
SOQUA 2005
Norbert Oster

22.09.2005
page 1

Department of Software Engineering
University of Erlangen-Nuremberg

SOQUA 2005

Automated Generation and Evaluation
of Dataflow-based Test Data
for Object-Oriented Software

Norbert Oster
University of Erlangen-Nuremberg (Germany)

Department of Software Engineering (Informatik 11)

SOQUA 2005
Norbert Oster

22.09.2005
page 2

Department of Software Engineering
University of Erlangen-Nuremberg

Agenda

� Motivation and goal

� Introduction to dataflow based testing

� The .gEAr-Project
� test data generation with evolutionary algorithms (global optimisation)
� source code instrumentation
� static analysis of byte code
� analysis of fault-revealing capability by means of mutation analysis

� Experimental results

� Summary

SOQUA 2005
Norbert Oster

22.09.2005
page 3

Department of Software Engineering
University of Erlangen-Nuremberg

Functional vs. structural testing
� Functional testing

� test cases derived from specification (code seen as black-box)
� focuses on expected/specified behaviour only

� Structural testing
� considers unexpected functionality as a result of combinations of

possible intended operations
(based on code structure: code seen as white-box)

� Effort
� existing tools usually just measure the coverage achieved
� very few tools support tester with hints on how to increase coverage
� fully automated test case generation based on deterministic static

analysis is in general impossible
� the result of each test run must be checked against specification

SOQUA 2005
Norbert Oster

22.09.2005
page 4

Department of Software Engineering
University of Erlangen-Nuremberg

Vision

Test Data
Generator

System Under Test

Parameters Optimal
test data set

self-(re)configuration

� Tester’s desire:

i.e. high coverage with
small test set size

e.g. interface of SUT,
min/max number of
test cases

SOQUA 2005
Norbert Oster

22.09.2005
page 5

Department of Software Engineering
University of Erlangen-Nuremberg

Class structure of testing techniques

according to Liggesmeyer:
class structure of dynamic test techniques

dynamic techniques

structural

control flow

data flow

statement coverage
branch coverage

condition coverage

LCSAJ test
boundary interior test
structured path test

DU criteria

required k-tuples
data context coverage

all defs
all p-uses
all c-uses

all p-uses/some c-uses
all c-uses/some p-uses

functional

diversified

all uses
all DU-paths

mutation test
back to back test

equivalence partitioning
cause effect graphing

regression test

simple
condition/decision
minimal multiple

modified cond./decision
multiple

done
ongoing
planned

SOQUA 2005
Norbert Oster

22.09.2005
page 6

Department of Software Engineering
University of Erlangen-Nuremberg

Original dataflow criteria by Rapps/Weyuker

� Motivation
Just as one would not feel confident about the correctness

of a portion of a program which has never been executed,
we believe that if the result of some computation has never been used,

one has no reason to believe that the correct computation has been performed
Sandra Rapps / Elaine J. Weyuker (1982/1985)

� Basis of Dataflow – Oriented Testing
� extended variant of control flow graph, annotated with data attributes
� so-called data flow attributed control flow graph

� Usage of Variables
� after memory allocation
� until deletion
three different types of operations can be carried out

SOQUA 2005
Norbert Oster

22.09.2005
page 7

Department of Software Engineering
University of Erlangen-Nuremberg

Dataflow relevant events
� def definition

� associated to corresponding nodes of control flow graph containing
variable defining (not declaring!) instruction

� e.g. x = f();

� c-use computational use
� associated to corresponding nodes of control flow graph containing

computing instruction
� e.g. f(x + y);

� p-use predicative use
� associated to all edges of control flow graph going out from node

containing predicate expression in order for branch coverage to be
subsumed by most data-flow testing criteria

� e.g. if(x < y);

SOQUA 2005
Norbert Oster

22.09.2005
page 8

Department of Software Engineering
University of Erlangen-Nuremberg

Dataflow based testing criteria
� “all-defs“ – criterion requires to execute

�at least one def-clear sub-path from each def to at least one reachable use

� “all-p-uses“ – criterion requires to execute
�at least one def-clear sub-path from each def to each reachable p-use

� “all-c-uses“ – criterion requires to execute
�at least one def-clear sub-path from each def to each reachable c-use

� “all-p-uses/some-c-uses“ – criterion requires to execute
�at least one def-clear sub-path from each def to each reachable p-use

if a def does not reach a p-use, then to at least one reachable c-use
� “all-c-uses/some-p-uses“ – criterion requires to execute

�at least one def-clear sub-path from each def to each reachable c-use
if a def does not reach a c-use, then to at least one reachable p-use

