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What my team does

•Static program verification & language design
–Verifying multi-threaded OO programs (Spec#)

–Verifying message passing contracts (Sing#)

–Integration of data via structural types and monads (Xen,Cω,C# V3)

•Runtime systems
–Task concurrency (Futures)

–Memory resilience (DieHard)

•Development systems
–Build/version/deploy

•Modeling and test
–Model-based testing (Spec Explorer)

–White-box testing (Mutt / Unit Meister/ PUT / PEX)
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Why testing is hard…

void AddTest() {

ArrayList a = new ArrayList(1);

object o = new object();

a.Add(o);

Assert.IsTrue(a[0] == o); 

}

Writing a test involves

•determining a meaningful sequence of method calls,

•selecting exemplary argument values (the test input values),

•stating assertions.

A test states both the intended behavior, and achieves certain code 

coverage.
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Outline

•Input generation

•Mock object generation

•Sequence generation

•Compositional testing
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Test input generation
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Problem definition

•Test Input Generation

–Given a statement s in program P, compute 

input i, such that P(i) executes s

•Test Suite Generation

–Given a set of statements S in P, compute 

inputs I, such that forall s in S, exists i in I: P(i) 

executes s
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Existing test generation techniques

void Obscure(int x, int y){
if (x==crypt(y)) error(); return 0;

}

•Static test case generation via symbolic execution

often cannot solve constraints (assumes error)  

•Random testing via concrete execution
often cannot find interesting value (misses errors)

•Directed Random Testing/ Conc(rete & symb)olic
execution finds error: take random y, solve for x
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Concolic execution

Generate a test suite for program P.

Algorithm for test suite generation:

We use a dynamic predicate Q over the program input. 

0. set Q := true

1. choose inputs i such that Q(i) holds

2. execute P(i) and build up path condition P(i)

3. set Q := (Q and not P)

4. if Q <> false, goto (1.)

Remark: The choice in (1.) is the cornerstone of concolic execution. It can be 
implemented in a variety of ways: as a random choice (e.g. for the initial 
inputs), or as a depths-first/iterative deepening/breadth first/… search over 
the logical structure of the constructed predicate Q, or using any existing 
constraint solver.
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class List {
int head; 
List tail;

}

static bool Find(List xs, 
int x){

while (xs!=null) {
if (xs.head == x) 

return true;
xs = xs.tail;

}
return false;

}

Example: Concolic execution
Concrete Symbolic 

values constraints
(Assignments) (Predicates)

1. Choose arbitrary value for x, choose null for xs

x = 517; 
xs = null;

2. Negate predicate (xs== null)
choose new list with new arb. head 

x = 517;
xs.head = -3; 
xs.tail = null;

3. Negate both predicates, equivalent to
xs!=null && (xs.head == x || xs.tail != null)
let‟s choose xs.head!= x, thus xs.tail== xs

x = 517;
xs.head =-3; 
xs.tail = xs;

xs== null

xs!=null &&
xs.head != x &&
xs.tail == null

CRASH!

 Cyclic list
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Why concolic execution is needed

•Most .NET programs use unsafe/unmanaged code for legacy and 
performance reasons

•Combining concrete execution and symbolic reasoning still works:
all conditions that can be monitored will be systematically explored

Calls to external world

Unmanaged x86 code

Unsafe managed .NET code (with pointers)

Safe managed .NET code
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Code instrumentation for symbolic analysis

ldtoken Point::GetX
call __Monitor::EnterMethod
brfalse L0
ldarg.0
call __Monitor::NextArgument<Point>

