Analysis of Mean Shortest Path Lengths in the Stochastic Subscriber Line Model

Hendrik Schmidt

Joint work with F. Fleischer, C. Gloaguen and V. Schmidt

University of Ulm Department of Stochastics

France Télécom, Division R&D, Paris

Stochastic–geometric network modelling

- Real network data
- Stochastic Subscriber Line Model
- Geometry Model, Equipment Model, Topology Model

Stochastic–geometric network modelling

- Real network data
- Stochastic Subscriber Line Model
- Geometry Model, Equipment Model, Topology Model

Neveu's Exchange Formula for Palm Distributions

Stochastic–geometric network modelling

- Real network data
- Stochastic Subscriber Line Model
- Geometry Model, Equipment Model, Topology Model
- Neveu's Exchange Formula for Palm Distributions
- Mean shortest path lengths
 - Simulation methods
 - Application of Neveu

Mean subscriber line lengths

Stochastic–geometric network modelling

- Real network data
- Stochastic Subscriber Line Model
- Geometry Model, Equipment Model, Topology Model
- Neveu's Exchange Formula for Palm Distributions
- Mean shortest path lengths
 - Simulation methods
 - Application of Neveu
- Mean subscriber line lengths

Numerical examples

Stochastic–geometric network modelling Real network data

Infrastructure system of Paris

Main roads

Main roads and side streets

Location of subscribers

Network nodes and serving zones

Neveu's formula Random point processes

- Mapping $X : \Omega \to M(\mathbb{R}^2) = M$

 - M: Set of simple and locally finite counting measures
- Representations of X
 - Random counting measure $\sum_{x \in \text{supp}(X)} \delta_x$
 - Sequence $\{X_n\}_{n\geq 1}$ of random points
- Intensity measure $\Lambda : \mathcal{B}(\mathbb{R}^2) \to [0,\infty]$

$$\Lambda(B) = \mathbb{E}X(B), \quad B \in \mathcal{B}(\mathbb{R}^2)$$

In case of stationarity

•
$$\Lambda(B) = \lambda \, \nu_2(B)$$
 for $B \in \mathcal{B}(\mathbb{R}^2)$

• λ is called **intensity**

Neveu's formula Random marked point processes

- Mapping $X_D : \Omega \to M(\mathbb{R}^2 \times D) = M_D$
- Representation of X_D
 - Random counting measure
 - Sequence of $\{[X_n, D_n]\}_{n \ge 1}$ random marked points

Neveu's formula

Random marked point processes

• Mapping
$$X_D : \Omega \to M(\mathbb{R}^2 \times D) = M_D$$

- Representation of X_D
 - Random counting measure
 - Sequence of $\{[X_n, D_n]\}_{n \ge 1}$ random marked points
- Flow $\{\theta_x, x \in \mathbb{R}^2\}$ with $\theta_x : \Omega \to \Omega$
- Palm distribution $\mathbb{P}^*_{X_D}$ of $X_D : \Omega \to M_D$,

$$\mathbb{P}_{X_D}^*(A \times G) = \frac{1}{\lambda \nu_2(B)} \int_{\Omega} \int_{\mathbb{R}^2 \times G} \mathbb{1}_B(x) \mathbb{1}_A(\theta_x \omega) X_D(\omega, d(x, g)) \mathbb{P}(d\omega)$$

for $B \in \mathcal{B}(\mathbb{R}^2)$ and $A \in \mathcal{A}$, $G \in \mathcal{B}(D)$, $0 < \lambda < \infty$

For any measurable function $f : \mathbb{R}^2 \times D \times \widetilde{D} \times \Omega \to [0, \infty)$

$$\lambda \int_{\Omega \times D} \int_{\mathbb{R}^2 \times \widetilde{D}} f(x, g, \widetilde{g}, \theta_x \omega) \widetilde{X}_{\widetilde{D}}(\omega, d(x, \widetilde{g})) \mathbb{P}^*_{X_D}(d(\omega, g))$$

$$= \widetilde{\lambda} \int_{\Omega \times \widetilde{D}} \int_{\mathbb{R}^2 \times D} f(-x, g, \widetilde{g}, \omega) X_D(\omega, d(x, g)) \mathbb{P}^*_{\widetilde{X}_{\widetilde{D}}}(d(\omega, \widetilde{g}))$$

