TITLE

Planar point processes of blood capillary profiles: Modelling and simulation on the basis of Strauss hard-core processes

AUTHORS

Torsten Mattfeldt¹ Stefanie Eckel² Frank Fleischer³ Volker Schmidt²

DEPARTMENTS

¹Department of Pathology, University of Ulm
²Department of Stochastics, University of Ulm
³Department of Applied Information Processing & Department of Stochastics, University of Ulm

Söllerhaus-Workshop on Spatial Stochastic Modelling of Telecommunication Systems 28th March, 2006

Tumour-free prostatic tissue, CD34 stain

Prostatic cancer, CD34 stain

Detection of capillary profiles

Normal case 1 Image 1

Original pattern

Carcinoma case 1 Image 1

Original pattern

EXPLORATIVE ANALYSIS OF PLANAR POINT PROCESSES

• Stationary planar point process X with intensity λ

• Second order K-function, reduced second moment function K(r)

$$K(r) = \frac{E(\text{number of other points with distance} \le r \mid (x, y) \in X)}{\lambda}$$

$$K_{Poi}(r) = \pi r^2$$

• Pair correlation function g(r)

$$g(r) = \frac{\varrho^{(2)}(r)}{\lambda^2} = \frac{1}{2\pi r} \frac{dK(r)}{dr}$$

 $g_{Poi}(r) = 1$

Spatial fibre process

Isotropy

 $L_V = 2 Q_A$

REDUCED SECOND-ORDER FUNCTIONS OF SPATIAL FIBRE PROCESSES

- Stationary and isotropic spatial fibre process X with intensity L_V
- Reduced second order K-function $K_3(r)$

$$K_3(r) = \frac{E(\text{length of other fibres with distance} \le r \mid (x, y, z) \in X)}{L_V}$$

$$K_{3Poi}(r) = (4\pi/3)r^3$$

• Reduced pair correlation function $g_3(r)$

$$g_3(r) = \frac{1}{4\pi r^2} \frac{dK_3(r)}{dr}$$

$$g_{3Poi}(r) = 1$$

• Stereological estimation

 $\widehat{g}_3(r) = \widehat{g}(r)$

MATERIAL AND METHODS

Cases

Radical prostatectomy specimens Normal: 12 cases, tumour-free domains Cancer: 12 cases, domains with prostatic adenocarcinoma

Microscopy

Paraffin sections Light microscopy Immunohistochemistry for CD34

Image evaluation

Two rectangular fields per case Size: 1240 × 1000 pixels (1860 × 1500 µm) Interactive detection of centres of capillary profiles Estimation of g(r) for r = 1-500 pixels Epanechnikov kernel Bandwidth: $h = 0.1/\sqrt{\hat{\lambda}}$

ESTIMATION OF THE PAIR CORRELATION FUNCTION

• Estimation of the product density

$$\widehat{\varrho^{(2)}}(r) = \frac{1}{2\pi r} \sum_{X_i, X_j \in W_{i \neq j}} \frac{k_h(r - ||X_i - X_j||)}{|W_{X_i} \cap W_{X_j}|}$$
$$k_h(x) = \frac{3}{4h} (1 - \frac{x^2}{h^2}) \mathbf{1}_{(-h,h)}(x)$$

• Estimation of the squared intensity

$$\widehat{\lambda^2} = \frac{X(W)(X(W) - 1)}{|W|^2}$$

• Estimation of g(r)

