Software Quality Economics for Combining Defect-Detection Techniques

Stefan Wagner

wagnerst@in.tum.de

Software & Systems Engineering

Technische Universität München

Germany

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

Motivation

- Defect-detection techniques (reviews, tests, ...) are still the most important methods for the improvement of software quality
- Costs for such techniques are significant. According to Myers (1979) 50% of the total development costs are caused by testing. Jones (1987) assigns 30 – 40% to quality assurance and defect removal.
- Optimisation in this area can save money!
- Two possibilities:
 - 1. Develop new and *better* defect-detection techniques
 - 2. Use existing techniques in an optimal way

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

Quality Costs

- Quality costs are all costs associated with
 - preventing,
 - finding,
 - and correcting defective work
- Original models are derived from the manufacturing area
- Division into conformance and nonconformance costs
- There are derived metrics:
 - Return on Software Quality (ROSQ)
 - Net Present Value of the Software Quality Cash Flows (NPVCF)

Quality Cost Types

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Example
- 6. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Example
- 6. Conclusions

Overview

- How can we describe the relationships between the cost types?
- How do we measure them?
- Suitable to compare different defect-detection techniques
- Direct measurements as far as possible
- Estimations on the basis of the MTTF of faults and the severity of its consequences
- Predictions using software reliability models

Directly Measurable Costs

- Costs that can be directly measured or estimated accurately during the usage of a defect-detection technique
- Fixed initial investments: setup costs (csetup)
 - tools,
 - workstations, ...
- Dynamic part of the appraisal costs: execution costs $(c_{exec}(p))$
 - mainly personnel costs
 - hardware usage
- **Fault removal costs** for found faults ($c_{remv}(p)$)

Direct costs (c_{direct}) are the sum for all periods where the defect-detection technique was used.
Not Object Days 2005 SOCIA Developer Session Effort German

Prediction Using a Reliability Model

- External failure costs can be predicted
- Reliability models can predict the mean number of experienced failures
- **•** Fraction of a severity class s: P(s)
- Average cost of an external failure of severity class s:
 ^cext^(s)
- The future costs are then

$$c_{\text{fut}} = \sum_{i=n}^{u} \frac{\sum_{s=1}^{S} f(i) P(s) c_{\text{ext}}(s)}{(1+D)^{i}},$$

where *n* is the period in which we start the prediction, *u* is the upper limit of the prediction periods, f(i) is the number of failures in that period, and *S* is the highest severity class.

Estimation Using Expert Opinion

- Defect-detection Techniques also generate revenues by avoiding failure costs
- They can only be estimated by expert opinion
- Those costs never actually occur
- Saved external failure costs that are saved by finding and removing faults before releasing the software to the customer
- Basis are estimates for each fault
 - mean time to failure (MTTF)
 - severity of failure
- and old cost data for similar failures
- Results in the revenues r

Quality Economics

- Using the metrics established so far, the calculation of the quality economics is straight-forward
- We have
 - the directly measurable costs from the usage,
 - the predicted future costs during operation,
 - and the estimated revenues from saved costs
- Therefore, the net present value of the cash flows (NPVCF) is:

$$NPVCF = r - c$$
 direct $- c$ fut.

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

Characteristics for a Technique

- How can we characterise a defect-detection technique in general?
- Future costs contain costs for different techniques
- Revenues and direct costs are characteristic cash flows
- Those cash flows in relation to the effort spent for the technique result in a *characteristic curve*
- Starting with negative cash flows from initial investments
- With further effort it becomes positive as faults are found
- Finally, it reaches an area of satisfaction where it becomes more and more difficult to find faults

Similar to the so-called S-curve of software testing

Characteristic Cash Flows

Problems

- Establishment of such curves for different techniques requires extensive measurement experiments
- Curves from different projects must be normalised because of
 - different software sizes
 - different programming languages
 - different tester experiences
 - ۰...
- Investigation on which factors the curves depend are necessary