Model description Geometry model

- Poisson line tessellation X_ℓ
- Intensity $\gamma > 0$: Mean total length of lines per unit area

Model description

Placement of higher level components

- Stationary ergodic point process $X_H = \{X_n\}_{n \ge 1}$ on the lines
- Special case:
 Poisson process
 X_H
- Linear intensity $\lambda_1 > 0$
- Planar intensity $\lambda_H = \gamma \, \lambda_1$

Model description Serving zones

- Sequence of serving zones $\{\Xi(X_n)\}_{n\geq 1}$
 - Later on:
 - Typical serving zone Ξ*
 - Typical line
 system L(Ξ*)

Model description Serving zones

Cox-Voronoi tessellation (CVT) based on a Poisson line process

Mean shortest path lengths Placement of lower level components

Linear placement on lines

- Stationary Poisson process $\{\widetilde{X}_n\}_{n\geq 1}$ on the lines
 - $Iinear intensity \lambda_2 > 0$
 - Planar intensity $\lambda_L = \gamma \, \lambda_2$
- Stationary marked point process $X_L =$ $\{[\widetilde{X}_n, c(P(\widetilde{X}_n, N(\widetilde{X}_n)))]\}_{n \ge 1}$
 - $N(\widetilde{X}_n)$ location of nearest HLC of \widetilde{X}_n
 - P($\widetilde{X}_n, N(\widetilde{X}_n)$) shortest path from \widetilde{X}_n to $N(\widetilde{X}_n)$
 - $c(P(\widetilde{X}_n, N(\widetilde{X}_n)))$ length (costs) of $P(\widetilde{X}_n, N(\widetilde{X}_n))$

Mean shortest path lengths Simulation methods

- Natural Approach
 - Simulate network in (large) sampling window $W \subset \mathbb{R}^2$
 - Compute $c(P(\widetilde{X}_n, N(\widetilde{X}_n)))$ for each \widetilde{X}_n
 - Compute mean shortest path length

$$c_{LH}(W) = \frac{1}{\#\{n: \widetilde{X}_n \in W\}} \sum_{n \ge 1} \mathbb{I}_W(\widetilde{X}_n) c(P(\widetilde{X}_n, N(\widetilde{X}_n)))$$

- Disadvantages
 - W small \Rightarrow edge effects significant
 - W large \Rightarrow memory and runtime problems

Mean shortest path lengths Simulation methods

- Alternative Approach
 - $\{W_i\}_{i\geq 1}$ averaging sequence of sampling windows
 - Solution Ergodicity of X_L yields with probability 1 that

 $\lim_{i \to \infty} c_{LH}(W_i) = c_{LH}^*$

The limit c_{LH}^* is given by $(B \in \mathcal{B}_0(\mathbb{R}^2))$

$$\frac{1}{\lambda_L \nu_2(B)} \mathbb{E} \sum_{n \ge 1} \mathbb{I}_B(\widetilde{X}_n) c(P(\widetilde{X}_n, N(\widetilde{X}_n))) = \mathbb{E}_{X_L} c(P(o, N(o)))$$

- Disadvantages
 - Simulation not clear
 - Not very efficient

Mean shortest path lengths

$$\mathbb{E}_{X_L} c(P(o, N(o))) = \frac{1}{\mathbb{E}_{X_H} \nu_1(L(\Xi^*))} \mathbb{E}_{X_H} \int_{L(\Xi^*)} c(P(u, o)) du$$

$$\frac{1}{\mathbb{E}_{X_H}\nu_1(L(\Xi^*))} = \lambda_1$$

- Independence from λ_2
- Simulation algorithm for typical cell of CVT needed

Mean shortest path lengths Computational algorithm

Estimators for c_{LH}^* $(k \ge 1)$,

$$\widehat{c}_{LH}(k) = \frac{1}{\sum_{i=1}^{k} \nu_1(L(\Xi_i^*))} \sum_{i=1}^{k} \sum_{j=1}^{M_i} \int_{S_i^{(j)}} c(P(u, o)) \, du$$

$$\check{c}_{LH}(k) = \lambda_1 \frac{1}{k} \sum_{i=1}^k \sum_{j=1}^{M_i} \int_{S_i^{(j)}} c(P(u, o)) du$$