L0: .try { 
.try { 

call __Monitor::LDARG_0
ldarg.0
call __Monitor::LDNULL
ldnull
call __Monitor::CEQ
ceq
call __Monitor::BRTRUE
brtrueL1
call __Monitor::BranchFallthrough
call __Monitor::LDARG_0
ldarg.0
…

ldtoken Point::X

call __Monitor::LDFLD_REFERENCE

ldfld Point::X

call __Monitor::AtDereferenceFallthrough

br L2

L1:

call __Monitor::AtBranchTarget

call __Monitor::LDC_I4_M1

ldc.i4.m1

L2:

call __Monitor::RET

stloc.0

leave L4

} catch NullReferenceException {

„ call __Monitor::AtNullReferenceException

rethrow

}

L4: leave L5

} finally {

call __Monitor::LeaveMethod

endfinally

}

L5: ldloc.0

ret

class Point { int x; int y;

public static int GetX(Point p) {

if (p != null) return p.X;

else return -1; } }

Prologue

Epilogue

Calls will perform

symbolic computation

Calls to build 

path condition

Calls to build 

path condition

Record concrete values 

to have all information 

when this method is called

with no proper context(The real C# compiler 

output is actually more 

complicated.)
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Constraint solver

Finding solutions of constraint systems

Concolic execution

Theory(CIL)

constraints solutions

Th(Maps) Th(Integers)

•linear arithmetic

•non-linear

•machine numbers

Th(Floats) Th(Objects)

Arrays ObjectsStructs Int32 Int64

SAT Boolean Search

User-provided value factories Mock-objectsRandom values

Strings

Object Types



Closing the environment:

Generating mock objects
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Testing with interfaces

Example

AppendFormat(null, “{0} {1}!”, “Hello”, “Microsoft”);

BCL Implementation

public StringBuilder AppendFormat(

IFormatProvider provider, 

char[] chars, params object[] args) {

if (chars == null || args == null)

throw new ArgumentNullException(…);

int pos = 0;

int len = chars.Length;

char ch = '\x0';

ICustomFormatter cf = null;

if (provider != null)

cf = (ICustomFormatter)provider.GetFormat( typeof(ICustomFormatter));
…
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Generating mock objects

•Introduce a mock class implementing the interface. 
•Let an oracle provide the behavior of the mock methods.

public class MFormatProvider : IFormatProvider {

public object GetFormat(Type formatType) {
…
object o = call.ChooseResult<object>();
Assume.IsTrue(o is IFormatProvider );
return o;

}
}

•During symbolic execution, pick a new symbol to represent unknowns
•Collect constraints over symbols along each execution path
•Solve the constraints to obtain concrete values for each execution path
•During concrete execution, choose these concrete values



DEMO

Here is a simple test

which catches all 

documented exceptions

and uses a mock 

MFormatProvider



Fully automatic

test case generation!



Generated tests

exercise different paths

of the implementation



When run…



…produces the error



Method sequence generation
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Problem definition
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Given a class C with methods M.

Test Sequence Generation

–Given a statement s in a method of M, compute a 
sequence of method calls c, such that c executes s

Test Sequence Suite Generation

–Given a set of statements S occurring in M, 
compute a set of sequence of method calls C, such 
that forall s in S, exists c in C: c executes s



We can only reach a statement s in a method m if we have proper 
states and arguments available, so that the execution of m on 
that state and argument triggers the execution of s

List l = new List();

object o = new object();

l.Append(o);

object p = l[l.Count-1];

We create new states of objects by calling

•constructors 

•methods, if they 
–modify this

–modify any other formal parameter

–return a new result

Observation
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Plans are DAGs (They shows how to manufacture new 

objects, arrays, boxed values, and mock objects for 

interfaces and generics)

•Its nodes are objects 

•Its edges are calls to constructors, methods, static fields, 

whenever  they return a new o 

Plans
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l o

l‟ p

List l = new List(); 

object o = new object();

Append(o);

object p = l[l.Count-1]; 

new new

.Append( )

[l‟.Count-1]



Tests are concrete instances of plans

Plans
Call a method
•With symbol for primitive 

argument types

•Using other plans for 
reference argument 
types

to provide objects

Tests
Call a method
•With concrete values for 

primitive argument types

•Using simpler tests to 
build objects

to observe behavior

Plan 

Manager

Concolic

Execution

Plans

Feedback

Tests
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Observation

During execution we monitor

•what fields a method actually reads and write

•what other methods a method actually calls

•which arguments actually matter

•which instructions are actually covered
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Method sequence suite generation

