
1

Directed Random Testing*

Wolfram Schulte

Microsoft Research

Soqua 11/2006

Was formerly announced as: “Challenge Problems in Testing”

What my team does

•Static program verification & language design
–Verifying multi-threaded OO programs (Spec#)

–Verifying message passing contracts (Sing#)

–Integration of data via structural types and monads (Xen,Cω,C# V3)

•Runtime systems
–Task concurrency (Futures)

–Memory resilience (DieHard)

•Development systems
–Build/version/deploy

•Modeling and test
–Model-based testing (Spec Explorer)

–White-box testing (Mutt / Unit Meister/ PUT / PEX)

2

Why testing is hard…

void AddTest() {

ArrayList a = new ArrayList(1);

object o = new object();

a.Add(o);

Assert.IsTrue(a[0] == o);

}

Writing a test involves

•determining a meaningful sequence of method calls,

•selecting exemplary argument values (the test input values),

•stating assertions.

A test states both the intended behavior, and achieves certain code

coverage.

3

Outline

•Input generation

•Mock object generation

•Sequence generation

•Compositional testing

4

Test input generation

5

Problem definition

•Test Input Generation

–Given a statement s in program P, compute

input i, such that P(i) executes s

•Test Suite Generation

–Given a set of statements S in P, compute

inputs I, such that forall s in S, exists i in I: P(i)

executes s

6

Existing test generation techniques

void Obscure(int x, int y){
if (x==crypt(y)) error(); return 0;

}

•Static test case generation via symbolic execution

often cannot solve constraints (assumes error)

•Random testing via concrete execution
often cannot find interesting value (misses errors)

•Directed Random Testing/ Conc(rete & symb)olic
execution finds error: take random y, solve for x

7

8

Concolic execution

Generate a test suite for program P.

Algorithm for test suite generation:

We use a dynamic predicate Q over the program input.

0. set Q := true

1. choose inputs i such that Q(i) holds

2. execute P(i) and build up path condition P(i)

3. set Q := (Q and not P)

4. if Q <> false, goto (1.)

Remark: The choice in (1.) is the cornerstone of concolic execution. It can be
implemented in a variety of ways: as a random choice (e.g. for the initial
inputs), or as a depths-first/iterative deepening/breadth first/… search over
the logical structure of the constructed predicate Q, or using any existing
constraint solver.

9

class List {
int head;
List tail;

}

static bool Find(List xs,
int x){

while (xs!=null) {
if (xs.head == x)

return true;
xs = xs.tail;

}
return false;

}

Example: Concolic execution
Concrete Symbolic

values constraints
(Assignments) (Predicates)

1. Choose arbitrary value for x, choose null for xs

x = 517;
xs = null;

2. Negate predicate (xs== null)
choose new list with new arb. head

x = 517;
xs.head = -3;
xs.tail = null;

3. Negate both predicates, equivalent to
xs!=null && (xs.head == x || xs.tail != null)
let‟s choose xs.head!= x, thus xs.tail== xs

x = 517;
xs.head =-3;
xs.tail = xs;

xs== null

xs!=null &&
xs.head != x &&
xs.tail == null

CRASH!

 Cyclic list

10

Why concolic execution is needed

•Most .NET programs use unsafe/unmanaged code for legacy and
performance reasons

•Combining concrete execution and symbolic reasoning still works:
all conditions that can be monitored will be systematically explored

Calls to external world

Unmanaged x86 code

Unsafe managed .NET code (with pointers)

Safe managed .NET code

11

Code instrumentation for symbolic analysis

ldtoken Point::GetX
call __Monitor::EnterMethod
brfalse L0
ldarg.0
call __Monitor::NextArgument<Point>