� “all-uses“ – criterion requires to execute
�at least one def-clear sub-path from each def to each reachable use

� “all-du-paths“ – criterion requires to execute
�all (feasible) loop-free def-clear sub-paths from each def to each reachable use

SOQUA 2005
Norbert Oster

22.09.2005
page 9

Department of Software Engineering
University of Erlangen-Nuremberg

Subsumption hierarchy

S. Rapps / E. J. Weyuker 82
S. C. Ntafos 84
B. Korel / J. Laski 83

All paths

Ordered Context
Coverage+

Required K-
Tuples (K>2)+ All DU-Paths

Context Coverage+ Required Pairs+

2-dr interaction
Coverage All Uses

All c-uses

Statement
Coverage

Branch
Coverage

All c-Uses /
Some p-Uses

All defs

All p-Uses /
Some c-Uses

All p-Uses

Boundary
Interior

Multiple Condition
Coverage

Simple
Condition
Coverage

Structured
Path Test Modified

Condition/Decision
Coverage

Minimal
multiple

Condition/Decision
Coverage

TER 3
(LCSAJ)

TER n
(n>3)

SOQUA 2005
Norbert Oster

22.09.2005
page 10

Department of Software Engineering
University of Erlangen-Nuremberg

Why dataflow? – an example
public int f(int a, int b, String c) {

…
if (a > 0) {

c = null;
}
…
if (b < 0) {

b = c.length();
}
return b;

}

def(a), def(b), def(c)

p-use(a)

def(c)

c-use(c), def(b)

p-use(b)

c-use(b)

statement-coverage:
1-2-3-4-5-6-8 + 1-2-3-5-6-7-8 �PASS

branch-coverage:
1-2-3-4-5-6-8 + 1-2-3-5-6-7-8 �PASS

5

1

2

3

6

4

8

7

e.g. all-uses (requires pair 4/7):
1-2-3-4-5-6-7-8 �FAIL

p-use(a)

p-use(b)

SOQUA 2005
Norbert Oster

22.09.2005
page 11

Department of Software Engineering
University of Erlangen-Nuremberg

Faults revealed by dataflow testing
� During static analysis phase:

� dead code and syntactically endless loops
� uses statically reachable without prior definition
� definitions without statically reachable uses

� During dynamic execution phase:
� all-p-uses beyond branch coverage: additionally all possible data flows

the decision might rely upon, not just each decision once
� definitions with unreachable uses (even if syntactically reachable):

possible hint on logical program fault
� different kinds of data-processing faults (e.g. anomalous conversion or

type-inconsistent use) since all def/use-combinations must be
exercised

� in object-oriented software: state of an object and its change in terms
of definitions and uses of variables representing the state

SOQUA 2005
Norbert Oster

22.09.2005
page 12

Department of Software Engineering
University of Erlangen-Nuremberg

Specifics of object-oriented Java software
� “variables” must be distinguished:

� static fields
� local variables
� (object) fields: same name in each instance
� arrays: special “objects”

� multi-threading
� “pointer-aliasing” - equivalent

� different variables might denote the same instance

� multiple hidden def/use-associations
� due to field access through methods

� p-uses and c-uses hardly distinguishable
� because predicates may contain method calls

SOQUA 2005
Norbert Oster

22.09.2005
page 13

Department of Software Engineering
University of Erlangen-Nuremberg

.gEAr x.0
Local

Optimisation

… Condition Coverage,

Equiv. Partition, …

Back-to-back /

Mutation Testing

Mutation System

.gEAr 2.0Coverage Analysis

Static Analysis

.gEAr - Project
Dataflow oriented test-case generation
with Evolutionary Algorithms

.gEAr 1.0

Global

Optimisation

Dynamic Analysis

SOQUA 2005
Norbert Oster

22.09.2005
page 14

Department of Software Engineering
University of Erlangen-Nuremberg

Evolutionary Algorithms
� basic idea: Darwinian theory of evolution

Population i

Individual

Population i+1

Crossover

Initialisation

Evaluation (Fitness)

Selection*+Crossover*

Mutation*

aborting criteria fulfilled?

no

yes

output best result

Mutation

SOQUA 2005
Norbert Oster

22.09.2005
page 15

Department of Software Engineering
University of Erlangen-Nuremberg

Data structure (global optimisation)

TS1 TS2 TS3 … TSk-1 TSk
Population:Population:Population:Population:

TestSetCollection

TC1 TC2 TC3 … TCm-1 TCm
Individual:Individual:Individual:Individual:

TestSet (Testdatensatz)

Arg1 Arg2 Arg3 … Argn-1 Argn
Chromosome:Chromosome:Chromosome:Chromosome:

TestCase (Testfall)

Data
Gene:Gene:Gene:Gene:

Argument

SOQUA 2005
Norbert Oster

22.09.2005
page 16

Department of Software Engineering
University of Erlangen-Nuremberg

Examples: crossover, mutation
� Crossover (example: single point)

� Mutation of a test set
� add a test case
� remove a test case
� mutate a test case:

� add an argument

� remove an argument
� mutate an argument

TSm: TCm,x+1 TCm,n

TSc: TCc,1 TCc,x TCc,x+p

TSf: TCf,1 TCf,y... TCf,y+p

...