(i)  Phase: Learn dynamic behavior

–touch all methods once

–gives basic coverage

(ii) Phase: Apply strategies

–order plans so that 
•readers appear after writers

•methods with coverage potential (transitively) are preferred

–prune plans: Don‟t use
•pure methods to extend plans, unless they return hidden 

objects

•methods that throw exceptions to extend plans
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Evaluation

•Between 30% and 85% branch coverage on all 
dlls studied so far

•Found many errors: Nullreferences, 
IndexOutOfRange , InvalidCasts, Non 
termination

•Easy to combine with other dynamic checkers: 
found many resource leaks, incorrect exception 
handlings (by using fault injection), to be 
continued…
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Compositional Testing

1) Via Parameterized Unit Tests

2) Via Synthesized Specs
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V1. Parameterized Unit Tests (PUT)

Adding parameters turns unit tests into
specifications

void AddAxiom(ArrayList a, object o) {
Assume.IsTrue(a != null);
int len = a.Count;           
a.Add(o);                   
Assert.IsTrue(a[len] == o);     

}

Allows to interpret PUT as axioms 

ArrayList a, object o. 
a!=null → let len = a.Count in a.Add(o) ∘a[len] == o
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V1. Scale up

•Interpret functions in PUT as uninterpreted symbols

•Use PUTs as rewrite rules for theorem prover

Hashtable
Hashtable

Tests

Bag BagTests

executes

reuses

Implementations Parameterized Unit Tests

Application
Application

Testsreuses
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V1. Evaluation

Datatype # 
Ops

Input
size

Normal 
PUTs

Excpt.
PUTs

# 
Cases

Time
/s

Bugs
found

ArrayList 10 3 8 4 34 3.6 1

Enumerator 4 4 4 6 67 9.8 1

Hashtable 9 2 6 5 30 29.9

Bag (deep) 3 any 3 3 20 37.2

Bag (shallow) 3 any 3 3 9 2.3

LinkedList 3 10 3 0 64 3.6 1

RedBlackTree 3 8 3 0 457 427



V2. Compute Summaries

int isPositive(int x) {

if (x>0) return 1;

return 0;

}

int g(int x) {

if (x<0) return 0;

int y = crypt();

if (y == 100) return 0;

if (x<= 10) return 2;

}

33

Compute summary in 

terms of input and state:

–x>0 ⇒ret = 1

–x ≤0 ⇒ret = 0

Use only functions that 

prover can decide:

–x <0 ⇒ret = 0

–x≥0 ⋀x ≤10 ⇒ret = 2



V2. Algorithm 
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Compute summaries on the fly in a top down 

fashion

–Execute f until reaches first function g

–Backtrack over g and compute summary for g

–Continue f with summary of g

Complexity

number of  functions in program * number of paths pro function 



Summary: Concolic execution has its limitations

•If there are >> 20 methods, don‟t test all combinations
–provide API protocol or parameterized scenarios for the 

possible use

•If a complex function takes a complex data structure as 
input, then either
–provide an invariant(don‟t use the API to generate the data-

structure), or

–(automatically) partition the function (based on cohesion) into 
smaller units  that can be tested independently 

•If the constraint solver times out, then reduce the number 
of paths for which constraints have to be solved, ie. 
–apply compositional testing, i.e. generate summaries of used 

methods and then use the summaries for solving constraints
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Summary: Concolic execution works!

•Follows the small scope hypothesis; it generates
–small error revealing data-structures for test inputs

–short sequences of methods 

•Works 
–for TDD, DbC, and also for traditional test

–for mixed managed/unmanaged setting

–even when the constraint solver times out

–compositionally

•Only reports real errors



Thank you

References

–DART: P. Godefroid et al

–Cute: K. Sen et al.

–PUT/Unit Meister: N. Tillmann et al.

–D. Engler et al.

My address
http://research.microsoft.com/~schulte
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