L0: .try {
.try {

call __Monitor::LDARG_0
ldarg.0
call __Monitor::LDNULL
ldnull
call __Monitor::CEQ
ceq
call __Monitor::BRTRUE
brtrueL1
call __Monitor::BranchFallthrough
call __Monitor::LDARG_0
ldarg.0
…

ldtoken Point::X

call __Monitor::LDFLD_REFERENCE

ldfld Point::X

call __Monitor::AtDereferenceFallthrough

br L2

L1:

call __Monitor::AtBranchTarget

call __Monitor::LDC_I4_M1

ldc.i4.m1

L2:

call __Monitor::RET

stloc.0

leave L4

} catch NullReferenceException {

„ call __Monitor::AtNullReferenceException

rethrow

}

L4: leave L5

} finally {

call __Monitor::LeaveMethod

endfinally

}

L5: ldloc.0

ret

class Point { int x; int y;

public static int GetX(Point p) {

if (p != null) return p.X;

else return -1; } }

Prologue

Epilogue

Calls will perform

symbolic computation

Calls to build

path condition

Calls to build

path condition

Record concrete values

to have all information

when this method is called

with no proper context(The real C# compiler

output is actually more

complicated.)

12

Constraint solver

Finding solutions of constraint systems

Concolic execution

Theory(CIL)

constraints solutions

Th(Maps) Th(Integers)

•linear arithmetic

•non-linear

•machine numbers

Th(Floats) Th(Objects)

Arrays ObjectsStructs Int32 Int64

SAT Boolean Search

User-provided value factories Mock-objectsRandom values

Strings

Object Types

Closing the environment:

Generating mock objects

13

14

Testing with interfaces

Example

AppendFormat(null, “{0} {1}!”, “Hello”, “Microsoft”);

BCL Implementation

public StringBuilder AppendFormat(

IFormatProvider provider,

char[] chars, params object[] args) {

if (chars == null || args == null)

throw new ArgumentNullException(…);

int pos = 0;

int len = chars.Length;

char ch = '\x0';

ICustomFormatter cf = null;

if (provider != null)

cf = (ICustomFormatter)provider.GetFormat(typeof(ICustomFormatter));
…

15

Generating mock objects

•Introduce a mock class implementing the interface.
•Let an oracle provide the behavior of the mock methods.

public class MFormatProvider : IFormatProvider {

public object GetFormat(Type formatType) {
…
object o = call.ChooseResult<object>();
Assume.IsTrue(o is IFormatProvider);
return o;

}
}

•During symbolic execution, pick a new symbol to represent unknowns
•Collect constraints over symbols along each execution path
•Solve the constraints to obtain concrete values for each execution path
•During concrete execution, choose these concrete values

DEMO

Here is a simple test

which catches all

documented exceptions

and uses a mock

MFormatProvider

Fully automatic

test case generation!

Generated tests

exercise different paths

of the implementation

When run…

…produces the error

Method sequence generation

21

Problem definition

22

Given a class C with methods M.

Test Sequence Generation

–Given a statement s in a method of M, compute a
sequence of method calls c, such that c executes s

Test Sequence Suite Generation

–Given a set of statements S occurring in M,
compute a set of sequence of method calls C, such
that forall s in S, exists c in C: c executes s

We can only reach a statement s in a method m if we have proper
states and arguments available, so that the execution of m on
that state and argument triggers the execution of s

List l = new List();

object o = new object();

l.Append(o);

object p = l[l.Count-1];

We create new states of objects by calling

•constructors

•methods, if they
–modify this

–modify any other formal parameter

–return a new result

Observation

23

Plans are DAGs (They shows how to manufacture new

objects, arrays, boxed values, and mock objects for

interfaces and generics)

•Its nodes are objects

•Its edges are calls to constructors, methods, static fields,

whenever they return a new o

Plans

24

l o

l‟ p

List l = new List();

object o = new object();

Append(o);

object p = l[l.Count-1];

new new

.Append()

[l‟.Count-1]

