
CLT for the Integrated Square Error

of

Product Density Estimators

Stella David

Universität Augsburg

Joint work with Lothar Heinrich

March 27, 2006



2

Outline

• Point processes: basics and notation

• Kernel-type product density estimator

• CLT for the integrated square error of the product density estimator

• Outlook



3

Point processes – definition
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Let N be the set of all locally finite counting measures on R
d, and let N be the sigma

algebra induced by the sets {ψ ∈ N : ψ(B) = n}, B ∈ B(Rd) (Borel set),

n ∈ N0.

Definition: A point process Ψ in R
d is a measurable mapping from a probability space

[Ω,A, P] into [N,N]. Let P = P ◦ Ψ−1 denote the probability measure on [N,N]

induced by Ψ, the distribution of Ψ, and write Ψ ∼ P . �

We only consider point processes Ψ that are simple, i.e., Ψ ∈ Ns = {ψ ∈ N :

ψ({x}) ≤ 1 ∀x ∈ R
d}.
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Point processes – stationarity and isotropy

Definition: A point process Ψ ∼ P is stationary if P is translation invariant, i.e.

(Ψ(B1 + x), . . . ,Ψ(Bk + x))
d
= (Ψ(B1), . . . ,Ψ(Bk))

for all x ∈ R
d, B1, . . . , Bk ∈ B(Rd), k ≥ 1. �

Definition: A point process Ψ ∼ P is isotropic if P is rotation invariant, i.e.

(Ψ(UB1), . . . ,Ψ(UBk))
d
= (Ψ(B1), . . . ,Ψ(Bk))

for all B1, . . . , Bk ∈ B(Rd), k ≥ 1 and U ∈ SO(d). �

Definition: If a point process Ψ is both stationary and isotropic, it is called motion

invariant. �

We only consider stationary simple point processes.
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Moment measure of order k

Definition: α(k) (factorial moment measure of order k)

For all B1, . . . , Bk ∈ B(Rd):

α(k)(B1 × · · · ×Bk) := E

∑ 6=

x1,...,xk
∈supp(Ψ)

1B1(x1) · · · 1Bk(xk)

�

”Factorial”: α(k)(B × · · · ×B) = EΨ(B)(Ψ(B) − 1) · · · (Ψ(B) − k + 1)

α(1) is called intensity measure:

α(1)(A) = EΨ(A)
∧
= mean number of points in A ∈ B(Rd).

Ψ stationary ⇒ α(1)(.) = λ|.|

λ := EΨ([0, 1]d) ∈ (0,∞), the mean number of points in [0, 1]d, is called the

intensity of the point process Ψ.
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Cumulant measure of order k

Definition: γ(k) (cumulant measure of order k)

For all B1, . . . , Bk ∈ B(Rd):

γ(k)(B1 × · · · ×Bk) :=
k

∑

ℓ=1

(−1)ℓ−1(ℓ− 1)!
∑

K1∪...∪Kℓ
={1,...,k}

ℓ
∏

j=1

α(|Kj|)( ×
kj∈Kj

Bkj)

�

”covariance measure” γ(2):

For disjoint A, B ∈ B(Rd) we have

γ(2)(A×B) = α(2)(A×B) − α(1)(A)α(1)(B)

= EΨ(A)Ψ(B) − EΨ(A)EΨ(B)

= Cov[Ψ(A),Ψ(B)].
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Reduced measures & densities

Let Ψ be a stationary point process with intensity λ.

Definition: α
(k)
red (reduced factorial moment measure of order k)

α(k)(B1 × · · · ×Bk) = λ

∫

Bk

α
(k)
red ((B1 − x) × · · · × (Bk−1 − x))dx

�

Definition: γ
(k)
red (reduced cumulant measure of order k)

γ(k)(B1 × · · · ×Bk) = λ

∫

Bk

γ
(k)
red ((B1 − x) × · · · × (Bk−1 − x))dx

�

Definition: The kth-order product density ̺(k) is the Lebesgue density of the kth-order

reduced factorial moment measure α
(k)
red . �

Definition: The kth-order cumulant density c(k) is the Lebesgue density of the kth-order

reduced cumulant measure γ
(k)
red . �
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Poisson processes and Poisson cluster processes – definition

Definition: A point process Ψ is called a Poisson process in R
d with intensity measure

Λ iff

• Ψ(A1), . . . ,Ψ(Ak) are independent for disjoint A1, . . . , Ak ∈ B(Rd) ∀k ∈ N

• Ψ(A) ∼ Po(Λ(A)) for every bounded A ∈ B(Rd) �

Notation: Ψ ∼ ΠΛ

Ψ ∼ ΠΛ is stationary ⇔ Λ(.) = λ|.| for some λ > 0

The distribution of a stationary Poisson process with intensity λ is denoted by Πλ.