... ...TCc,x+1

TCf,y+1 ...

mother

child

father

TCm,1 TCm,x...

SOQUA 2005
Norbert Oster

22.09.2005
page 17

Department of Software Engineering
University of Erlangen-Nuremberg

Processing of source-code
source code

1) compile SDK-Source

Byte code

2a) instrument

add. libraries

instr. source code

3) compile

instr. byte code

4) generate SUT

SUT (Jar[s])

instr.-log

DU-Log

required for
processing

is processed

generates

DU-pairs/-paths

2b) analyse

SOQUA 2005
Norbert Oster

22.09.2005
page 18

Department of Software Engineering
University of Erlangen-Nuremberg

Distributed test case execution
.gEAr Workbench

Local Execution
Manager

Local Exec.
Engine

Local Exec.
Engine

…

Local Exec.
Engine

Local Exec.
Engine

Remote
Execution
Manager

Remote
Exec.

Engine

Remote
Exec.

Engine

Remote
Execution
Manager

Remote
Exec.

Engine

����

☺☺☺☺ ☺☺☺☺

����

Optimisation
Engine

SOQUA 2005
Norbert Oster

22.09.2005
page 19

Department of Software Engineering
University of Erlangen-Nuremberg

Execution of test cases

SUT (Jar[s])

instr.-log

Test case

DU-Log

0) send to REE

1) send to REE

REE: Remote Execution Engine

2) run SUT

runLog

3) interpret runLog

Coverage

4) send back

SOQUA 2005
Norbert Oster

22.09.2005
page 20

Department of Software Engineering
University of Erlangen-Nuremberg

SUT - interface
� Test case execution corresponds to running an “application”

with test parameters (a test case is therefore „String[] args“)
� thus calling: public static void main(String[] args)

� Internal data types in .gEAr:
� enumeration
� string (of any character or from a given set)
� integer (long with adjustable range; covering byte, char, int, long)
� floating point (double with adjustable range; covering float, double)

� Tester must specify in .gEAr:
� the arguments in terms of the types above

� Prototype: jUnit/.gEAr test driver generator

SOQUA 2005
Norbert Oster

22.09.2005
page 21

Department of Software Engineering
University of Erlangen-Nuremberg

Example „OutputParameters“: source code

class OutputParameters {
public static void main(String[] args) {

try {
System.out.println("Parameters:");
for (int i = 0; i < args.length; i++) {

System.out.println(" - <"+args[i]+">");
}
System.exit(0);

} catch (Exception e) {
System.exit(1);

}
}

}

SOQUA 2005
Norbert Oster

22.09.2005
page 22

Department of Software Engineering
University of Erlangen-Nuremberg

Example: instrumented source code
class OutputParameters implements InstanceId {

public int ___instanceId = DULog.getNewInstanceId(0);
public final synchronized int ___getInstanceId(){return ___instanceId;}
public static void main(String[] args){

DULog.enter(19);
try{

try{
((java.io.PrintStream)DULog.useStatic(1,System.out)).println

((java.lang.String)DULog.cp(2,"Parameters:"));
for(int i= (int)DULog.defLocal(3,0);

DULog.predResult(8,DULog.newPredicate(7),
(int)DULog.useLocal(4,i)
< DULog.useArrayLength(6,(java.lang.String[])DULog.useLocal(5,args)));

DULog.useDefLocal(9,i++))
{((java.io.PrintStream)DULog.useStatic(10,System.out)).println

((java.lang.String)DULog.cp(14," - <"+ (java.lang.String)DULog.useArray(13,
(java.lang.String[])DULog.useLocal(11,args),DULog.useLocal(12,i))+">"));

}
System.exit((int)DULog.cp(15,0));

} catch(Exception e) {DULog.exceptHandlerCall(18);DULog.defLocal(16);
System.exit((int)DULog.cp(17,1));

