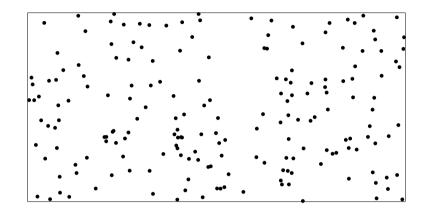
CLT for the Integrated Square Error of Product Density Estimators

Stella David Universität Augsburg

Joint work with Lothar Heinrich

March 27, 2006

- Point processes: basics and notation
- Kernel-type product density estimator
- CLT for the integrated square error of the product density estimator
- Outlook



Let N be the set of all locally finite counting measures on \mathbb{R}^d , and let \mathfrak{N} be the sigma algebra induced by the sets $\{\psi \in N : \psi(B) = n\}$, $B \in \mathfrak{B}(\mathbb{R}^d)$ (Borel set), $n \in \mathbb{N}_0$.

Definition: A point process Ψ in \mathbb{R}^d is a measurable mapping from a probability space $[\Omega, \mathfrak{A}, \mathbb{P}]$ into $[N, \mathfrak{N}]$. Let $P = \mathbb{P} \circ \Psi^{-1}$ denote the probability measure on $[N, \mathfrak{N}]$ induced by Ψ , the distribution of Ψ , and write $\Psi \sim P$.

We only consider point processes Ψ that are simple, i.e., $\Psi \in N_s = \{\psi \in N: \psi(\{x\}) \leq 1 \ orall x \in \mathbb{R}^d\}.$

Definition: A point process $\Psi \sim P$ is stationary if P is translation invariant, i.e.

$$(\Psi(B_1+x),\ldots,\Psi(B_k+x))\stackrel{
m d}{=}(\Psi(B_1),\ldots,\Psi(B_k))$$

for all $x \in \mathbb{R}^d$, $B_1, \ldots, B_k \in \mathfrak{B}(\mathbb{R}^d)$, $k \geq 1$.

Definition: A point process $\Psi \sim P$ is isotropic if P is rotation invariant, i.e.

$$(\Psi(UB_1),\ldots,\Psi(UB_k))\stackrel{
m d}{=}(\Psi(B_1),\ldots,\Psi(B_k))$$

for all $B_1,\ldots,B_k\in\mathfrak{B}(\mathbb{R}^d)$, $k\geq 1$ and $U\in\mathrm{SO}(d)$.

Definition: If a point process Ψ is both stationary and isotropic, it is called motion invariant.

We only consider stationary simple point processes.

Definition: $\alpha^{(k)}$ (factorial moment measure of order k) For all $B_1, \ldots, B_k \in \mathfrak{B}(\mathbb{R}^d)$: $\alpha^{(k)}(B_1 \times \cdots \times B_k) := \mathbb{E} \sum_{\substack{x_1, \ldots, x_k \\ \in \operatorname{supp}(\Psi)}}^{\neq} \mathbb{1}_{B_1}(x_1) \cdots \mathbb{1}_{B_k}(x_k)$

"Factorial": $lpha^{(k)}(B imes\cdots imes B)=\mathbb{E}\Psi(B)(\Psi(B)-1)\cdots(\Psi(B)-k+1)$

 $lpha^{(1)}$ is called intensity measure: $lpha^{(1)}(A) = \mathbb{E}\Psi(A) \stackrel{\wedge}{=}$ mean number of points in $A \in \mathfrak{B}(\mathbb{R}^d)$.

 Ψ stationary \Rightarrow $lpha^{(1)}(.) = \lambda |.|$

 $\lambda := \mathbb{E}\Psi([0,1]^d) \in (0,\infty)$, the mean number of points in $[0,1]^d$, is called the intensity of the point process Ψ .

Definition: $\gamma^{(k)}$ (cumulant measure of order k) For all $B_1, \ldots, B_k \in \mathfrak{B}(\mathbb{R}^d)$:

$$\gamma^{(k)}(B_1 imes \dots imes B_k) \, := \, \sum_{\ell=1}^k (-1)^{\ell-1} (\ell-1)! \sum_{K_1 \cup ... \cup K_\ell top j=1 \ =\{1,...,k\}} \prod_{j=1}^\ell lpha^{(|K_j|)} (igwedge_{k_j \in K_j} B_{k_j})$$

"covariance measure" $\gamma^{(2)}$:

For disjoint A, $B\in\mathfrak{B}(\mathbb{R}^d)$ we have

$$egin{aligned} &\gamma^{(2)}(A imes B)\,=\,lpha^{(2)}(A imes B)-lpha^{(1)}(A)lpha^{(1)}(B)\ &=\,\mathbb{E}\Psi(A)\Psi(B)-\mathbb{E}\Psi(A)\mathbb{E}\Psi(B)\ &=\,\mathrm{Cov}[\Psi(A),\Psi(B)]. \end{aligned}$$

Let Ψ be a stationary point process with intensity λ .