Definition: A stationary Poisson cluster process Ψ in R
d consists of two components: the

primary process Ψp ∼ Πλp (0 < λp < ∞) and the secondary process Ψc ∼ Pc. Each

point x ∈ supp(Ψp) triggers a point process Ψ[x]
c ∼ P [x]

c (cluster) that is assumed

to be independent of Ψp and Ψ[y]
c , y 6= x, and to have the same distribution as the

translated process TxΨc. The condition EΨc(R
d) < ∞ guarantees the existence of the

Poisson cluster process Ψ. �
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Brillinger-mixing point processes

Definition: A stationary point process Ψ is called Brillinger-mixing iff

EΨk([0, 1]d) < ∞ and ‖γ
(k)
red ‖ :=

∫

(Rd)k−1
|γ

(k)
red (dx)| < ∞

for all k ≥ 2. �

For example, stationary Poisson cluster processes with the secondary process Ψc satisfying

EΨk
c(R

d) < ∞ for all k ≥ 1, are Brillinger-mixing.
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Kernel estimation of the product density

Definition (Krickeberg 1982 [1]): Let the stationary point process Ψ be observed in a

convex window Wn satisfying r(Wn) → ∞ where r(Wn) is the radius of the inscribed

sphere of Wn. Let k : R
d → R be a bounded kernel function with bounded support

satisfying
∫

Rd
k(x)dx = 1. Let the bandwidth bn satisfy bn → 0 and bdn|Wn| → ∞.

Define

ˆ̺n(t) :=
1

bdn|Wn|

∑ 6=

x,y∈supp(Ψ)

1Wn(x)k

(

y − x− t

bn

)

as a kernel estimator for λ̺(t), where ̺(t) := ̺(2)(t) is the Lebesgue density of

α
(2)
red . �

Lemma: Let Ψ be a Brillinger-mixing point process and let ̺ be Lipschitz-continuous in

t ∈ R
d. Then we have

E ˆ̺n(t) → λ̺(t).

�
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Scaled deviance of the product density estimator (1)

Consider the scaled deviance of the product density estimator,

∆n(t) := bd/2n |Wn|
1/2 ( ˆ̺n(t) − E ˆ̺n(t)) .

Theorem (Heinrich 1988 [2]): Let Ψ be a stationary Poisson cluster process with

intensity λ. The Lebesgue densities p(2), p(3) and p(4) of the factorial moment measures

α(2), α(3) and α(4), respectively, exist und there exist constants C1, . . . , C4 such that

p(u) :=

∫

Rd
p(2)(u+ x, x)dx ≤ C1,

∫

(Rd)2
p(3)(u, u+ x, y)d(x, y) ≤ C2,

∫

Rd
p(3)(u+ x, v + x, y)dx ≤ C3,

∫

(Rd)2
p(4)(u+ x, v + y, x, y)d(x, y) ≤ C4

for all u, v ∈ R
d. Furthermore, let the q-tuple (u1, . . . , uq) ∈ (Rd)q be chosen such

that ui 6= uj, ui 6= −uj, i 6= j, and every ui, i = 1, . . . , q, is a point of continuity

of p.
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Scaled deviance of the product density estimator (2)

Recall the scaled deviance of the product density estimator,

∆n(t) = bd/2n |Wn|
1/2 ( ˆ̺n(t) − E ˆ̺n(t)) .

Theorem (Heinrich 1988 [2]), continued:

Then we have

(∆n(ui))
q
i=1

d
−→ N(0,Σq),

where N(0,Σq) is a Gaussian vector with covariance matrix Σq = (σij)
q
i,j=1, where

σii = τ 2λ̺(ui), τ
2 :=

∫

Rd
k2(x)dx, i = 1, . . . , q, and σij = 0, i 6= j.

Furthermore, we have
1

τ 2

q
∑

i=1

(∆n(ui))
2

λ̺(ui)

d
−→ χ2

q.

�
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Integrated square error (ISE)

The integrated square error (ISE) of the kernel estimator ˆ̺n on a bounded subsetK ⊂ R
d

satisfying |K| > 0 is

In(K) :=

∫

K

( ˆ̺n(t) − λ̺(t))2dt.

For a stationary Poisson process with intensity λ the second-order product density satisfies

̺(t) = λ for all t ∈ R
d. This entails

In(K) =

∫

K

( ˆ̺n(t) − λ2)2dt.

Because of the asymptotic independence of the components of

(∆n(ui))
q
i=1 =

(

bd/2n |Wn|
1/2 ( ˆ̺n(ui) − E ˆ̺n(ui))

)q

i=1
,

for ui 6= uj we cannot use Heinrich’s result for deriving the asymptotic distribution of

the ISE.



14

Poisson processes: mean and variance of the ISE

Lemma: Let Ψ be a stationary Poisson process with intensity λ.

Then the expectation of the ISE satisfies, for n → ∞,

bdn|Wn|E

∫

K

( ˆ̺n(t) − λ2)2dt = λ2|K|

∫

Rd
k2(y)dy + O(bdn),

and its variance satisfies

Var

(

bd/2n |Wn|

∫

K

( ˆ̺n(t) − λ2)2dt

)

→ 2λ4
(

|K| + |K ∩ Ǩ|
)

∫

Rd
k̃2(t)dt,

where Ǩ := {x ∈ R
d : −x ∈ K} and k̃(t) =

∫

Rd
k(x)k(x + t)dx. �
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Poisson processes: CLT for the ISE

Theorem 1: Let Ψ be a stationary Poisson process with intensity λ. Let the observation

window be of the form Wn = [0, n)d. Let In(K) =
∫

K( ˆ̺n(t) − λ2)2dt.