$$\widehat{g}(r) = rac{\widehat{\varrho^{(2)}}(r)}{\widehat{\lambda^2}}$$

Reduced g-function: Normal case 9, field 1

r

Group comparison: — Normal, ---- Carcinoma group

r	Normal $\overline{\hat{g}}(r)$	Cancer $\overline{\hat{g}}(r)$	D	t	P(t)	Signifi- cance level
	0.0070	0.0100	0.0070	0.00	0 7000	
5 10	0.0270	0.0192	0.0078	0.38	0.7096	¥
10	0.3599	0.1656	0.1944	2.69	0.0133	ጥ
15	0.8100	0.5019	0.3081	3.31	0.0032	**
20	1.1770	0.7493	0.4278	4.13	0.0004	***
25	1.3117	0.8715	0.4402	4.73	0.0001	***
30	1.2738	0.9551	0.3187	3.67	0.0013	**
35	1.2254	1.0206	0.2047	2.46	0.0223	*
40	1.2106	1.0704	0.1402	2.04	0.0532	
45	1.1617	1.0978	0.0640	1.05	0.3047	
50	1.1616	1.1092	0.0524	0.88	0.3906	
55	1.1764	1.1237	0.0527	0.96	0.3473	
60	1.2049	1.1058	0.0991	2.20	0.0384	*
65	1.2313	1.0943	0.1369	3.22	0.0039	**
70	1.2099	1.0793	0.1306	2.57	0.0174	*
75	1.2149	1.0897	0.1252	2.41	0.0250	*
80	1.1846	1.1055	0.0792	1.49	0.1504	
85	1.1689	1.1251	0.0437	0.77	0.4519	
90	1.1633	1.1354	0.0278	0.52	0.6078	
95	1.1682	1.1076	0.0606	1.06	0.3000	
100	1.1377	1.1027	0.0350	0.67	0.5092	
200	1.1093	1.0606	0.0487	1.43	0.1672	
300	1.1002	1.0251	0.0750	2.29	0.0321	
400	1.0117	1.0732	-0.0610 -	-1.69	0.1055	
500	1.0256	1 0123	0.0133	0.46	0.6493	
000	1.0200		0.0100	0.10	0.0100	

Local group comparisons of g-functions Parametric methods

EXPLORATIVE ANALYSIS OF PROSTATE CAPILLARIES DISCUSSION OF FINDINGS

Malignant transformation

- Increase of intensity L_V
- Unchanged hard-core distance
- Changes of second-order properties
- Two domains with changed short-range interaction

Capillary geometry

- Parametric modelling
- Hard-core model
- Clustering at longer ranges

Reduced g-function: Normal case 9, field 1

Schladitz, K., Särkkä, A., Pavenstädt, I., Haferkamp, O., Mattfeldt, T. (2003) Statistical analysis of intramembranous particles using freeze fracture specimens. J. Microsc. 211, 137-153.

POINT PROCESS MODELLING

\mathbf{Model}

Nonstationary Strauss hard core process

Trend

Harmonic polynomial

$$\lambda(x,y) = \exp\left(a_0 + a_1x + a_2y + a_3xy + a_4(x^2 - y^2)\right)$$

Fitting of coefficients a_1-a_4 and intercept a_0

Visualization: Perspective plot

Interaction

Strauss hard core process

Fitting of three parameters

$\mathbf{Software}$

Package spatstat under R 2.2.0 under Linux (Baddeley & Turner, 2005)

Normal case 1, image 1 Original pattern

Normal case 1, image 1 Perspective plot of the trend

FITTING OF THE STRAUSS HARD CORE MODEL

PROBABILITY DENSITY

$$\begin{array}{ll} f(r) = 0 & \text{if } 0 \leq r \leq r_0 \\ f(r) = \alpha \beta \gamma^{s(r)} & \text{if } r_0 < r \leq R \\ & \text{if } (\gamma > 1) \text{: Clustering} \\ & \text{if } (\gamma < 1) \text{: Inhibition} \\ & \text{if } (\gamma = 1) \text{: Classical hard core process} \\ f(r) = 1 & \text{if } r > R \end{array}$$

IRREGULAR PARAMETERS

Hard core distance r_0

Estimator: minimum interpoint distance

Interaction radius R

Method: profile maximum pseudolikelihood Edge correction: Translation Quadrature scheme = data + dummy + weights Dummy quadrature points: 30×30 grid, plus 4 corner points

REGULAR PARAMETER

Interaction parameter γ

Group comparisons of model parameters

	Normal gro \bar{x}	$\stackrel{ m oup}{SD}$	Cancer grou \bar{x}	$^{1\mathrm{p}}_{SD}$	t	Level of significance
Intensity $N(ext{cap/field})$ $\lambda(ext{points/pixel}^2)$	127 0.000102	38 0.000031	$188 \\ 0.000152$	$60\\0.000048$	$2.98 \\ 2.98$	p < 0.01 p < 0.01
Strauss hard control r_0 (pixel) R (pixel) γ	ore model 17.33 51.37 1.912	$\begin{array}{c} 4.51 \\ 29.31 \\ 1.049 \end{array}$	15.33 51.29 0.886	4.02 22.48 0.416	$1.62 \\ 0.01 \\ 4.45$	N. S. N. S. p < 0.0001