Definition: $\alpha_{red}^{(k)}$ (reduced factorial moment measure of order k)

$$lpha^{(k)}(B_1 imes\cdots imes B_k) \,=\, \lambda \int\limits_{B_k} lpha^{(k)}_{ ext{red}}((B_1-x) imes\cdots imes (B_{k-1}-x)) \mathrm{d}x$$

 $\begin{array}{l} \text{Definition: } \gamma_{\text{red}}^{(k)} \left(\text{reduced cumulant measure of order } k \right) \\ \gamma^{(k)}(B_1 \times \cdots \times B_k) \, = \, \lambda \int\limits_{B_k} \gamma_{\text{red}}^{(k)}((B_1 - x) \times \cdots \times (B_{k-1} - x)) \mathrm{d}x \end{array}$

Definition: The *k*th-order product density $\varrho^{(k)}$ is the Lebesgue density of the *k*th-order reduced factorial moment measure $\alpha_{red}^{(k)}$.

Definition: The *k*th-order cumulant density $c^{(k)}$ is the Lebesgue density of the *k*th-order reduced cumulant measure $\gamma_{red}^{(k)}$.

Poisson processes and Poisson cluster processes – definition

Definition: A point process Ψ is called a Poisson process in \mathbb{R}^d with intensity measure Λ iff

- $\Psi(A_1), \dots, \Psi(A_k)$ are independent for disjoint $A_1, \dots, A_k \in \mathfrak{B}(\mathbb{R}^d) \ \forall k \in \mathbb{N}$
- $\Psi(A) \sim \operatorname{Po}(\Lambda(A))$ for every bounded $A \in \mathfrak{B}(\mathbb{R}^d)$

Notation: $\Psi \sim \Pi_{\Lambda}$

$$\Psi \sim \Pi_\Lambda$$
 is stationary $\Leftrightarrow \Lambda(.) = \lambda |.|$ for some $\lambda > 0$

The distribution of a stationary Poisson process with intensity λ is denoted by Π_{λ} .

Definition: A stationary Poisson cluster process Ψ in \mathbb{R}^d consists of two components: the primary process $\Psi_{\rm p} \sim \Pi_{\lambda_{\rm p}} (0 < \lambda_{\rm p} < \infty)$ and the secondary process $\Psi_{\rm c} \sim P_{\rm c}$. Each point $x \in \operatorname{supp}(\Psi_{\rm p})$ triggers a point process $\Psi_{\rm c}^{[x]} \sim P_{\rm c}^{[x]}$ (cluster) that is assumed to be independent of $\Psi_{\rm p}$ and $\Psi_{\rm c}^{[y]}$, $y \neq x$, and to have the same distribution as the translated process $T_x \Psi_{\rm c}$. The condition $\mathbb{E}\Psi_{\rm c}(\mathbb{R}^d) < \infty$ guarantees the existence of the Poisson cluster process Ψ .

Definition: A stationary point process Ψ is called Brillinger-mixing iff

$$\mathbb{E}\Psi^k([0,1]^d)<\infty$$
 and $\|\gamma_{ ext{red}}^{(k)}\|:=\int_{(\mathbb{R}^d)^{k-1}}|\gamma_{ ext{red}}^{(k)}(\mathrm{d} x)|<\infty$ for all $k\geq 2$.

For example, stationary Poisson cluster processes with the secondary process Ψ_c satisfying $\mathbb{E}\Psi_c^k(\mathbb{R}^d) < \infty$ for all $k \geq 1$, are Brillinger-mixing.