Then

bd/2n nd(In(K) − EIn(K))
d

−→ N

(

0, 2λ4
(

|K| + |K ∩ Ǩ|
)

∫

Rd
k̃2(t)dt

)

.

The result still holds when EIn(K) is replaced with
λ2|K|

b
d/2
n

∫

Rd
k2(x)dx. �

Given a realization of Ψ ∼ P , Theorem 1 can thus be used for testing complete spatial

randomness (test problem H0 : P = Πλ vs. H1 : P 6= Πλ with known intensity

λ > 0).
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Assumptions

K(d,s) The kernel function k satisfies
∫

Rd
xi1 · . . . · xiℓk(x1, . . . , xd)d(x1, . . . , xd) = 0,

for all i1, . . . , iℓ ∈ {1, . . . , d}, ℓ = 1, . . . , s− 1 (with s ≥ 2).

(M1) The second-order product density ̺ is continuous in K ⊕ b(0, ε) for

some ε > 0 with bounded partial derivatives of order s.

(M2) The third-order cumulant density c(3) and the third-order product density

̺(3) exist and are bounded.

(M3) The fourth-order cumulant density c(4) exists and satisfies
∫

Rd
|c(4)(x, z, z + y)|dz ≤ C < ∞

for all x, y ∈ K ⊕ b(0, ε) for some ε > 0.
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Brillinger-mixing point processes: mean and variance of the ISE

Lemma 1: Let Ψ be a stationary Brillinger-mixing point process in R
d with intensity

λ. Let the kernel function k satisfy condition K(d,s) and let Ψ satisfy the assumptions

(M1)–(M3). Then we have, for n → ∞,

bdn|Wn| E

∫

K

( ˆ̺n(t) − λ̺(t))2dt → λ

∫

K

̺(t)dt

∫

Rd
k2(x)dx.

If, in addition, the bandwidth satisfies b3d
n |Wn| → ∞ and bsn|Wn| → 0 (thus

s ≥ 3d+ 1), then

Var

(

bd/2n |Wn|

∫

K

( ˆ̺n(t) − λ̺(t))2dt

)

→ 2λ2

(
∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt

)
∫

Rd
k̃2(t)dt,

where Ǩ := {x ∈ R
d : −x ∈ K} and k̃(t) =

∫

Rd
k(x)k(x + t)dx. �
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Poisson cluster processes: CLT for the ISE

Theorem 2: Let Ψ be a stationary Poisson cluster process with intensity λ and secondary

process Ψc. Assume EΨ8
c(R

d) ≤ C < ∞ to hold for someC > 0. Let the observation

window be of the form Wn = [0, n)d. Let In(K) =
∫

K( ˆ̺n(t) − λ̺(t))2dt.

Then we have, under the assumptions of Lemma 1,

bd/2n nd(In(K) − EIn(K))

d
−→ N

(

0, 2λ2

(
∫

K

̺2(t)dt+

∫

K∩Ǩ

̺2(t)dt

)
∫

Rd
k̃2(t)dt

)

.

The result still holds when EIn(K) is replaced with a constant cn which depends only

on the bandwidth bn, the kernel function k, the set K and the product density ̺. �

Given a realization of Ψ ∼ P , Theorem 2 can thus be used for testing H0 : P = P0

vs. H1 : P 6= P0, where P0 is the distribution of a Poisson cluster process satisfying

the above assumptions with known product density ̺ and intensity λ.



19

CLT for the ISE – Sketch of the Proof

(1) Prove the CLT for Poisson cluster processes with bounded cluster radius.

In this case a CLT for m-dependent point fields (Heinrich 1988 [3]) can

be used.

(2) In order to prove the CLT for Poisson cluster processes Ψ with secondary

process Ψc with unbounded cluster radius, use a ”truncation method”:

Let Ψ(α) be the ”truncated” Poisson cluster process, where its secondary

process Ψc is replaced by the truncated cluster Ψ(α)
c := Ψc ∩ b(0, α).

Due to (1), the CLT for the ISE I(α)
n (K) of Ψ(α) holds.

Showing that for all ε > 0 there exists an n0 = n0(ε) such that

lim sup
α→∞

sup
n≥n0

Var
[

bd/2n nd
(

I(α)
n (K) − In(K)

)]

≤ ε

entails the CLT for the ISE In(K) of Ψ.
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Remarks & outlook

• In the setting of Poisson cluster processes, the theory of m-

dependent point fields can be used for deriving a CLT for the ISE.

In the case of Brillinger-mixing point processes this is not possible.

Idea: Show the ISE’s cumulants of order k ≥ 2 to converge to

zero.

• Modifications of the product density estimator (e.g. edge-

correction) should also be considered.

• How large does the observation window Wn have to be, i.e., how

many points do we need for a satisfactory approximation from the

CLT?

Simulation studies



21

References

[1] Krickeberg, K. (1982). Processus ponctuels en statistique, École d’Été
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