• $\int_{S_i^{(j)}} c(P(u, o)) du$ can be analytically calculated

Mean shortest path lengths Computational algorithm

Mean subscriber line lengths Placement of lower level components

Spatial placement and projection to nearest line

- Stationary Poisson point process $\{X'_n\}_{n\geq 1}$ (int. λ_L)
- Stationary marked point process $X'_L =$ $\{[X'_n, c(P(X'_n, N(X'_n)))]\}_{n \ge 1}$
 - $N(X'_n)$ location of nearest HLC of X'_n
 - Project X'_n onto X''_n
 - $c(P(X'_{n}, N(X'_{n}))) =$ $c'(X'_{n}, X''_{n}) +$ $c(P(X''_{n}, N(X'_{n})))$
 - $c'(X'_n, X''_n)$ cost value of last meter

Mean subscriber line lengths Simulation methods

Mean subscriber line length

$$d_{LH}(W) = \frac{1}{\#\{n : X'_n \in W\}} \sum_{n \ge 1} \mathbb{1}_W(X'_n) c(P(X'_n, N(X'_n)))$$

• Ergodicity of X'_L

$$\lim_{i \to \infty} d_{LH}(W_i) = d_{LH}^* = \mathbb{E}_{X'_L} c(P(o, N(o)))$$

Mean subscriber line lengths Simulation methods

Mean subscriber line length

$$d_{LH}(W) = \frac{1}{\#\{n : X'_n \in W\}} \sum_{n \ge 1} \mathbb{I}_W(X'_n) c(P(X'_n, N(X'_n)))$$

Ergodicity of X'_L

$$\lim_{i \to \infty} d_{LH}(W_i) = d^*_{LH} = \mathbb{E}_{X'_L} c(P(o, N(o)))$$

Application of Neveu

$$\mathbb{E}_{X'_L} c(P(o, N(o))) = \frac{1}{\mathbb{E}_{X_H} \nu_2(\Xi^*)} \mathbb{E}_{X_H} \int_{\Xi^*} c(P(u, o)) du$$

Estimators for d_{LC}^* $(k \ge 1)$, $\widehat{d}_{LH}(k) = \frac{1}{\frac{k}{\sum_{i=1}^{k} \nu_2(\Xi_i^*)}} \sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \int_{\Psi_i^{(j)}} c(P(u, o)) du$ $\check{d}_{LH}(k) = \lambda_1 \gamma \frac{1}{k} \sum_{i=1}^k \sum_{j=1}^{K_i} \int_{\Psi_i^{(j)}} c(P(u, o) \, du$ • $\int_{\Psi^{(j)}} c(P(u,o)) du$ can be analytically calculated

Samples of typical Cox–Voronoi serving zones

(d) Further decomposition

 $\int_{\Psi} c(P(u,o)) \, du = c_a(S) \, \nu_2(\Psi_A) + c_B(S) \, \nu_2(\Psi_B) + \int_{\Psi_C} c(P(u,o)) \, du$

Numerical results Scaling property

Different intensities but same $\kappa = \gamma/\lambda_1$

Numerical results Mean shortest path lengths

Numerical results Mean shortest path lengths

Numerical results

Mean subscriber line lengths

Numerical results

Mean subscriber line lengths

Numerical results Comparison and Summary

- $c_{LH}^* > d_{LH}^*$ for any parameter pair (λ_1, γ)
- Good approximations $m(\kappa) \approx a\kappa^b$ and $m'(\kappa) \approx a'\kappa^{b'}$
- Thereby estimation of c_{LH}^* and d_{LH}^* without simulation possible
 - $\kappa = \gamma/\lambda_1$ • $\widehat{m}(\kappa) = a\kappa^b$ • $\widehat{m}'(\kappa) = a'\kappa^{b'}$ • $\widehat{c}^*_{LH} = \widehat{m}(\kappa)\gamma^{-1}$
 - $\widehat{d}_{LH}^* = \widehat{m}'(\kappa)\gamma^{-1}$

Outlook Extensions to other geometry models

Literature

- C. Gloaguen, F. Fleischer, H. Schmidt, V. Schmidt. Simulation of typical Cox-Voronoi cells, with a special regard to implementation tests.
 Mathematical Methods of Operations Research 62(3), 357-373 (2005).
- C. Gloaguen, F. Fleischer, H. Schmidt, V. Schmidt. Analysis of shortest path and subscriber line lengths in telecommunication access networks. Preprint, (2005).
- For more information www.geostoch.de