Definition (Krickeberg 1982 [1]): Let the stationary point process Ψ be observed in a convex window W_n satisfying $r(W_n) \to \infty$ where $r(W_n)$ is the radius of the inscribed sphere of W_n . Let $k : \mathbb{R}^d \to \mathbb{R}$ be a bounded kernel function with bounded support satisfying $\int_{\mathbb{R}^d} k(x) dx = 1$. Let the bandwidth b_n satisfy $b_n \to 0$ and $b_n^d |W_n| \to \infty$. Define

$$\hat{arrho}_n(t):=rac{1}{b_n^d|W_n|}\sum_{x,y\in ext{supp}(\Psi)}^{
eq}\mathbb{1}_{W_n}(x)k\left(rac{y-x-t}{b_n}
ight)$$

as a kernel estimator for $\lambda \varrho(t)$, where $\varrho(t):= \varrho^{(2)}(t)$ is the Lebesgue density of $lpha_{
m red}^{(2)}$.

Lemma: Let Ψ be a Brillinger-mixing point process and let ϱ be Lipschitz-continuous in $t \in \mathbb{R}^d$. Then we have

$$\mathbb{E}\hat{arrho}_n(t)
ightarrow \lambda arrho(t).$$

Scaled deviance of the product density estimator (1)

Consider the scaled deviance of the product density estimator,

$$\Delta_n(t):=b_n^{d/2}|W_n|^{1/2}\left(\hatarrho_n(t)-\mathbb{E}\hatarrho_n(t)
ight).$$

Theorem (Heinrich 1988 [2]): Let Ψ be a stationary Poisson cluster process with intensity λ . The Lebesgue densities $p^{(2)}$, $p^{(3)}$ and $p^{(4)}$ of the factorial moment measures $\alpha^{(2)}$, $\alpha^{(3)}$ and $\alpha^{(4)}$, respectively, exist und there exist constants C_1, \ldots, C_4 such that

$$p(u) := \int_{\mathbb{R}^d} p^{(2)}(u+x,x) \mathrm{d}x \leq C_1, \ \int_{(\mathbb{R}^d)^2} p^{(3)}(u,u+x,y) \mathrm{d}(x,y) \leq C_2, \ \int_{\mathbb{R}^d} p^{(3)}(u+x,v+x,y) \mathrm{d}x \leq C_3, \ \int_{(\mathbb{R}^d)^2} p^{(4)}(u+x,v+y,x,y) \mathrm{d}(x,y) \leq C_4$$

for all $u, v \in \mathbb{R}^d$. Furthermore, let the *q*-tuple $(u_1, \ldots, u_q) \in (\mathbb{R}^d)^q$ be chosen such that $u_i \neq u_j$, $u_i \neq -u_j$, $i \neq j$, and every u_i , $i = 1, \ldots, q$, is a point of continuity of p.

Recall the scaled deviance of the product density estimator,

$$\Delta_n(t) = b_n^{d/2} |W_n|^{1/2} \left(\hat{arrho}_n(t) - \mathbb{E} \hat{arrho}_n(t)
ight).$$

Theorem (Heinrich 1988 [2]), continued:

Then we have

$$(\Delta_n(u_i))_{i=1}^q \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N}(0,\Sigma_q),$$

where $\mathrm{N}(0,\Sigma_q)$ is a Gaussian vector with covariance matrix $\Sigma_q = (\sigma_{ij})_{i,j=1}^q$, where $\sigma_{ii} = \tau^2 \lambda \varrho(u_i)$, $\tau^2 := \int_{\mathbb{R}^d} k^2(x) \mathrm{d}x$, $i = 1, \ldots, q$, and $\sigma_{ij} = 0$, $i \neq j$.

Furthermore, we have

$$rac{1}{ au^2} \sum_{i=1}^q rac{(\Delta_n(u_i))^2}{\lambda arrho(u_i)} \stackrel{ ext{d}}{\longrightarrow} \chi^2_q.$$

The integrated square error (ISE) of the kernel estimator $\hat{\varrho}_n$ on a bounded subset $K \subset \mathbb{R}^d$ satisfying |K| > 0 is

$$I_n(K) := \int_K (\hat{arrho}_n(t) - \lambda arrho(t))^2 \mathrm{d}t.$$

For a stationary Poisson process with intensity λ the second-order product density satisfies $\varrho(t) = \lambda$ for all $t \in \mathbb{R}^d$. This entails

$$I_n(K) = \int_K (\hat{arrho}_n(t) - \lambda^2)^2 \mathrm{d}t.$$

Because of the asymptotic independence of the components of

$$(\Delta_n(u_i))_{i=1}^q = \left(b_n^{d/2} |W_n|^{1/2} \left(\hat{arrho}_n(u_i) - \mathbb{E} \hat{arrho}_n(u_i)
ight)
ight)_{i=1}^q,$$

for $u_i \neq u_j$ we cannot use Heinrich's result for deriving the asymptotic distribution of the ISE.

