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Point processes — definition
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Let IN be the set of all locally finite counting measures on R<, and let DT be the sigma
algebra induced by the sets {1 € N : ¥(B) = n}, B € B(R%) (Borel set),
n € Np.

Definition: A point process ¥ in R is a measurable mapping from a probability space
[Q, A, P] into [N, 0]. Let P = P o W~! denote the probability measure on [IN, D]
induced by W, the distribution of W, and write ¥ ~ P. L]
We only consider point processes W that are simple, iie., ¥ € N, = {¢» € N :
p({x}) <1 Vo € RY.



Point processes — stationarity and isotropy

Definition: A point process ¥ ~ P is stationary if P is translation invariant, i.e.
d
(Y(By1+x)y...,¥(Bx+x)) = (¥(By1),...,¥(Bg))

forallz € RY, By,...,B, € B(RY), k > 1. O

Definition: A point process W ~ P is isotropic if P is rotation invariant, i.e.
d
(Y(UBy),...,9(UByg)) = (¥Y(B1)y...,¥Y(Byg))

for all Bi,...,Br € B(R?), k > 1 and U € SO(d). O

Definition: If a point process W is both stationary and isotropic, it is called motion

Invariant. []

We only consider stationary simple point processes.



Moment measure of order k

Definition: o*) (factorial moment measure of order k)
For all By, ..., B € B(R?):

#
a®(By X -+ X By) :=E Y " 1p,(®1)---1p,(xx)

LY geeey Tl
esupp(¥)

"Factorial” - a(k)(B X ooe X B) — E\II(B)(\I’(B) — 1) ce (\II(B) —k+ 1)

aW is called intensity measure:
a®(A) = E®(A) = mean number of points in A € B(R%).
U stationary = aV(.) = Al

A = E¥([0,1]%) € (0,00), the mean number of points in [0,1]%, is called the
intensity of the point process W.



Cumulant measure of order k

Definition: +*) (cumulant measure of order k)
For all By,...,B; € B(R%):

k 12
YW (By x -+ x By) = Y (-1 —1) Y J[al®h( X By

=1 KqU...UK; j=1 ki €K,
={1,...,k}

[]

" covariance measure” ~(2):

For disjoint A, B € B(R%) we have

7(2)(A X B) a(Z)(A X B) — a(l)(A)a(l)(B)
— EW(A)¥(B) — E¥(A)EY(B)

— Cov[¥(A), ¥(B)].



Reduced measures & densities

Let W be a stationary point process with intensity .
(k)

Definition: o, (reduced factorial moment measure of order k)

a®(By X -+« x By) = )\/a(k)((Bl — @) X -+ X (By1 — x))dw

red

By,
[
Definition: 'y,(elz) (reduced cumulant measure of order k)
V(B x e x B) = A [ Al (Br = @) X -+ X (B - 2))da
By,
[

Definition: The kth-order product density 0(*) is the Lebesgue density of the kth-order
reduced factorial moment measure a,(fé,). []
Definition: The kth-order cumulant density ¢(*) is the Lebesgue density of the kth-order

reduced cumulant measure 'y(k). []

red



Poisson processes and Poisson cluster processes — definition

Definition: A point process W is called a Poisson process in R? with intensity measure

A iff
e U(A,),...,T(A,) are independent for disjoint Ay,..., Ax € B(RY) Vk € N
e U(A) ~ Po(A(A)) for every bounded A € B(RY) O

Notation: W ~ II,
W ~ II, is stationary << A(.) = A|.| for some A > 0

The distribution of a stationary Poisson process with intensity X is denoted by ITy.

