
1

LaQuSo is an activity of Technische Universiteit Eindhoven

Looking for StabilityLooking for Stability

Joint Session Developer Track & Workshop on Joint Session Developer Track & Workshop on

Software Quality, Software Quality, Net.ObjectdaysNet.Objectdays 20052005

ErfurtErfurt (Germany)(Germany)

September 22nd, 2005

Dr. Cornelis Huizing,

Dr. Ruurd Kuiper,

Dr. Ir. Teade Punter,

Dr. Alexander Serebrenik

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 1/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Objective

� Show how to evaluate (assess) software
product quality

� LaQuSo – Laboratory for Quality Software

� Faculty of Computer Science and Mathematics,

Eindhoven University of Technology

� Verification and Validation of Software

� Examine the ability of existing tools (static
analysis) to determine a particular
software characteristic

2

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 2/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Stability

� Stability = capability of the software
product to avoid unexpected effects from
modifications of the software (ISO 9126)

� How to assess stability?

� ISO-metrics require knowledge on

� History of the modifications, and

� Impacts of the modification

� May be unavailable in practice

� Discover instability before it ruins the software

� Alternative operationalisation is required!

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 3/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Specification - 5 issues

� Our contribution: stability-related issues

� Design:

� Functional decomposition

� Coupling

� Dependency structure

� Implementation

� Code duplication

� Implementation malpractices

� Assess stability by assessing these issues

� Apply our approach to a case study.

3

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 4/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Case study

� Märklin toy railroad system

� Developed by TU/e students

� 8 students

� Scheduling/security

� 9 packages, 164 classes, 17828 lines of code

� 1 2 �

� 1
2 �

2 �

� 1

� 1
2 �

� 1
2 �

� 2 1 �

� 2

� 2
1 �

1 �

� 2
1 �

� 2
1 �

� 2
1 �

� 2
1 �

� 1
2 �

2 �

2 �

Railway topology Up to 5 trains can drive

simultaneously

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 5/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Functional decomposition

� Division in a number of units

� Documentation vs. Implementation

� Later changes based on the documentation
can have unexpected effects!

� Case study:

� The same units are present.

� Good

4

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 6/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Coupling

� Degree of interdependence between a pair
of units

� “Call” relations

� Documentation vs. Implementation

� Example tool: Sotograph

� Visualization of internal structure of a system

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 7/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Coupling: Case study

Implementation

Sotograph

Security
Configu-

ration

Train control

Topology

Simulator

Märklin

control

unit

HAL

BS interface
Exceptions

Topology
parser

Satisfactory

documentation

Security
Configu-

ration

Train control

Topology

Simulator

Märklin

control

unit

HAL

BS interface
Exceptions

Topology

parser

5

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 8/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Dependency structure

� Entire system of relations between
packages and classes

� Architectural anti-patterns

� Tangles

� Global/local butterflies

� Global/local breakables

� Global/local hubs

� Propagation of change

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 9/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Case study

90 (66%)62 (45%) 30 (22%)4 tangles

(longest – 24

elements)

Global Hub Global
Butterfly

Global
Breakable

Tangle

SA4J

6

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 10/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Propagation of change

� Changes in one class can lead to changes
in another class.

� Case study:

� On average, when an element (class or

package) is modified 46.3 other elements are

affected (35%).

� For stable programs this value < 10%.

Poor

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 11/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Code duplication

� Presence of identical or almost identical
code fragments

� “Almost identical” – minor syntactical
differences

� Modification of a duplicated code should
propagate to other clones

� Some anti-patterns can be eliminated by
duplication without improving the design

� Tools

� IntelliJ IDEA 4.5

� Gemini

7

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 12/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Case study: Code duplication

� 27 duplication groups

� Up to 18 lines of code

� Benchmark: InfoGlue

� 153 clone groups

� CloneGroups(InfoGlue) :

CloneGroups(Trains) ≈

Methods(InfoGlue) : Methods(Trains)

IntelliJ IDEA

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 13/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Case study: Code duplication

� 70% of a file = clone of the remaining files

� Duplicated LOC = 1270, 7%.

� Kapser, Godfrey: on average: 5-10%.

Gemini

Satisfactory

8

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 14/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Implementation Malpractices (1)

� Programming practices that do not lead to an
erroneous execution but can cause it when the
program is modified.

public boolean equals(Object switch) {

return (getID() == ((Switch)switch).getID());

}

� Always called with switch instance of Switch
� Produces a casting error if called otherwise!

� equals was implemented 13 times
� 10 times like above

� 2 times equals always returns false
� Implemented correctly only once!

ESC/Java

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 15/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Stability assessment

satisfactoryGemini

poorESC/JavaMalpractices

satisfactoryIntelliJ IDEACode duplication

poorSA4JArchitecture

satisfactorySotographCoupling

goodSotographPackage
decomposition

9

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 16/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Stability assessment

“Bad code compromises good design”

� Design is quite satisfactory

� Implementation

� Violates the design

� package communication

� architecture

� Introduces malpractices

� Our analysis provided insight in development
process

� Emphasis on early stages of development (design)

� Lack of time and resources during the implementation

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 17/19

Introduction

Package

decomposition

Conclusions

Dependency
Structure

Coupling

Malpractices

Code

duplication

Tools assessment

� Correct analysis requires tools ranging
from design analysis to code analysis
� Ideally also requirements analysis

� Tooling is really valuable

� Tools’ discoveries are consistent

� Effort
� Application : Low

� except for ESC/Java: High

� Interpretation: Medium
� except for SA4J: Low

� except for ESC/Java: High

10

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 18/19

Introduction

Package

decomposition

Conclusions

Dependency

Structure

Coupling

Malpractices

Code

duplication

Conclusions

� Stability can be operationalized in terms of
tool-supported issues

� Measurements are clear, interpretation
may be challenging

� Assertion checking provides new insights:

� Proof complexity = code complexity

� Failure to prove correctness may be caused by
instability

Visit Address:

TU/e campus, Hoofdgebouw 5.91

Den Dolech 2 Eindhoven

Mail Address:

HG 5.91

Postbus 513

5600 MB Eindhoven

Telephone:

040-2472526

Fax:

040-2474252

Email:

info@laquso.com

Web Site:

www.laquso.com

LaQuSo is an activity of Technische Universiteit Eindhoven

Thank you!

Any Questions?

Symposium VVSS2005 about

Verification & Validation of Software

24th of November in Eindhoven, NL

See: www.laquso.com