Lemma: Let Ψ be a stationary Poisson process with intensity λ .

Then the expectation of the ISE satisfies, for $n
ightarrow \infty$,

$$b_n^d |W_n| \mathbb{E} \int_K (\hat{arrho}_n(t) - \lambda^2)^2 \mathrm{d}t = \lambda^2 |K| \int_{\mathbb{R}^d} k^2(y) \mathrm{d}y + O(b_n^d),$$

and its variance satisfies

$$egin{aligned} ext{Var}\left(b_n^{d/2}|W_n|\int_K (\hat{arrho}_n(t)-\lambda^2)^2 ext{d}t
ight) \ &
ightarrow 2\lambda^4\left(|K|+|K\cap\check{K}|
ight)\int_{\mathbb{R}^d} ilde{k}^2(t) ext{d}t, \end{aligned}$$

where
$$\check{K}:=\{x\in \mathbb{R}^d: -x\in K\}$$
 and $ilde{k}(t)=\int_{\mathbb{R}^d}k(x)k(x+t)\mathrm{d}x.$

Theorem 1: Let Ψ be a stationary Poisson process with intensity λ . Let the observation window be of the form $W_n = [0, n)^d$. Let $I_n(K) = \int_K (\hat{\varrho}_n(t) - \lambda^2)^2 dt$.

Then

$$b_n^{d/2} n^d (I_n(K) - \mathbb{E} I_n(K)) \stackrel{\mathrm{d}}{\longrightarrow} \mathrm{N} \left(0, 2\lambda^4 \left(|K| + |K \cap \check{K}|
ight) \int_{\mathbb{R}^d} ilde{k}^2(t) \mathrm{d} t
ight).$$

The result still holds when $\mathbb{E} I_n(K)$ is replaced with $rac{\lambda^2 |K|}{b_n^{d/2}} \int_{\mathbb{R}^d} k^2(x) \mathrm{d} x.$

Given a realization of $\Psi \sim P$, Theorem 1 can thus be used for testing complete spatial randomness (test problem H_0 : $P = \Pi_\lambda$ vs. H_1 : $P \neq \Pi_\lambda$ with known intensity $\lambda > 0$).

K(d,s) The kernel function k satisfies

$$\int_{\mathbb{R}^d} x_{i_1}\cdot\ldots\cdot x_{i_\ell}k(x_1,\ldots,x_d)\mathrm{d}(x_1,\ldots,x_d)=0,$$
for all $i_1,\ldots,i_\ell\in\{1,\ldots,d\}$, $\ell=1,\ldots,s-1$ (with $s\geq 2$)

- (M1) The second-order product density ϱ is continuous in $K \oplus b(0, \varepsilon)$ for some $\varepsilon > 0$ with bounded partial derivatives of order s.
- (M2) The third-order cumulant density $c^{(3)}$ and the third-order product density $\rho^{(3)}$ exist and are bounded.
- (M3) The fourth-order cumulant density $c^{(4)}$ exists and satisfies $\int_{\mathbb{R}^d} |c^{(4)}(x,z,z+y)| \mathrm{d} z \leq C < \infty$

for all $x,y\in K\oplus b(0,arepsilon)$ for some arepsilon>0.

Lemma 1: Let Ψ be a stationary Brillinger-mixing point process in \mathbb{R}^d with intensity λ . Let the kernel function k satisfy condition K(d,s) and let Ψ satisfy the assumptions (M1)-(M3). Then we have, for $n \to \infty$,

$$b_n^d |W_n| \ \mathbb{E} \int_K (\hat{arrho}_n(t) - \lambda arrho(t))^2 \mathrm{d}t \ o \ \lambda \int_K arrho(t) \mathrm{d}t \int_{\mathbb{R}^d} k^2(x) \mathrm{d}x.$$