Definition: A stationary Poisson cluster process W in R? consists of two components: the
primary process W, ~ I (0 < Ap < o0) and the secondary process . ~ P,. Each
point € supp(¥,) triggers a point process \Ile] ~ C[m] (cluster) that is assumed
to be independent of W, and \IlLy], Yy F# @, and to have the same distribution as the
translated process T, ¥.. The condition E¥.(R%) < oo guarantees the existence of the

Poisson cluster process W. []



Brillinger-mixing point processes

Definition: A stationary point process W is called Brillinger-mixing iff

ET([0,1]%) < co and [+ = /
(RE)E

for all kK > 2. []

k
| d ()] < oo

For example, stationary Poisson cluster processes with the secondary process W, satisfying
ET¥*(R?) < oo for all k > 1, are Brillinger-mixing.
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Kernel estimation of the product density

Definition (Krickeberg 1982 [1]): Let the stationary point process W be observed in a
convex window W, satisfying r(W,,) — oo where r(W,,) is the radius of the inscribed
sphere of W,,. Let k : R® — R be a bounded kernel function with bounded support
satisfying [oq k(x)dax = 1. Let the bandwidth b, satisfy b,, — 0 and b%|W,,| — oco.

Define ; ,
. 7 y—x—
On(t) := y Z lw, (x)k ( )
bl | W, | by,
n z,y€supp(¥)
as a kernel estimator for Ag(t), where o(t) := 0®(t) is the Lebesgue density of
(2)
a []

red -

Lemma: Let W be a Brillinger-mixing point process and let g be Lipschitz-continuous in
t € R Then we have
Eon(t) — Ae(t).
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Scaled deviance of the product density estimator (1)

Consider the scaled deviance of the product density estimator,
An(t) == bg/2|Wn|1/2 (0n(t) — Eon(t)) .

Theorem (Heinrich 1988 [2]): Let W be a stationary Poisson cluster process with
intensity X. The Lebesgue densities p(?), p(®) and p® of the factorial moment measures

a? a® and a@®, respectively, exist und there exist constants Cy, ..., Cy such that

p(u) i= [ p¥(u+a,2)de < O,
Rd
/ p(3) (ua u _|_ L, y)d(wa y) S CZ?
(R9)2
/ p®(u + 2,0 + @, y)dz < Cs,
Rd

/ p(4) (’LL +x,v+ Yy, x, y)d(wv y) < Cy
(R9)2

for all u,v € R% Furthermore, let the g-tuple (u1,...,uq) € (R?)? be chosen such
that u; # w;, u; # —u;, © # 3, and every u;, © = 1,...,q, is a point of continuity

of p.
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Scaled deviance of the product density estimator (2)

Recall the scaled deviance of the product density estimator,

An(t) = by 2|[Wa|"? (8 () — Eda(?)) -

Theorem (Heinrich 1988 [2]), continued:

Then we have
d
(An(ui))gzl — N(O, z:q)v

where N (0, %) is a Gaussian vector with covariance matrix 3y = (o;); j—;, where
o = T°A0(u;), 77 i= [pak*(x)dx, i =1,...,q and 0y = 0, ¢ # j.

Furthermore, we have

1 & (An(wi)? 4,
EZ Ao(uq) X

=1
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Integrated square error (ISE)

The integrated square error (ISE) of the kernel estimator d,, on a bounded subset K C R¢
satisfying | K| > O is

I,(K) = /K (6n(8) — o(t))dt.

For a stationary Poisson process with intensity A the second-order product density satisfies
o(t) = X for all t € R%. This entails

I,(K) = /K (n(t) — X?)%dL.

Because of the asymptotic independence of the components of

(An(ui))y = (B2 Wal /2 (@n(w) — Egn(ui))_

for u; # wu; we cannot use Heinrich's result for deriving the asymptotic distribution of

the ISE.



Poisson processes: mean and variance of the ISE
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Lemma: Let W be a stationary Poisson process with intensity .

Then the expectation of the ISE satisfies, for n — oo,

bg|Wn|E/ (0n(t) — A%)%dt = N*|K| / k*(y)dy + O(by),
K R4

and its variance satisfies

Var <b§/2|Wn| /K (On(t) — Az)zdt)

2\ (K| + KN K’|)/

k2(t)dt,
Rd

where K := {& € R?: —x € K} and k(t) :/

y k(x)k(x + t)dx.
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Poisson processes: CLT for the ISE

Theorem 1: Let W be a stationary Poisson process with intensity A. Let the observation
window be of the form W,, = [0,n)%. Let I,(K) = [, (0n(t) — A?)dt.

