Simulation of Typical Modulated Poisson-Voronoi Cells with Applications to Telecommunication Network Modelling

Frank Fleischer

Joint work with C. Gloaguen, H. Schmidt, V. Schmidt and F. Schweiggert

University of Ulm

Department of Stochastics &

Department of Applied Information Processing

France Telecom, Division R&D, Paris

Overview

- 1. Motivation
- 2. Modulated Poisson-Voronoi Tessellations
- 3. Simulation of the Typical Cell
- 4. Numerical Results
- 5. Summary and Outlook

Motivation

Consider telecommunication networks on nationwide scales => population intensities

Estimation of population intensities in Germany

Motivation

- Models needed that can reflect a great variety of scenarios
- First step analysis of modulated poisson point processes w.r.t.
 - corresponding Voronoi tessellation
 - simulation of typical cell
 - cost analysis
- Voronoi cells can reflect serving zones in the access network
- Points might also be considered as locations of antennas in a mobile scenario

Based on a Boolean model Ψ that has circular grains with fixed radii

Realisation of a Poisson process

Based on a Boolean model Ψ that has circular grains with fixed radii

Realisation of a Boolean model Ψ

Consider a (planar) Cox point process X with (random) intensity measure $\Lambda_X(.)$ given by

$$\Lambda_X(dx) = \begin{cases} \lambda_1 dx & \text{if } x \in \Psi\\ \lambda_2 dx & \text{if } x \notin \Psi \end{cases}$$

- X is called a Ψ -modulated Poisson process
- Consider corresponding Voronoi tessellation τ_X
 - Stationary model
 - Allows modelling instationarities

Realisations of modulated Poisson-Voronoi tessellations

- 4 model parameters
 - Intensity β of the germs of Ψ
 - Radius R of the circular grains of Ψ
 - Intensities λ_1 and λ_2 of X
- Derived characteristics (Ψ stationary)
 - Coverage probability $p = P(0 \in \Psi) = 1 - \exp(\beta \pi E(R^2))$
 - Intensity of the modulated Poisson process $\lambda_X = p\lambda_1 + (1-p)\lambda_2$

Modulated Poisson-Voronoi tessellations Scaling invariance

- Initial model has 4 parameters (λ_1 , λ_2 , β , R)
- These 4 parameters can be reduced to 3 parameters $\underline{\kappa} = (\kappa_1, \kappa_2, \kappa_3)^t$ using scaling invariance properties

•
$$\kappa_1 = p$$

• $\kappa_2 = \lambda_1/\beta$

•
$$\kappa_3 = \lambda_2/\beta$$

Same random structure but different scale

Modulated Poisson-Voronoi tessellations Some special cases

Poisson-Voronoi (
$$\lambda_1 = \lambda_2$$

or $p = 0$ or $p = 1$)

Swiss-cheese (
$$\lambda_1 = 0$$
)

Modulated Poisson-Voronoi tessellations Some special cases

Simulation of Typical Cell

- Typical (Voronoi-)cell Ξ* is drawn uniformly from all cells
- Some functionals of interest
 - Area $\nu_2(\Xi^*)$
 - Perimeter $\nu_1(\partial \Xi^*)$
 - Number of vertices $\eta(\Xi^*)$
 - Cost functional(s)

•
$$c(\Xi^*) = \int_{\Xi^*} ||u|| du$$

• $c'(\Xi^*) = \lambda_X \int_{\Xi^*} ||u|| du$

Moments and distribution

Simulation of Typical Cell

- Advantages compared to large sampling window methods
 - No edge effect problems
 - Simulation easily partitionable (=> parallelisation)
 - No memory problems
- Drawbacks
 - Simulation not clear
 - Efficient stopping criteria needed
 - Initial cell
 - Typical cell

- Simulation based on representation of typical cell
 - $P_o = \delta_{\delta_o} * P_{Q_o}$
 - Image: δ_{δ_o} distribution of a (deterministic) point in o
 - Q_o Palm distribution of Λ_X at o
 - P_{Q_o} distribution of a Cox process with measure Q_o
- Additional point is added to X in o
 - Coverage probability $p_c = P(o \in \Psi | | o \in X) \neq p$

$$p_c = \frac{p\lambda_1}{p\lambda_1 + (1-p)\lambda_2}$$

- Alternating radial simulation of X and Ψ
 - For $X_i \in X$ it must be known if $X_i \in \Psi$
 - => Simulate Ψ_j until $||\Psi_j|| > ||X_i|| + R$

- **1**. Put point $X_0 \in X$ in o
- 2. Determine if $o \in \Psi$ using p_c
- 3. Simulate grains Ψ_j of Ψ
 - Germ radially Poisson (intensity β)
 - Conditional to $o \in \Psi$ for Ψ_o
- 4. Simulate points $X_i \in X$
 - Radially Poisson simulation
 - Intensity $\lambda_{max} = \max{\{\lambda_1, \lambda_2\}}$
 - Thinning by λ_2/λ_1 or by λ_1/λ_2

