La@uSo

* Laberatory for Quality Scftware
*

Looking for Stability

Joint Session Developer Track & Workshop on
Software Quality, Net.Objectdays 2005

Erfurt (Germany)
September 22nd, 2005

Dr. Cornelis Huizing,

Dr. Ruurd Kuiper,

Dr. Ir. Teade Punter,

Dr. Alexander Serebrenik

LaQuSo is an activity of Technische Universiteit Eindhoven

e

P | rroscion @ Show how to evaluate (assess) software
—fer o Product quality
— Coupling » LaQuSo — Laboratory for Quality Software
— Dependency + Faculty of Computer Science and Mathematics,
| code Eindhoven University of Technology
duplication ¢ Verification and Validation of Software
— Malpractices

— Conclusions

e Examine the ability of existing tools (static
analysis) to determine a particular
software characteristic

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 1/19

LaQuSo Stability

oo @ Stability = capability of the software
—reae - product to avoid unexpected effects from
| Gouping modifications of the software (ISO 9126)
—erare” @ How to assess stability?
" dupliation = ISO-metrics require knowledge on ‘*
— Malpractices ¢ History of the modifications, and
_ Gonclusions ¢ Impacts of the modification

= May be unavailable in practice

+ Discover instability before it ruins the software
= Alternative operationalisation is required!
oot L0u50 Enchoven 2005 2256p105_TP_Stabilty_Net Objectdays/ SoQua 2119

LaQuSo Specification - 5 issues

| macion @ OUr contribution: stability-related issues

|__ Package ™ Design:
decomposition
— Goupling ¢ Functional decomposition
| Dependency ¢ Coupling
Structure
| code ¢ Dependency structure
duplication

= Implementation
¢ Code duplication
¢ Implementation malpractices

e Assess stability by assessing these issues
e Apply our approach to a case study.

— Malpractices

— Conclusions

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 3/19

o

| mescion @ Marklin toy railroad system

I foage o = Developed by TU/e students

— Coupling = 8 students

— S = Scheduling/security

 Gonimation = 9 packages, 164 classes, 17828 lines of code

— Malpractices

— Conclusions

L _ ”
aQuSo Functional decomposition

| moacion @ DiVision in @ number of units
e ion ® DOCUMentation vs. Implementation
— Coupling = Later changes based on the documentation
— Srhenaeney can have unexpected effects!
— Code

duplication
— Malpractices @ Case Study:
— Condlusions = The same units are present.

v Good

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 5/19

LaQuSo .

| weacion @ DEQree of interdependence between a pair
| Package of units

decomposition
P> |— coupiing = “Call” relations

| Dependency

sewre . @ DOCUMentation vs. Implementation

— Code
duplication

— Malpractices

e Example tool: Sotograph
= Visualization of internal structure of a system

— Conclusions

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 6/19

La@uSo

Coupling: Case study
" —
" Satistactory

. Sotograph
Train control \ Train control \
BS interface .) \
Exceptions| BS interface Exceptions|
. Configu- X
Security .) Configu-
t / ration Security it
HAL oo HAL
/ \ opology / \ Topology
Mértk"r Simulator| Mavrklin
contro .
control Simulator]
unit Tepzeley unit Topology
parser . parser
documentation Implementation

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 7/19

LaQuSo

| Introduction

| Package
decomposition

— Coupling

| Dependency
Structure

— Code
duplication

— Malpractices

— Conclusions

Dependency structure

e Entire system of relations between
packages and classes

e Architectural anti-patterns
= Tangles

= Global/local butterflies

m Global/local breakables
m Global/local hubs

e Propagation of change

Copyright © LaQuSo Eindhoven 2005

O..
O-3d.

O
*O

22Sept05_TP_Stability Net Object days / SoQua 8/19

La@uSo

| Introduction

|__ Package
decomposition

— Coupling

|__ Dependency
Structure

— Code
duplication

— Malpractices

— Conclusions

Case study
Tangle Global Hub (Global Global
Breakable Butterfly

O 0 O d,Q

O"”:':'O“‘C O:'O 0O
4 tangles 30 (22%) 62 (45%) 90 (66%)
longest — 24
elements) SA4J

Copyright © LaQuSo Eindhoven 2005

22Sept05_TP_Stability_Net Object days / SoQua 9/19

LaQuSo Propagation of change

| weacion @ GhAnges in one class can lead to changes
—raxae - in another class.
— Coupling
| Dependency
Structure o Case StUdy:
— Code
duplcation = On average, when an element (class or
[~ Malpractices package) is modified 46.3 other elements are
— Conclusions affected (350/0)

= For stable programs this value < 10%.