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

Technique A and B

Adjusted B

Combined A and B

Model of Diversity

- Littlewood et al. proposed a model of diversity of defect-detection techniques
- Difficulty function $\theta_A(i)$ that describes difficulty of technique A to find the fault i.
- It varies from one fault to another
- The ineffectiveness of a techique A is then:

$$\begin{split} P(A \text{ fails to detect a randomly chosen fault}) = \\ \sum_{i} p_{i}^{*} \cdot \theta_{A}(i) = E_{p^{*}}(\theta_{A}(i)), \end{split}$$

- p_i^* : probability distribution of the faults to be present
- E_{p^*} : the mean obtained with respect to this probability distribution.

Model of Diversity — Cont.

Proportion of faults that are found by a technique:

 $E_{p^*}(1 - \theta_A(i)) = \phi_A$

Proportion of the faults that could be found by both techniques:

$$E_{p^*}((1-\theta_A(i))\cdot(1-\theta_B(i))) = \phi_{AB}$$

- The result depends on the covariance of the difficulty functions of the techniques.
- A negative covariance means the techniques are strongly diverse and the effect will be small.
- A positive covariance makes the effect stronger.

Combination Function

The diversity model can be used as rough approximation in the function *comb*

$$comb(T, E, m) = \frac{m(\phi_T - \sum_{e \in E} \phi_{Te})}{\phi_T}$$

- \blacksquare m: monetary value from a technique T
- E: set of earlier used techniques

Reverse Function

- So far only the combination of isolated techniques can be estimated
- If we had data about the combination of two techniques, we would be interested in finding out how the techniques would have behaved in isolation.
- For this we define the reverse function:

$$\overline{\text{comb}}(T, E, m) = \frac{m \cdot \phi_T}{\phi_T - \sum_{e \in E} \phi_{Te}}$$

Economics Model

Two parts are affected by the combination

$$r' = comb(T, E, r)$$

$$c'_{remv} = comb(T, E, c_{remv})$$

- The new definitions can be substituted for the old ones
- The definitions using the reverse function <u>comb</u> are accordingly

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

Example

- No application to real project data
- Using example from Littlewood et al. and hypothetical cost data
- Railway signaling system
- Code checking (C)
 - csetup = 1000
 - *• cremv* = 200
 - cexec = 1000
 - r = 3000

Example — Cont.

- Testing (T)
 - csetup = 2000
 - $c_{remv} = 500$
 - cexec = 800
 - r = 5000
- $c_{fut} = 2000$ for both cases
- $NPVCF_C = -1200$
- $NPVCF_T = -500$
- Single applications are not profitable
- Naive combination would give NPVCF = 500

Diversity

Fault id	Checking	Testing
F11	Х	-
F12	-	-
F13	-	Х
F14	Х	-
F15	Х	-
F16	-	х
F17	-	Х
F18	X	Х

•
$$\phi_T = .52$$

•
$$\phi_{CT} = .28$$

TECHNISCHE

NUNCHEN

Results

Then the adjusted values are

$$r' = \operatorname{comb}(T, \{C\}, r) = \frac{5000 \cdot (.52 - .28)}{.52} = 2,293.05$$
$$c'_{remv} = \operatorname{comb}(T, \{C\}, c_{remv}) = \frac{200 \cdot (.52 - .28)}{.52} = 91.72$$

- The adjusted NPVCF is than -1,798.67
- The unadjusted value gives obviously a value far too high

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

- 1. Motivation
- 2. Types of Costs
- 3. Economics Model
- 4. Characteristics
- 5. Combination
- 6. Example
- 7. Conclusions

Conclusions

- Model of quality economics for defect-detection techniques based on
 - direct measurement,
 - prediction using software reliability models,
 - and estimation using expert opinion
- Concept of a characteristic curve for a technique
- Incorporation of the effects of combination
- Future work includes
 - Incorporation of maintenance costs
 - Quantification of lost sales, annoyed customers, ...
 - Application to concrete defect-detection techniques