Then

b2 (I,(K) — EI(K)) - N (0, 2A* (|[K| + |K N K|) /d E2(t)dt) :

M| K|

The result still holds when EI,,(K) is replaced with —
b/?  Jpd

k*(x)dax. ]

Given a realization of ¥ ~ P, Theorem 1 can thus be used for testing complete spatial
randomness (test problem Hy : P = Il vs. H; : P # II, with known intensity
A > 0).
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Assumptions

K(d,s)

(M1)

(M2)

(M3)

The kernel function k satisfies

/Rdwil vz k(1,0 zg)d(Tr, ..., 2g) = 0,

for all 41, ...,50 € {1,...,d}, £=1,...,s — 1 (with s > 2).

The second-order product density g is continuous in K @ b(0, &) for

some € > 0 with bounded partial derivatives of order s.

The third-order cumulant density ¢(®) and the third-order product density

0®) exist and are bounded.

The fourth-order cumulant density ¢(® exists and satisfies
[ 10,22+ y)ldz < € < o0
Rd

for all z,y € K & b(0,€) for some € > 0.
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Brillinger-mixing point processes: mean and variance of the ISE

Lemma 1: Let ¥ be a stationary Brillinger-mixing point process in R? with intensity
A. Let the kernel function k satisfy condition K(d,s) and let ¥ satisfy the assumptions
(M1)—(M3). Then we have, for n — oo,

by Wl E/ (8n(t) — Xo(t))?dt — A/ Q(t)dt/ k*(z)de.
K K Rd
If, in addition, the bandwidth satisfies b>%|W,,| — oo and b%|W,| — 0 (thus
s > 3d + 1), then

Var <b§/2|wn| /K (On(t) — )\g(t))zdt)

— 222 ( /K o’ (t)dt + ] 92(t)dt> /R ) k2(t)dt,

KNK

where K 1= {z € RY: —z € K} and k(t) = / k(2x)k(z + t)da. =
d

R
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Poisson cluster processes: CLT for the ISE

Theorem 2: Let W be a stationary Poisson cluster process with intensity A and secondary
process ¥.. Assume EW3(R%) < C < oo to hold for some C' > 0. Let the observation
window be of the form W,, = [0, n)%. Let I,(K) = [, (0n(t) — Xo(t))*dt.

Then we have, under the assumptions of Lemma 1,

by *n(In(K) — EIn(K))

4N (0, 22 ( /K o> (t)dt + o gz(t)dt) /R d EQ(t)dt) :

The result still holds when EI,,(K) is replaced with a constant ¢,, which depends only
on the bandwidth b,,, the kernel function k, the set K and the product density o. L]

Given a realization of ¥ ~ P, Theorem 2 can thus be used for testing Hy : P = P,
vs. H, : P # P,, where P, is the distribution of a Poisson cluster process satisfying

the above assumptions with known product density g and intensity A.
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CLT for the ISE — Sketch of the Proof

(1)

(2)

Prove the CLT for Poisson cluster processes with bounded cluster radius.
In this case a CLT for m-dependent point fields (Heinrich 1988 [3]) can

be used.

In order to prove the CLT for Poisson cluster processes W with secondary
process W. with unbounded cluster radius, use a "truncation method" :
Let W(®) be the "truncated” Poisson cluster process, where its secondary

process W, is replaced by the truncated cluster \Ilga) = ¥.Nb(0, ).
Due to (1), the CLT for the ISE I'® (K of ¥(®) holds.

Showing that for all € > 0 there exists an ng = ng(e) such that

lim sup sup Var {bﬁ/an (I,,(f)(K) _ In(K))} <e

a—0o0  n>ny

entails the CLT for the ISE I,,(K) of W.



Remarks & outlook
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In the setting of Poisson cluster processes, the theory of m-
dependent point fields can be used for deriving a CLT for the ISE.

In the case of Brillinger-mixing point processes this is not possible.

|dea: Show the ISE's cumulants of order k > 2 to converge to

ZEro.

Modifications of the product density estimator (e.g. edge-

correction) should also be considered.

How large does the observation window W), have to be, i.e., how

many points do we need for a satisfactory approximation from the

CLT?

Simulation studies
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