SIMULATION OF PLANAR POINT PROCESSES USING THE METROPOLIS-HASTINGS ALGORITHM

Concept

Contents

Model	Strauss hard core process
Target density	Probability density of the model
Principle	Markov chain Monte Carlo method
Markov chain	Point processes
Number of points	fixed (conditional simulation)
Start pattern	Poisson point process with the same number of points
Proposal	move of a single point $(p = 1; \text{ no birth, no death})$
Update	acceptance of the proposal
	or status quo
	according to random number
Iterations	$n_{rep} = 100000$ (Ripley's rule of thumb: $10 \times N \approx 3500$)
Aim	Convergence to point processes with the target density

Normal case 1 Image 1

Original pattern

Normal case 1 Image 1 Simulation #1 of 999

Strauss hard core process with the same intensity

N=134, r₀=16, R=35, γ=1.667

Carcinoma case 1 Image 1

Original pattern

Carcinoma case 1 Image 1 Simulation #1 of 999

Strauss hard core process with the same intensity

N=173, r₀=17, R=30, γ=0.636

Normal case 1, Image 1: Pair correlation function g(r)

- True sample
- Simulations 1–999

Strauss hard core process N=134, r_0 =16, R=35, γ =1.667 Plots of mean values, g_{26} and g_{975}

Carcinoma case 1, Image 1: Pair correlation function g(r)

- True sample
- Simulations 1–999

Strauss hard core process N=173, r_0 =17, R=30, γ =0.636 Plots of mean values, g_{26} and g_{975}

EFFECT OF NONSTATIONARITY (TREND) ON THE GOODNESS OF FIT

COMPUTATIONS

- Residuals between real data and model expectation as measure of the goodness of fit
- Local (r-wise) differences between g(r) of the sample and the mean g(r) of the 999 simulations
- Sum of squared differences for all r
- Model fitting: Strauss hard core process with and without trend component

RESULTS

	Normal		Tumour	
	Image 1	Image 2	Image 1	Image 2
Stationary	23.4	25.0	9.79	17.1
Nonstationary	21.1	24.7	9.67	16.5

CONCLUSION

• Consideration of trend does not improve the goodness of fit significantly in our application

Strauss hard core process: Simulations with N=173, r_0 =17, R=30, γ =0.636

Pair correlation functions

True sample++++++Carcinoma Case 1, image 1-Strauss hard core process-Simulations with N=173, r_0 =17, R=30, γ =0.636-

r

T=50000

T=100000

Strauss hard core process Simulations with N=173, r_0 =17, R=30, γ =0.636, t=100000

Start process: Original pattern Carcinoma Case 1, image 1

Start process: Poisson process with the same intensity

Pair correlation functions

True sample γ Strauss hard core process: Simulations with N=173, r₀=17, R=30, γ =0.636, t=100000

Start process: Original pattern Carcinoma Case 1, image 1

Start process: Poisson process with the same intensity

POINT PROCESSES OF CAPILLARY FIBRE PROFILES OF GLANDULAR TISSUES: CONCLUSIONS

General

Modelling and simulation feasible with *spatstat* software Consideration of trend does not improve the goodness of fit Compatible with stationary Strauss hard core process

Findings in tumour tissue

Normal tissue: interaction parameter $\gamma > 1$ Tumour tissue: interaction parameter $\gamma < 1$

Decreased clustering behaviour for distances between r_0 and R in the tumour tissue Changes of model parameters consistent with results of explorative statistics

Outlook

Improved graphical analysis of spatial residuals (A. Baddeley) Residuals with respect to trend surface

Interaction: Q-Q plots

Improved monitoring of convergence

Export of methods to other data sets (thesis Paul Grahovac: prostate carcinoma cell nuclei)