B

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability Net Object days / SoQua 10/19

LaQuSo Code duplication

| weacion @ Presence of identical or almost identical

—reace - code fragments

— Coupling = “Almost identical” — minor syntactical

| Dependency differences

—coe = Modification of a duplicated code should

propagate to other clones
= Some anti-patterns can be eliminated by
duplication without improving the design
e Tools
= IntelliJ IDEA 4.5
= Gemini

— Malpractices

— Conclusions

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 11/19

LaQuSo

Case study: Code duplication

| meacion @ 27 duplication groups
— Package = Up to 18 lines of code

decomposition
— Coupling

| Dependency

swee @ Benchmark: InfoGlue

— Code
duplication m 153 Clone gI’OUpS

— Malpractices

— Conclusions

e CloneGroups(InfoGlue) :
CloneGroups(Trains) =

Methods(InfoGlue) : Methods(Trains)

{

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 12/19

La@uSo

Case study: Code duplication

| mescion . ® 70% 0Of @ file = clone of the remaining files

|__ Package
decomposition

~ = e Duplicated LOC = 1270, 7%

— Code
duplication

1

e Kapser, Godfrey: on average: 5-10%.

— Malpractices

— Conclusions

mtisfactoryﬂ

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 13/19

LaQuSo Implementation Malpractices (1)

e Programming practices that do not lead to an

| package erroneous execy_tion but can cause it when the
decomposition program IS mOdIerd

— Coupling

| Introduction

| Dependency i . .
Structure public boolean equals(Object switch) {
— Code

duplication return (getID() == ((Switch)switch).getID()):

— Malpractices }

—concusions @ Always called with switch instance of Switch
e Produces a casting error if called otherwise!

e equals was implemented 13 times
= 10 times like above
= 2 times equals always returns false
= Implemented correctly only once!

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 14/19

P>

LaQuSo Stability assessment

| Introduction PaCkage . SOtOgraph gOOd
| Package decomposition
decomposition
—canng [Coupling Sotograph satisfactory
|__ Dependency
Structure
~amieaion |Architecture SA4J poor
— Malpractices
— Conclusions

ode duplication |[Intellid IDEA [satisfactory
Gemini satisfactory

ESC/Java poor

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 15/19

P>

LaQuSo Stability assessment

“Bad code compromises good design”

| Introduction

| Package
decomposition

| Goupling + Design is quite satisfactory
L Dependency s |[Mplementation
Structure
__Code < Violates the design
duplication . .
< package communication
< architecture

— Conclusions < Introduces malpractices
+ Our analysis provided insight in development
process
<« Emphasis on early stages of development (design)
« Lack of time and resources during the implementation

— Malpractices

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 16/19

P>

La@uSo
Tools assessment

| esson @ COrTECt @nalysis requires tools ranging
_raage from design analysis to code analysis
U a Ideally also requirements analysis

oupling . .
| Dependency = Tooling is really valuable

Structure y . . .
| Gode e Tools’ discoveries are consistent

duplication
— Malpractices L Effo rt

= Application : Low

— Conclusions

+ except for ESC/Java: High

= Interpretation: Medium
¢ except for SA4J: Low
+ except for ESC/Java: High

Copyright © LaQuSo Eindhoven 2005 22Sept05_TP_Stability_Net Object days / SoQua 17/19

LaQ@QuSo :

oo @ Stability can be operationalized in terms of
| Package tool-supported issues

decomposition

—cowing @ Measurements are clear, interpretation
—arane® may be challenging
— Cod

amicain @ Assertion checking provides new insights:
- Malpractioes = Proof complexity = code complexity

[p> — Conclusions = Failure to prove correctness may be caused by
instability
Copyright © LaQuSo Eindhoven 2005 228ept05_TP_Stability_Net Object days/ SoQua 18/19

La@uSo

* Laboratery for Quality Scftware
*

Visit Address:
TU/e campus, Hoofdgebouw 5.91

Den Dolech 2 Eindhoven Thank you_/

Mail Address:
HG 5.91
Postbus 513

5600 MB Eindhoven Any QueStionS ’)

Telephone:
040-2472526
Fax:
040-2474252

nfo@laquso.com Symposium VVSS2005 about

Web Site:

Verification & Validation of Software
www.laquso.com

24t of November in Eindhoven, NL
See: www.laquso.com

LaQusSo is an activity of Technische Universiteit Eindhoven

10