If, in addition, the bandwidth satisfies $b_n^{3d}|W_n| o\infty$ and $b_n^s|W_n| o0$ (thus $s\geq 3d+1$), then

$$egin{aligned} &\operatorname{Var}\left(b_n^{d/2}|W_n|\int_K (\hat{arrho}_n(t)-\lambdaarrho(t))^2\mathrm{d}t
ight) \ &
ightarrow 2\lambda^2\left(\int_K arrho^2(t)\mathrm{d}t+\int_{K\cap\check{K}}arrho^2(t)\mathrm{d}t
ight)\int_{\mathbb{R}^d} ilde{k}^2(t)\mathrm{d}t, \end{aligned}$$

where $\check{K}:=\{x\in \mathbb{R}^d: -x\in K\}$ and $ilde{k}(t)=\int_{\mathbb{R}^d}k(x)k(x+t)\mathrm{d}x.$

Theorem 2: Let Ψ be a stationary Poisson cluster process with intensity λ and secondary process Ψ_c . Assume $\mathbb{E}\Psi_c^8(\mathbb{R}^d) \leq C < \infty$ to hold for some C > 0. Let the observation window be of the form $W_n = [0, n)^d$. Let $I_n(K) = \int_K (\hat{\varrho}_n(t) - \lambda \varrho(t))^2 dt$.

Then we have, under the assumptions of Lemma 1,

$$egin{aligned} & b_n^{d/2} n^d (I_n(K) - \mathbb{E} I_n(K)) \ & \stackrel{ ext{d}}{\longrightarrow} \operatorname{N}\left(0, 2\lambda^2 \left(\int_K arrho^2(t) \mathrm{d} t + \int_{K \cap \check{K}} arrho^2(t) \mathrm{d} t
ight) \int_{\mathbb{R}^d} ilde{k}^2(t) \mathrm{d} t
ight). \end{aligned}$$

The result still holds when $\mathbb{E}I_n(K)$ is replaced with a constant c_n which depends only on the bandwidth b_n , the kernel function k, the set K and the product density ϱ . \Box

Given a realization of $\Psi \sim P$, Theorem 2 can thus be used for testing $H_0: P = P_0$ vs. $H_1: P \neq P_0$, where P_0 is the distribution of a Poisson cluster process satisfying the above assumptions with known product density ϱ and intensity λ .

- (1) Prove the CLT for Poisson cluster processes with bounded cluster radius.
 In this case a CLT for *m*-dependent point fields (Heinrich 1988 [3]) can be used.
- (2) In order to prove the CLT for Poisson cluster processes Ψ with secondary process Ψ_c with unbounded cluster radius, use a "truncation method": Let $\Psi^{(\alpha)}$ be the "truncated" Poisson cluster process, where its secondary process Ψ_c is replaced by the truncated cluster $\Psi_c^{(\alpha)} := \Psi_c \cap b(0, \alpha)$. Due to (1), the CLT for the ISE $I_n^{(\alpha)}(K)$ of $\Psi^{(\alpha)}$ holds.

Showing that for all arepsilon > 0 there exists an $n_0 = n_0(arepsilon)$ such that

$$\limsup_{lpha
ightarrow\infty} \sup_{n\geq n_0} \mathrm{Var}\left[b_n^{d/2}n^d\left(I_n^{(lpha)}(K)-I_n(K)
ight)
ight]\leq arepsilon$$

entails the CLT for the ISE $I_n(K)$ of Ψ .

- In the setting of Poisson cluster processes, the theory of m-dependent point fields can be used for deriving a CLT for the ISE. In the case of Brillinger-mixing point processes this is not possible. Idea: Show the ISE's cumulants of order $k \geq 2$ to converge to zero.
- Modifications of the product density estimator (e.g. edgecorrection) should also be considered.
- How large does the observation window W_n have to be, i.e., how many points do we need for a satisfactory approximation from the CLT?
 - Simulation studies

- Krickeberg, K. (1982). Processus ponctuels en statistique, École d'Été de Probabilités de Saint-Flour X-1980. Lecture Notes in Mathematics 929, Springer, Berlin.
- [2] Heinrich, L. (1988). Asymptotic Gaussianity of Some Estimators for Reduced Factorial Moment Measures and Product Densities of Stationary Poisson Cluster Processes, *Statistics* 19 1, 87–106.
- [3] Heinrich, L. (1988). Asymptotic behaviour of an empirical nearestneighbour distance function for stationary poisson cluster processes, *Mathematische Nachrichten* **136**, 131–148.