Simulation of Typical Modulated Poisson-Voronoi Cells with Applications to Telecommunication Network Modelling

Frank Fleischer
Joint work with C. Gloaguen, H. Schmidt, V. Schmidt and F. Schweiggert

University of Ulm
Department of Stochastics &
Department of Applied Information Processing

France Telecom, Division R&D, Paris
1. Motivation
2. Modulated Poisson-Voronoi Tessellations
3. Simulation of the Typical Cell
4. Numerical Results
5. Summary and Outlook
Consider telecommunication networks on nationwide scales => population intensities

Estimation of population intensities in Germany
Motivation

- Models needed that can reflect a great variety of scenarios
- First step analysis of modulated poisson point processes w.r.t.
 - corresponding Voronoi tessellation
 - simulation of typical cell
 - cost analysis
- Voronoi cells can reflect serving zones in the access network
- Points might also be considered as locations of antennas in a mobile scenario
Modulated Poisson-Voronoi tessellations

Based on a Boolean model Ψ that has circular grains with fixed radii

Realisation of a Poisson process
Modulated Poisson-Voronoi tessellations

Based on a Boolean model Ψ that has circular grains with fixed radii

Realisation of a Boolean model Ψ
Consider a (planar) Cox point process \(X \) with (random) intensity measure \(\Lambda_X(.) \) given by

\[
\Lambda_X(dx) = \begin{cases}
\lambda_1 dx & \text{if } x \in \Psi \\
\lambda_2 dx & \text{if } x \notin \Psi
\end{cases}
\]

\(X \) is called a \(\Psi \)-modulated Poisson process.

Consider corresponding Voronoi tessellation \(\tau_X \).

Stationary model

Allows modelling instationarities
Modulated Poisson-Voronoi tessellations

Realisations of modulated Poisson-Voronoi tessellations
Modulated Poisson-Voronoi tessellations

- 4 model parameters
 - Intensity β of the germs of Ψ
 - Radius R of the circular grains of Ψ
 - Intensities λ_1 and λ_2 of X

- Derived characteristics (Ψ stationary)
 - Coverage probability
 \[p = P(0 \in \Psi) = 1 - \exp(\beta \pi E(R^2)) \]
 - Intensity of the modulated Poisson process
 \[\lambda_X = p\lambda_1 + (1-p)\lambda_2 \]
Modulated Poisson-Voronoi tessellations

Scaling invariance

- Initial model has 4 parameters \((\lambda_1, \lambda_2, \beta, R)\)
- These 4 parameters can be reduced to 3 parameters
 \(\kappa = (\kappa_1, \kappa_2, \kappa_3)^t\) using scaling invariance properties
 \(\kappa_1 = p\)
 \(\kappa_2 = \lambda_1 / \beta\)
 \(\kappa_3 = \lambda_2 / \beta\)

Same random structure but different scale
Modulated Poisson-Voronoi tessellations

Some special cases

- Poisson-Voronoi \((\lambda_1 = \lambda_2)\)
or \(p = 0\) or \(p = 1\)

- Swiss-cheese \((\lambda_1 = 0)\)
Modulated Poisson-Voronoi tessellations

Some special cases

- Inner-city ($\lambda_2 = 0$)
Simulation of Typical Cell

- Typical (Voronoi-)cell Ξ^* is drawn uniformly from all cells
- Some functionals of interest
 - Area $\nu_2(\Xi^*)$
 - Perimeter $\nu_1(\partial \Xi^*)$
 - Number of vertices $\eta(\Xi^*)$
- Cost functional(s)
 - $c(\Xi^*) = \int_{\Xi^*} ||u|| \, du$
 - $c'(\Xi^*) = \lambda_X \int_{\Xi^*} ||u|| \, du$
- Moments and distribution
Simulation of Typical Cell

- Advantages compared to large sampling window methods
 - No edge effect problems
 - Simulation easily partitionable (=> parallelisation)
 - No memory problems

- Drawbacks
 - Simulation not clear
 - Efficient stopping criteria needed
 - Initial cell
 - Typical cell
Simulation of Typical Cell

Algorithm

- Simulation based on representation of typical cell
 - \(P_o = \delta\delta_o \ast P_{Q_o} \)
 - \(\delta\delta_o \) distribution of a (deterministic) point in \(o \)
 - \(Q_o \) Palm distribution of \(\Lambda_X \) at \(o \)
 - \(P_{Q_o} \) distribution of a Cox process with measure \(Q_o \)

- Additional point is added to \(X \) in \(o \)
- Coverage probability \(p_c = P(o \in \Psi || o \in X) \neq p \)
 - \(p_c = \frac{p\lambda_1}{p\lambda_1 + (1-p)\lambda_2} \)

- Alternating radial simulation of \(X \) and \(\Psi \)
 - For \(X_i \in X \) it must be known if \(X_i \in \Psi \)
 - \(\Rightarrow \) Simulate \(\Psi_j \) until \(||\Psi_j|| > ||X_i|| + R \)
Simulation of Typical Cell

Algoirthm

1. Put point $X_0 \in X$ in o

2. Determine if $o \in \Psi$ using p_c

3. Simulate grains Ψ_j of Ψ
 - Germ radially Poisson (intensity β)
 - Conditional to $o \in \Psi$ for Ψ_o

4. Simulate points $X_i \in X$
 - Radially Poisson simulation
 - Intensity $\lambda_{max} = \max \{\lambda_1, \lambda_2\}$
 - Thinning by λ_2/λ_1 or by λ_1/λ_2
Point X_0 in origin
Simulation of Typical Cell

Algorithm

First grain with midpoint Ψ_0
Simulation of Typical Cell

Algorithm

For X_2 more information about Ψ is needed
Simulation of Typical Cell

Algorithm

Further alternating simulation of X and Ψ
Simulation of Typical Cell

Algorithm

Stopping criterion for initial cell
Construction of initial cell using bisectors
Simulation of Typical Cell

Alteration of Initial Cell

Initial modulated Cox-Voronoi cell
First alteration of initial cell
Simulation of Typical Cell

Alteration of Initial Cell

Second alteration of initial cell
Realisation of typical cell
Consider $R \sim U[r - \delta, r + \delta]$ instead of R fixed

Algorithm has to be modified slightly w.r.t.