}
} finally{DULog.leave(20);}

}
}

„DULog“ short for „de.fau.cs.swe.sa.dynamicdataflowanalysis.rt.DULog“

SOQUA 2005
Norbert Oster

22.09.2005
page 23

Department of Software Engineering
University of Erlangen-Nuremberg

Example: instrumentation log
1 useStatic public static final java.io.PrintStream java.lang.System.out 4 31
2 cp public void java.io.PrintStream.println(java.lang.String) 4 43
3 defLocal int OutputParameters.main([Ljava.lang.String;).i 5 0
4 useLocal int OutputParameters.main([Ljava.lang.String;).i 5 39
5 useLocal [Ljava.lang.String; OutputParameters.main([Ljava.lang.String;).args 5 42
6 useArrayLength [Ljava.lang.String; OutputParameters.main([Ljava.lang.String;).args 5 42
7 newPredicate - 5 25
8 predResult - 5 25
9 useDefLocal int OutputParameters.main([Ljava.lang.String;).i 5 55
a useStatic public static final java.io.PrintStream java.lang.System.out 6 39
b useLocal [Ljava.lang.String; OutputParameters.main([Ljava.lang.String;).args 6 59
c useLocal int OutputParameters.main([Ljava.lang.String;).i 6 64
d useArray [Ljava.lang.String; OutputParameters.main([Ljava.lang.String;).args 6 59
e cp public void java.io.PrintStream.println(java.lang.String) 6 51
f cp public static void java.lang.System.exit(int) 8 36
10 defLocal java.lang.Exception e 9 0
11 cp public static void java.lang.System.exit(int) 10 36
12 exceptHandlerCall - 9 19
13 enter public static void OutputParameters.main(java.lang.String[])

PARA: [Ljava.lang.String; OutputParameters.main([Ljava.lang.String;).args 2 0
14 leave public static void OutputParameters.main(java.lang.String[]) 2 0

SOQUA 2005
Norbert Oster

22.09.2005
page 24

Department of Software Engineering
University of Erlangen-Nuremberg

Log-Events

CallPoint
DefineArray
DefineField
DefineLocalVariable
DefineStaticVariable
EarlyConstructorEnter
EnterClassInitialisation
EnterConstructor
EnterInstanceInitialisation
EnterMethod
ExceptionHandlerCall
LeaveClassInitialisation
LeaveConstructor
LeaveInstanceInitialisation
LeaveMethod
NewArray

NewCall
NewCallCompleted
NewPredicate
NewSwitchPredicate
PredicateResult
SwitchPredicateEquivalent
SwitchPredicateResult
UseArray
UseArrayLength
UseField
UseLocalVariable
UseStaticVariable
UseDefineArray
UseDefineField
UseDefineLocalVariable
UseDefineStaticVariable

SOQUA 2005
Norbert Oster

22.09.2005
page 25

Department of Software Engineering
University of Erlangen-Nuremberg

}

Example: Run-Log (application executed with 2 parameters)
0-NewThread
1-EnterMethod: "OutputParameters.main(java.lang.String[])"
2-DefineLocalVariable: "OutputParameters.main([Ljava.lang.String;).args"
3-UseStaticVariable: "java.lang.System.out"
4-CallPoint: "java.io.PrintStream.println(java.lang.String)" (virtual)
5-DefineLocalVariable: "OutputParameters.main([Ljav a.lang.String;).i"
6-NewPredicate
7-UseLocalVariable: "OutputParameters.main([Ljava.l ang.String;).i"
8-UseLocalVariable: "OutputParameters.main([Ljava.lang.String;).args"
9-NewInstance
10-UseArrayLength: "OutputParameters.main([Ljava.lang.String;).args.length"
11-PredicateResult [true]
[...]
17-UseDefineLocalVariable: "OutputParameters.main([Ljava.lang.String;).i"
[...]
29-NewPredicate
30-UseLocalVariable: "OutputParameters.main([Ljava. lang.String;).i"
31-UseLocalVariable: "OutputParameters.main([Ljava.lang.String;).args"
32-UseArrayLength: "OutputParameters.main([Ljava.lang.String;).args.length"
33-PredicateResult [false]
34-CallPoint: "java.lang.System.exit(int)" (virtual)
35-EndOfLog

def(i)

p-use(i)

c-use(i),
def(i)

p-use(i)