Point X_0 in origin

First grain with midpoint Ψ_0

For X_2 more information about Ψ is needed

Further alternating simulation of X and Ψ

Stopping criterion for initial cell

Construction of initial cell using bisectors

Simulation of Typical Cell Alteration of Initial Cell

Initial modulated Cox-Voronoi cell

Simulation of Typical Cell Alteration of Initial Cell

First alteration of initial cell

Simulation of Typical Cell Alteration of Initial Cell

Second alteration of initial cell

Simulation of Typical Cell Stopping Criterion

Realisation of typical cell

Simulation of Typical Cell Extension to Random Radii

- Consider $R \sim U[r \delta, r + \delta]$ instead of R fixed
- Algorithm has to be modified slightly w.r.t.
 - ${}^{{}_{{}^{{}_{{}^{{}}}}}}$ simulation of Ψ_0
 - amount of information about Ψ needed for X_i
- Similar modifications possible for other distributions of *R* (finite support)

Simulation of Typical Cell Implementation Tests

- Tests in this context means testing of software with random outputs
 - Deterministic (classical) tests hardly usable
 - Random tests based on statistical test methods
- Tests based on known theoretical formulae

•
$$E(\nu_2(\Xi^*)) = 1/\lambda_X$$

•
$$E(\eta(\Xi^*)) = 6$$

- $E(c(\Xi^*)) = \frac{1}{2\sqrt[3]{\lambda}}$ in the Poisson-Voronoi case
- Tests based on scaling invariance properties

Numerical Results

- Several scenarios
 - Poisson-Voronoi
 - Swiss-cheese
 - Random radii
- Functionals considered
 - Area, perimeter, number of vertices
 - Cost functional(s)

$$c(\Xi^*) = \int_{\Xi^*} ||u|| du c'(\Xi^*) = \frac{1}{E(\nu_2(\Xi^*))} \int_{\Xi^*} ||u|| du = \lambda_X \int_{\Xi^*} ||u|| du$$

- We simulated n = 2000000 typical cells for each case
- Parameter values

•
$$\lambda_X = 12$$

• $\lambda_1 \to 0$
• $\lambda_2 = \frac{\lambda_X - p\lambda_1}{1 - p} = 30 - \frac{3}{2}\lambda_1$
• $\lambda_X = 12 \implies E(\nu_2(\Xi^*)) = \frac{1}{12} \text{ constant}$

λ_1	λ_2	$\widehat{E}c'(\Xi^*)$	$\widehat{E}c(\Xi^*)$	$\widehat{E}\nu_2(\Xi^*)$	$\widehat{E}\nu_1(\partial\Xi^*)$
12	12	0.14437	0.01203	0.08337	1.15496
6	21	0.16310	0.01359	0.08335	1.11524
1	28.5	0.28536	0.02378	0.08355	1.01529
0.2	29.7	0.40872	0.03406	0.08345	1.02070
0.05	29.95	0.45953	0.03829	0.08339	1.03381
0	30	0.47946	0.03996	0.08317	1.03903

Estimates of first moments for $\lambda_1 \rightarrow 0$

Perimeter of the typical cell

Perimeter of the typical cell

Summary and Outlook Modifications

- First step towards modelling of nationwide scale networks
- Modifications
 - Grain shapes
 - Random grain parameter
 - Finite support
 - Other distributions
 - Germ distribution

Summary and Outlook Extensions

- Variable population densities
 - Equipment and population placed according to two modulated Poisson process X_H and X_L with same underlying Boolean model Ψ
 - Cost functional mean distance to the nearest nuclei
 - Usage of Neveu's formula

$$c_{LH}^* = \mathbb{E}_{X_L}(||\widetilde{X}_n - N(\widetilde{X}_n)||) = \frac{\lambda_H}{\lambda_L} \mathbb{E}_{X_H} \int_{\Xi^*} ||u|| \Lambda_L(du)$$

Summary and Outlook Extensions

- Multi-modulated Poisson-Voronoi
 - Solean models $\Psi_1, ..., \Psi_n$
 - Corresponding intensity measures $\Lambda_1, ..., \Lambda_n$
 - Larger variability
- Modulated Poisson-Voronoi connected with line-based Cox-Voronoi
 - Equipment based on line segments
 - According to linear Poisson processes
 - Segments inside Boolean model
 - Inter-city connections

Summary and Outlook Extensions

Modulated Poisson-Delaunay (=> connection length between neighboring Voronoi cells)

Literature

- C. Gloaguen, F. Fleischer, H. Schmidt, V. Schmidt, F. Schweiggert (2006) Simulation of typical modulated Poisson-Voronoi cells and their application to telecommunication network modelling. Preprint.
- C. Gloaguen, F. Fleischer, H. Schmidt, V. Schmidt (2005) Simulation of typical Cox-Voronoi cells, with a special regard to implementation tests. *Mathematical Methods* of Operations Research 62, 357-373.
- B. Blaszczyszyn, R. Schott (2005) Approximations of functionals of some modulated Poisson-Voronoi tessellations with applications to modeling of communication networks. *Japan Journal of Industrial and Applied Mathematics* 22(2), 179-204.