- simulation of Ψ_0
- amount of information about Ψ needed for X_i

Similar modifications possible for other distributions of R (finite support)
Tests in this context means testing of software with random outputs

- Deterministic (classical) tests hardly usable
- Random tests based on statistical test methods

Tests based on known theoretical formulae

- \(E(\nu_2(\Xi^*)) = \frac{1}{\lambda_X} \)
- \(E(\eta(\Xi^*)) = 6 \)
- \(E(c(\Xi^*)) = \frac{1}{2^{\frac{3}{2}}\lambda^\frac{3}{4}} \) in the Poisson-Voronoi case

Tests based on scaling invariance properties
Numerical Results

- Several scenarios
 - Poisson-Voronoi
 - Swiss-cheese
 - Random radii

- Functionals considered
 - Area, perimeter, number of vertices

- Cost functional(s)
 - $c(\Xi^*) = \int_{\Xi^*} \|u\| \, du$
 - $c'(\Xi^*) = \frac{1}{E(\nu_2(\Xi^*))} \int_{\Xi^*} \|u\| \, du = \lambda_X \int_{\Xi^*} \|u\| \, du$
Numerical Results

Transition to Swiss Cheese

- We simulated $n = 2000000$ typical cells for each case
- Parameter values
 - $p = 0.6, \beta = 0.2 \Rightarrow R = 1.20761$
 - $\lambda_X = 12$
 - $\lambda_1 \to 0$
 - $\lambda_2 = \frac{\lambda_X - p\lambda_1}{1 - p} = 30 - \frac{3}{2}\lambda_1$
- $\lambda_X = 12 \Rightarrow E(\nu_2(\Xi^*)) = \frac{1}{12}$ constant
Numerical Results

Transition to Swiss Cheese

\[\lambda_1 = 10, \lambda_2 = 15 \]

\[\lambda_1 = 0, \lambda_2 = 30 \]
Numerical Results

Transition to Swiss Cheese

<table>
<thead>
<tr>
<th>λ_1</th>
<th>λ_2</th>
<th>$\hat{E}c'(\Xi^*)$</th>
<th>$\hat{E}c(\Xi^*)$</th>
<th>$\hat{E}\nu_2(\Xi^*)$</th>
<th>$\hat{E}\nu_1(\partial\Xi^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>0.14437</td>
<td>0.01203</td>
<td>0.08337</td>
<td>1.15496</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>0.16310</td>
<td>0.01359</td>
<td>0.08335</td>
<td>1.11524</td>
</tr>
<tr>
<td>1</td>
<td>28.5</td>
<td>0.28536</td>
<td>0.02378</td>
<td>0.08355</td>
<td>1.01529</td>
</tr>
<tr>
<td>0.2</td>
<td>29.7</td>
<td>0.40872</td>
<td>0.03406</td>
<td>0.08345</td>
<td>1.02070</td>
</tr>
<tr>
<td>0.05</td>
<td>29.95</td>
<td>0.45953</td>
<td>0.03829</td>
<td>0.08339</td>
<td>1.03381</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>0.47946</td>
<td>0.03996</td>
<td>0.08317</td>
<td>1.03903</td>
</tr>
</tbody>
</table>

Estimates of first moments for $\lambda_1 \rightarrow 0$
Numerical Results

Transition to Swiss Cheese

\[
\lambda_1 = 12, \quad \lambda_2 = 12
\]

\[
\lambda_1 = 6, \quad \lambda_2 = 21
\]

Perimeter of the typical cell
Numerical Results
Transition to Swiss Cheese

$\lambda_1 = 0.05, \lambda_2 = 29.95$

$\lambda_1 = 0, \lambda_2 = 30$

Perimeter of the typical cell
First step towards modelling of nationwide scale networks

Modifications
- Grain shapes
- Random grain parameter
- Finite support
- Other distributions
- Germ distribution
Variable population densities

Equipment and population placed according to two modulated Poisson process X_H and X_L with same underlying Boolean model Ψ

Cost functional mean distance to the nearest nuclei

Usage of Neveu’s formula

$$c^*_{LH} = \mathbb{E}_{X_L}(||\tilde{X}_n - N(\tilde{X}_n)||) = \frac{\lambda H}{\lambda_L} \mathbb{E}_{X_H} \int_{\Xi^*} ||u|| \Lambda_L(du)$$
Summary and Outlook

Extensions

- Multi-modulated Poisson-Voronoi
- Boolean models Ψ_1, \ldots, Ψ_n
- Corresponding intensity measures $\Lambda_1, \ldots, \Lambda_n$
- Larger variability

- Modulated Poisson-Voronoi connected with line-based Cox-Voronoi
 - Equipment based on line segments
 - According to linear Poisson processes
 - Segments inside Boolean model
 - Inter-city connections
Modulated Poisson-Delaunay (=> connection length between neighboring Voronoi cells)