SOQUA 2005
Norbert Oster

22.09.2005
page 26

Department of Software Engineering
University of Erlangen-Nuremberg

Covered DU-pair browser

def

SOQUA 2005
Norbert Oster

22.09.2005
page 27

Department of Software Engineering
University of Erlangen-Nuremberg

Covered dataflow-annotated CFG

SOQUA 2005
Norbert Oster

22.09.2005
page 28

Department of Software Engineering
University of Erlangen-Nuremberg

BigFloat: Pareto-front of all-uses

SOQUA 2005
Norbert Oster

22.09.2005
page 29

Department of Software Engineering
University of Erlangen-Nuremberg

Static analysis and coverage measure
� dynamic analysis

� can determine the number of actually executed def/use-pairs
� achieved through introducing logging probes into source code
� sufficient for test case generation
� no adequate termination criterion in terms of coverage achieved

� static analysis
� determines number of def/use-pairs and all corresponding DU-paths
� program represented as Java Interclass Graph (JIG)
� performed in terms of symbolic execution of byte-code by applying a

fixed point iteration to each method

� determining coverage measure
� covered basic blocks of byte code logged by byte code instrumentation
� matching thus logged data with corresponding statically determined

information

SOQUA 2005
Norbert Oster

22.09.2005
page 30

Department of Software Engineering
University of Erlangen-Nuremberg

Analysis of fault-revealing capability
� problem (in general)

� high coverage alone does not guarantee a high quality of the test set

� solution
� back-to-back testing against “mutant” programs

� idea
� if the original program is correct and any slightly different version of it is

wrong, than a good test set should trigger differences in behaviour
during execution of the correct and any wrong version

� method
� mutate original program by introducing small changes (e.g. replacing

“<=“ by “<“), thus giving a set of slightly different programs
� execute each mutant and compare its behaviour with that of original

program, saying that the mutant is killed if a difference in behaviour
could be observed

� the higher the mutation score (ratio of killed mutants), the better the
test case/set is assumed to be w.r.t. its ability to detect faults

SOQUA 2005
Norbert Oster

22.09.2005
page 31

Department of Software Engineering
University of Erlangen-Nuremberg

Experimental results (coverage, quality)

1643

315
(96,0%)

353

42
(96,7%)

168

1511

DU-pairs
executed

(coverage)

345

37
(97,4%)

61

4
(100,0%)

26

145

branches
executed

(coverage)

61

3
(108)

3

(6)

2
(11)

3
(8)

17

(232)

test
cases

required

0+852=852
(64,79% / ~82%)

82
(1 / 2.639)

JDK-sort*
(integer-array sort)

47+576=623

(84,27% / 100%)

298

(2 / 8.931)

Huffman

(compression codec)

454+1516=19705.439
(27 / 113.046)

JDK-logging*
(logging facility)

1+226=227
(77,53% / ~86%)

38
(1 / 1.279)

Hanoi
(The Towers)

13+207=220
(71,82% / ~76%)

141
(2 / 4.080)

Dijkstra
(shortest path)

65+1463=1528

(76,77% / ~96%)

540

(3 / 17.526)

BigFloat

(arbitrary precision)

Mutants
class+tradition.
(mutat. score)

Size in LOC
(classes / bytes)

Project

without considering test driver
* extracted from JDK according to byte code coverage analysis

including potentially non-coverable entities

SOQUA 2005
Norbert Oster

22.09.2005
page 32

Department of Software Engineering
University of Erlangen-Nuremberg

Experimental results* (effort, variance)

3
3 / 3

2
2 / 2

2
2 / 2

2
2 / 2

Test set size
Average

Min / Max

64.2
39 / 96

368
368 / 368

Huffman encoding
~ 9:14

79.6
15 / 264

315
315 / 315

JDK integer-array sort
~ 6:58

63.2
25 / 165

213
213 / 213

Dijkstra‘s shortest path
~ 5:20

10.4
3 / 20

42
42 / 42

The Towers of Hanoi
~ 1:20

Generation
Average

Min / Max

Coverage
Average

Min / Max

Project
CPU-time**

* average over 5 runs: multi-objective aggregation (mutation rate: 25%)
coverage weight: 1 vs. test set size weight: 0.05

** resources on workbench host in min:sec (for 200 generations; test case execution parallelized on 6 PCs)
considering test driver

SOQUA 2005
Norbert Oster

22.09.2005
page 33

Department of Software Engineering
University of Erlangen-Nuremberg

Summary
� Motivation:

� functional testing covers only a subset of the “true functionality”
provided by a given code (neglecting Trojan horse behaviour)

� structural (especially dataflow) testing increases the chance of finding
abovementioned faults

� State-of-the-art in practice
� expensive test data generation
� expensive check of test results because of large test sets

� Proposed solution by means of .gEAr:
� maximise the coverage according to a given testing strategy
� minimise the number of test cases (=> reduced effort)
� achieve both goals by fully automated test set generation

