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Motivation

repartition of population is non homogenous

localization of network nodes follows accordingly

this depends on the type of nodes and their hierarchical level
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Motivation

so far, most telecommunication models assume spatial homogeneity
hierarchical models, Poisson Voronoï Agregated Tessellations. . .

road systems in the Stochastic Subscriber Line Model

homogeneous models are useful
in some cases, ex : involving high level network nodes

as first order models to investigate faisability

spatial non-homogeneity can be structurant
the cost of line of sight connection from node n (red) to closest node N (blue)
depends on the length distribution
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Motivation

need for practical methods to deal with spatial inhomogeneity
considering a variety of situations (shape, location)

considering a great number of parameters

computationally rapid

based on parameters that can be infered from reality

several theoretical approaches are possible
modulated Poisson

perturbation of Poisson-based models

transform of homogeneous planar Poisson Point Processes (PPP)

. . .
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Transform to/from homogeneity

an homogeneous PPP (noted N )
is defined by its constant intensity in R

2(= E)
βλ(du)

a non-homogeneous PPP
is defined by its non constant intensity in R

2(= F )
µ(dx) = p(x)λ(dx)

is an image-process X(N) in F = X(E)

the transform X

must be a bicontinuous bijection
must be unique → additional constraints
can be analytically computed in some cases
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Transform to/from homogeneity

computation of the transform X

measures µ and λ are images µ = X(λ) ⇔ λ = X−1(µ)

∫

D

λ(du) =

∫

D

X−1(µ)(du) =

∫

X(D)

µ(dx)

usual change of variables with Jacobian JX−1

∫

D

λ(du) =

∫

X(D)

|detJX−1(x)|λ(dx)

partial derivative equation p(x1, x2) = |detJX−1(x1, x2)|
specification of invariant 1D-sets ensures unicity

lines parallel to one axis
lines radiating form a center

C. Gloaguen -France Telecom- Division Recherche et Developpement Spatial models built on non-homogeneous Poisson Point Processes. Söllerhaus Workshop, March 27 2006 – p. 7



Transform to/from homogeneity

example : discontinuous circle, radial transform
non homogeneous X(N) in F , intensity µ(dx) = p(x)λ(dx)

p(x) = {α if x ∈ disc Γ(0, R), else β}

transformation to homogeneous X in E

X(N) in F
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Transform to/from homogeneity

example : discontinuous circle, radial transform
radial invariance (centered in O) demands

(u1, u2) = X−1(x1, x2) = φ(x1, x2)(x1, x2)

x2

β

R x1α

F

unique solution φ(x1, x2) = {√α if x ∈ Γ,
√

β + (α − β) R2

x2
1+x2

2
else }

iso-xi curves in E, from X−1 iso-ui curves in F , from X
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Transform to/from homogeneity

analitycal expressions are available for simple parametric shapes
discontinuous densities :

ellipsis diamond cake 2 circles
continuous densities :

bell gaussian Epanechikov
radial and/or parallel transform whenever possible
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Transform to/from homogeneity

exact transforms can easily be derived in other cases
direct calculation for complicated single shapes (ex general polygons)

careful choice of invariant varieties

modification of existing results by changing
the intensity levels, rescaling both coordinates
the shapes and locations, translation and/or flattening . . .

this does not cover all our needs
somes cases cannot be solved exactely

continuity is not verified no exact transform for the set
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Toolbox for real situations analysis

the idea is to describe complex situations by mixing
approximate & exact forms
analytical & numerical results

the "toolbox" contains
far field approximation

formal definition from induced metrics
application to model juxtaposition and superposition

"numerical" tools
fast realizations of non homogeneous PPP

transformation/construction of geometric figures

"analytical" tools
formal reuse of homogeneous results
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Toolbox - far field

induced metrics recall: N in E intensity βλ(du), X(N) in F intensity p(x)λ(dx)

E, Euclidian metric
ds2 = ηijduiduj
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gµν = ηij
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F , induced metric
ds2 = gµνdxµdxν
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metric g is location dependant and defined from p and its parameters

metric g is continous and can be written analytically

several other metrics can be defined in E and F

induced from X or X−1

considering Euclidian or polar coordinate systems
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Toolbox - far field

formal definition of far field limit
compare natural polar metric δ and induced polar metric m

relative error (δ − m)/δ < ε farther from O than D(ε)(= R
√

(α−β)
βε

for circle)

stitching together homogeneous and non-homogeneous spaces

example : gaussian density α = 5, β = 1, R = 2, iso-xi curves in E
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Toolbox - far field

approximate transforms using far field assumption
the transform affects points closer than D(ε)

juxtaposition same basis intensity

p1

(ε1)

p2

D2
D1

(ε2)

p1=p2= β

superposition

α

O

p2

p1D1(ε1)
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Toolbox - numerical applications

fast generation of realizations of non-homogeneous PPP
generate one reference set U homogeneous PPP of unit intensity
T radial simulations, coordinates of n points closest to O

compute X(U) to build the non homogeneous set

statistics on non-homogeneous PPP
example : distances between point A and the 3rd closest point from X(N)

observe hom. N from X−1(A), translation UA = U + X−1(A)

compute X(UA) and order distances to A, extract the third item
α = 30, β = 1, R = 2, A = (2, 0) located on the circular discontunity
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Toolbox - numerical applications

transformation of geometric figure (Voronoï tessellation)
Euclidian η on straight ∆ : nuclei from N → V E

η , nuclei from X(N) → V F
η
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drawing of general bisectors
use non euclidian metrics and/or transforms of straight lines ∆ in algorithms
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Toolbox - analytical considerations

metrics provide formal identity of writing
average area of Poisson Voronoï cell, nucleus in A
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η , polar metrics δA centered in A and δz

AE(A) =
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E

dz
√

|det(δA(z))| e
−
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√
|det(δz(z′))|

= 1
β

same rule for bisectors : keep δA different nuclei location N → X(N) : change δ in m
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not too useful for areas (

√
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re-use of sensible multiD integration codes may not be straightforward
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Toolbox - analytical considerations

computation and fitting of tessellation characteristics
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example : characteristics of Poisson Voronoï cells
V F

η tessellation
average area AF (A) of cell nucleus in A

average perimeter PF (A)

study the dependance on A and on the density shape and parameters
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approximations for smooth densities : ex gaussian case AF (A) ∼ 1/p(A)

build a library from fitted results making the most of symmetries
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Conclusion

explicit transforms and induced metrics allow
to re-use results from homogeneous PPP : same formal writing

to be introduced in algorithms → radial simulation of "typical" cells...?

practical interest for France Telecom
gather a set of formulas and tools adapted to spreadsheet codes

no need of random generators to generate points of non homgeneous PPP

analysis of complex situations
by mixture of approximations, fitted and exact results

perspective
working on length distributions

analysis of tessellations characteristics

consider several hierachical levels of non homogeneous PPP

homogenization technique is not limited to PP
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Thank you for your attention !
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	Overview
	Motivation
	Motivation
	Motivation
	Transform to/from homogeneity
	Transform to/from homogeneity
	Transform to/from homogeneity
	Transform to/from homogeneity
	Transform to/from homogeneity
	Transform to/from homogeneity
	Toolbox for real situations analysis
	Toolbox - far field
	Toolbox - far field
	Toolbox - far field
	Toolbox - numerical applications
	Toolbox - numerical applications
	Toolbox - analytical considerations
	Toolbox - analytical considerations
	Conclusion 
	Literature

