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e

P | rroscion @ Show how to evaluate (assess) software
—fer o Product quality
— Coupling » LaQuSo — Laboratory for Quality Software
— Dependency + Faculty of Computer Science and Mathematics,
| code Eindhoven University of Technology
duplication ¢ Verification and Validation of Software
— Malpractices

— Conclusions

e Examine the ability of existing tools (static
analysis) to determine a particular
software characteristic
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LaQuSo Stability

oo @ Stability = capability of the software
—reae - product to avoid unexpected effects from
| Gouping modifications of the software (ISO 9126)
—erare” @ How to assess stability?
" dupliation = ISO-metrics require knowledge on ‘*
— Malpractices ¢ History of the modifications, and
_ Gonclusions ¢ Impacts of the modification

= May be unavailable in practice

+ Discover instability before it ruins the software
= Alternative operationalisation is required!
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LaQuSo Specification - 5 issues

| macion @ OUr contribution: stability-related issues

|__ Package ™ Design:
decomposition
— Goupling ¢ Functional decomposition
| Dependency ¢ Coupling
Structure
| code ¢ Dependency structure
duplication

= Implementation
¢ Code duplication
¢ Implementation malpractices

e Assess stability by assessing these issues
e Apply our approach to a case study.

— Malpractices

— Conclusions
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o

| mescion @ Marklin toy railroad system

I foage o = Developed by TU/e students

— Coupling = 8 students

— S = Scheduling/security

 Gonimation = 9 packages, 164 classes, 17828 lines of code

— Malpractices

— Conclusions

L _ ”
aQuSo Functional decomposition

| moacion @ DiVision in @ number of units
e ion ® DOCUMentation vs. Implementation
— Coupling = Later changes based on the documentation
— Srhenaeney can have unexpected effects!
— Code

duplication
— Malpractices @ Case Study:
— Condlusions = The same units are present.

v Good
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LaQuSo .

| weacion @ DEQree of interdependence between a pair
| Package of units

decomposition
P> |— coupiing = “Call” relations

| Dependency

sewre . @ DOCUMentation vs. Implementation

— Code
duplication

— Malpractices

e Example tool: Sotograph
= Visualization of internal structure of a system

— Conclusions
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La@uSo

Coupling: Case study
" —
" Satistactory

. Sotograph
Train control \ Train control \
BS interface . ) \
Exceptions| BS interface Exceptions|
. Configu- X
Security . ) Configu-
t / ration Security it
HAL oo HAL
/ \ opology / \ Topology
Mértk"r Simulator| Mavrklin
contro .
control Simulator]
unit Tepzeley unit Topology
parser . parser
documentation Implementation
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LaQuSo

| Introduction

| Package
decomposition

— Coupling

| Dependency
Structure

— Code
duplication

— Malpractices

— Conclusions

Dependency structure

e Entire system of relations between
packages and classes

e Architectural anti-patterns
= Tangles

= Global/local butterflies

m Global/local breakables
m Global/local hubs

e Propagation of change
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La@uSo

| Introduction

|__ Package
decomposition

— Coupling

|__ Dependency
Structure

— Code
duplication

— Malpractices

— Conclusions

Case study
Tangle Global Hub (Global Global
Breakable Butterfly

O 0 O d,Q

O"”:':'O“‘C O:'O 0O
4 tangles 30 (22%) 62 (45%) 90 (66%)
longest — 24
elements) SA4J
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LaQuSo Propagation of change

| weacion @ GhAnges in one class can lead to changes
—raxae - in another class.
— Coupling
| Dependency
Structure o Case StUdy:
— Code
duplcation = On average, when an element (class or
[~ Malpractices package) is modified 46.3 other elements are
— Conclusions affected (350/0)

= For stable programs this value < 10%.

B
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LaQuSo Code duplication

| weacion @ Presence of identical or almost identical

—reace - code fragments

— Coupling = “Almost identical” — minor syntactical

| Dependency differences

—coe = Modification of a duplicated code should

propagate to other clones
= Some anti-patterns can be eliminated by
duplication without improving the design
e Tools
= IntelliJ IDEA 4.5
= Gemini

— Malpractices

— Conclusions
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LaQuSo

Case study: Code duplication

| meacion @ 27 duplication groups
— Package = Up to 18 lines of code

decomposition
— Coupling

| Dependency

swee @ Benchmark: InfoGlue

— Code
duplication m 153 Clone gI’OUpS

— Malpractices

— Conclusions

e CloneGroups(InfoGlue) :
CloneGroups(Trains) =

Methods(InfoGlue) : Methods(Trains)

{
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La@uSo

Case study: Code duplication

| mescion . ® 70% 0Of @ file = clone of the remaining files

|__ Package
decomposition

~ = e Duplicated LOC = 1270, 7%

— Code
duplication

1

e Kapser, Godfrey: on average: 5-10%.

— Malpractices

— Conclusions

mtisfactoryﬂ
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LaQuSo Implementation Malpractices (1)

e Programming practices that do not lead to an

| package erroneous execy_tion but can cause it when the
decomposition program IS mOdIerd

— Coupling

| Introduction

| Dependency i . .
Structure public boolean equals(Object switch) {
— Code

duplication return (getID() == ((Switch)switch).getID()):

— Malpractices }

—concusions @ Always called with switch instance of Switch
e Produces a casting error if called otherwise!

e equals was implemented 13 times
= 10 times like above
= 2 times equals always returns false
= Implemented correctly only once!
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P>

LaQuSo Stability assessment

| Introduction PaCkage . SOtOgraph gOOd
| Package decomposition
decomposition
—canng [Coupling Sotograph satisfactory
|__ Dependency
Structure
~amieaion  |Architecture SA4J poor
— Malpractices
— Conclusions

ode duplication |[Intellid IDEA [satisfactory
Gemini satisfactory

ESC/Java poor
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P>

LaQuSo Stability assessment

“Bad code compromises good design”

| Introduction

| Package
decomposition

| Goupling + Design is quite satisfactory
L Dependency s |[Mplementation
Structure
__Code < Violates the design
duplication . .
< package communication
< architecture

— Conclusions < Introduces malpractices
+ Our analysis provided insight in development
process
<« Emphasis on early stages of development (design)
« Lack of time and resources during the implementation

— Malpractices
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P>

La@uSo
Tools assessment

| esson @ COrTECt @nalysis requires tools ranging
_raage  from design analysis to code analysis
U a Ideally also requirements analysis

oupling . .
| Dependency = Tooling is really valuable

Structure y . . .
| Gode e Tools’ discoveries are consistent

duplication
— Malpractices L Effo rt

= Application : Low

— Conclusions

+ except for ESC/Java: High

= Interpretation: Medium
¢ except for SA4J: Low
+ except for ESC/Java: High
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LaQ@QuSo :

oo @ Stability can be operationalized in terms of
| Package tool-supported issues

decomposition

—cowing @ Measurements are clear, interpretation
—arane®  may be challenging
— Cod

amicain @ Assertion checking provides new insights:
- Malpractioes = Proof complexity = code complexity

[p> — Conclusions = Failure to prove correctness may be caused by
instability
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