number of Batch    TestCases = 49 |
| FIVS     Total Number of Interfac TestCases = 7896 |
| FIVS     Total Number of Testcase Types = 7 |
| FIVS     Total Number of Test Deficiencies = 36309 |
| FIVS     Total Number of Major Deficiencies = 7645 |
| FIVS     Total Number of Media Deficiencies = 276 |
| FIVS     Total Number of Minor Deficiencies = 28388 |
+-----------------------------------------------------+

FIVS Test Case Quantity



Test Case Complexity
+-----------------------------------------------------------+
| FIVS Testcase  Data Complexity Ratio    =     0.765   |
| FIVS Testcase Test Density Ratio = 0.554   |
| FIVS Testcase Test Intensity Ratio   = 0.810   |
| FIVS Testcase Test Volumne Ratio    = 0.231   |
| FIVS     Overall   Test Complexity Rating =     0.590   |
+-----------------------------------------------------------+
Test Case Quality
+-----------------------------------------------------------+
| FIVS Testcase  Impact Ratio    =     0.769   |
| FIVS TestCase  Reusability Ratio  =     0.432   |
| FIVS TestCase  Conformity Ratio    =     0.560   |
| FIVS TestCase  Coverage Ratio    =     0.984   |
| FIVS     Overall   Test Quality    Rating = 0.686   |
+-----------------------------------------------------------+

FIVS Test Case Complexity & Qualtity



Primary factors for estimating Test 
costs 

• Number of Test Cases required
• Testability of the Software
• Test Productivity = Test Cases/Tester Days

Calculating Test Costs



Estimating the Number of Test Cases

• Blackbox-Test Cases =  {UseCases x Steps x Rules }
+ {GUI‘s  x Objects x States }
+ {DB-Tables x Tuples x Instances }

• Greybox-Test Cases =  {Interfaces  x  Parameters  x Values } 

• Whitebox-Test Cases =  {Methods   x  Method Invocations }
+  {Objects x Object states }
|   Control paths



{   Number Test Cases} ** SE
Test Effort = ST  {    Test Productivity   }   x   Testability Factor

Where ST = System Type (0,5:4)
and      SE = Scaling Exponent (0,91:1,23)

Testability Factor = 0,5 / Testability Ratio

If  the standard test productivity = 20 test cases per day and there are 
1000 test cases to be tested and the testability ratio is 0.4 with a 
scaling exponent of 1,10 for a distributed system the testing effort will 
be:

(((1000/20 = 50) ** 1.10 = 74) x 1.25 = 92.5) x 2 = 185 Days   

Calculating Test Effort with COCOMO-II



Requirements Coverage =       Tested Requirements
Specified Requirements    

Architectural Coverage =       Tested Architectural Features
Architectural Features 

Code Coverage          =       Tested Statements, Branches, Paths
Statements, Branches, Paths, States 

Test Case Coverage      =        Executed Test Cases
Specified Test Cases 

Metrics for Measuring Test Coverage



Test Effectivness =  Weighted Errors reported by Testers
Total weighted Errors reported

Total weighted Errors = Tester reported + User reported Errors 

Test Confidence =  1  - { weighted Errors  } x   Test Coverage Rate
executed Test Cases 

Metrics for evaluating Test Effectiveness



Ratio of Tester to User Error Reports

Errors
found 
by the Testers

Errors
found 
by the
End Users

This should
be > 85%

This should
be < 15%

indicates
Test Operation
is not effective
enough

25%

75%



Test Metrics from the GEOS Project

GUI Panels Reports Parameters Test Data TestCases (soll) TestCases
225 94 674882 788384 39232 36735
363 400 307879 761315 38942 37521
67 28 37118 16862 2845 1411
35 46 3719 598 1703 1343

104 37 148796 78300 2177 2145
111 10 129220 95579 925 793
905 615 1301614 1741038 85824 79948



Defect Analysis in the GEOS Project

Comparison of SubSystems

Defects Test Quality Defect per Tc DefectDensity DefectDensity
897 0.829 0.119 0.013 0.0022
196 0.763 0.016 0.004 0.0001
140 0.851 0.501 0.002 0.0011
256 0.809 0.808 0.004 0.0022
10 0.901 0.088 0.001 0
36 0.684 0.098 0.001 0.0001

1535 0.722 0.088 0.014 0.0006
0.822
0.178



• Metrics for measuring Testability
• Metrics for assessing the quantity, quality & 

complexity of the Test Cases
• Metrics for calculating Test Costs
• Metrics for measuring Test Coverage
• Metrics for assessing the benefits of the Test 

Operation

Test Metric Conclusion

Five categories of Test Metrics have been
presented here:



The metrics presented here are intended to make testing 
more transparent. Testing has evolved into a major 
resource consumer and cost driver. Many managers are 
beginning to ask what they are getting for the money they 
are investing in testing. What are the benefits of testing? 
This study has offered two metrics for helping to answer 
that question. There are certainly others to be discovered. 
That is why this study can only be considered as a first step 
in the process of transforming software testing from an art 
into a science. With more research coupled with empirical 
studies it may someday even be possible to understand 
what we are doing according to the criteria of Lord Kelvin.

More Research on Test Metrics required