Tests are concrete instances of plans

Plans
Call a method
•With symbol for primitive

argument types

•Using other plans for
reference argument
types

to provide objects

Tests
Call a method
•With concrete values for

primitive argument types

•Using simpler tests to
build objects

to observe behavior

Plan

Manager

Concolic

Execution

Plans

Feedback

Tests
25

Observation

During execution we monitor

•what fields a method actually reads and write

•what other methods a method actually calls

•which arguments actually matter

•which instructions are actually covered

26

Method sequence suite generation

(i) Phase: Learn dynamic behavior

–touch all methods once

–gives basic coverage

(ii) Phase: Apply strategies

–order plans so that
•readers appear after writers

•methods with coverage potential (transitively) are preferred

–prune plans: Don‟t use
•pure methods to extend plans, unless they return hidden

objects

•methods that throw exceptions to extend plans
27

Evaluation

•Between 30% and 85% branch coverage on all
dlls studied so far

•Found many errors: Nullreferences,
IndexOutOfRange , InvalidCasts, Non
termination

•Easy to combine with other dynamic checkers:
found many resource leaks, incorrect exception
handlings (by using fault injection), to be
continued…

28

29

Compositional Testing

1) Via Parameterized Unit Tests

2) Via Synthesized Specs

30

V1. Parameterized Unit Tests (PUT)

Adding parameters turns unit tests into
specifications

void AddAxiom(ArrayList a, object o) {
Assume.IsTrue(a != null);
int len = a.Count;
a.Add(o);
Assert.IsTrue(a[len] == o);

}

Allows to interpret PUT as axioms

ArrayList a, object o.
a!=null → let len = a.Count in a.Add(o) ∘a[len] == o

31

V1. Scale up

•Interpret functions in PUT as uninterpreted symbols

•Use PUTs as rewrite rules for theorem prover

Hashtable
Hashtable

Tests

Bag BagTests

executes

reuses

Implementations Parameterized Unit Tests

Application
Application

Testsreuses

32

V1. Evaluation

Datatype #
Ops

Input
size

Normal
PUTs

Excpt.
PUTs

Cases

Time
/s

Bugs
found

ArrayList 10 3 8 4 34 3.6 1

Enumerator 4 4 4 6 67 9.8 1

Hashtable 9 2 6 5 30 29.9

Bag (deep) 3 any 3 3 20 37.2

Bag (shallow) 3 any 3 3 9 2.3

LinkedList 3 10 3 0 64 3.6 1

RedBlackTree 3 8 3 0 457 427

V2. Compute Summaries

int isPositive(int x) {

if (x>0) return 1;

return 0;

}

int g(int x) {

if (x<0) return 0;

int y = crypt();

if (y == 100) return 0;

if (x<= 10) return 2;

}

33

Compute summary in

terms of input and state:

–x>0 ⇒ret = 1

–x ≤0 ⇒ret = 0

Use only functions that

prover can decide:

–x <0 ⇒ret = 0

–x≥0 ⋀x ≤10 ⇒ret = 2

V2. Algorithm

34

Compute summaries on the fly in a top down

fashion

–Execute f until reaches first function g

–Backtrack over g and compute summary for g

–Continue f with summary of g

Complexity

number of functions in program * number of paths pro function

Summary: Concolic execution has its limitations

•If there are >> 20 methods, don‟t test all combinations
–provide API protocol or parameterized scenarios for the

possible use

•If a complex function takes a complex data structure as
input, then either
–provide an invariant(don‟t use the API to generate the data-

structure), or

–(automatically) partition the function (based on cohesion) into
smaller units that can be tested independently

•If the constraint solver times out, then reduce the number
of paths for which constraints have to be solved, ie.
–apply compositional testing, i.e. generate summaries of used

methods and then use the summaries for solving constraints

35

36

Summary: Concolic execution works!

•Follows the small scope hypothesis; it generates
–small error revealing data-structures for test inputs

–short sequences of methods

•Works
–for TDD, DbC, and also for traditional test

–for mixed managed/unmanaged setting

–even when the constraint solver times out

–compositionally

•Only reports real errors

Thank you

References

–DART: P. Godefroid et al

–Cute: K. Sen et al.

–PUT/Unit Meister: N. Tillmann et al.

–D. Engler et al.

My address
http://research.microsoft.com/~schulte

37

http://research.microsoft.com/~schulte

