Stochastic Modeling of Tropical Cyclone Track Data

Jonas Rumpf

Universität Ulm, Abteilung Stochastik

Söllerhaus-Workshop 2006

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Contents I

1 Introduction

• Approach to the Problem

2 Classification

- Finding Storm Classes
- Resulting Classes

3 Cyclone Tracks

- Basic Considerations
- Points of Genesis
- Track Shape

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Contents II

- ④ Simulation and Examples
 - Model Algorithm
 - Examples for Simulated Tracks
 - Evaluation

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Basic Concept

- Analyze historical cyclone tracks to extract important characteristics
- Create a stochastic model to simulate these characteristics

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Basic Concept

- Analyze historical cyclone tracks to extract important characteristics
- Create a stochastic model to simulate these characteristics
- Simulate a large number of synthetic storm tracks
- Estimate striking probabilities and possible damages from the synthetic storm tracks

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Basic Concept

- Analyze historical cyclone tracks to extract important characteristics
- Create a stochastic model to simulate these characteristics
- Simulate a large number of synthetic storm tracks
- Estimate striking probabilities and possible damages from the synthetic storm tracks
- Not intended: weather forecasting

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Available Data

- Historical cyclone track data from the western North Pacific
- Location and maximum wind speed of every known tropical cyclone from 1945–2004
- Recorded at intervals of 6 hours; compiled by Munich Reinsurance Company

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Available Data

- Historical cyclone track data from the western North Pacific
- Location and maximum wind speed of every known tropical cyclone from 1945–2004
- Recorded at intervals of 6 hours; compiled by Munich Reinsurance Company
- Total: 1,519 storms; 37,377 locations
- \Rightarrow Cyclone tracks are given as polygonal trajectories

Classification Cyclone Tracks Simulation and Examples Outlook

Approach to the Problem

Example Tracks

Finding Storm Classes Resulting Classes

All Tracks

Problem: Strong inhomogeneities in the data

Finding Storm Classes Resulting Classes

Criteria for Classification

• Idea: Splitting the storms into more homogeneous classes

Finding Storm Classes Resulting Classes

Criteria for Classification

- Idea: Splitting the storms into more homogeneous classes
- Tracks are assigned to classes according to the areas of the observation window they move across

Finding Storm Classes Resulting Classes

Storm Tracks, Class 0

Finding Storm Classes Resulting Classes

Storm Tracks, Class 1

Finding Storm Classes Resulting Classes

Storm Tracks, Class 2

Finding Storm Classes Resulting Classes

Storm Tracks, Class 3

Finding Storm Classes Resulting Classes

Storm Tracks, Class 4

Finding Storm Classes Resulting Classes

Storm Tracks, Class 5

Basic Considerations Points of Genesis Track Shape

Modeling the tracks

An appropriate model needs to include the following characteristics:

Basic Considerations Points of Genesis Track Shape

Modeling the tracks

An appropriate model needs to include the following characteristics:

- Points of genesis of storms
- Direction of storm movement
- Translation speeds

Basic Considerations Points of Genesis Track Shape

Modeling the tracks

An appropriate model needs to include the following characteristics:

- Points of genesis of storms
- Direction of storm movement
- Translation speeds
- Also of interest: Maximum wind speeds along the tracks

Basic Considerations Points of Genesis Track Shape

Example: Points of Cyclone Genesis, Class 1

Basic Considerations Points of Genesis Track Shape

Modeling approach

- Intuitive approach: modeling points of cyclone genesis as a spatial point process
- From meteorology, no interactions between points of genesis are known
- \Rightarrow Poisson point process seems appropriate

Basic Considerations Points of Genesis Track Shape

Modeling approach

- Intuitive approach: modeling points of cyclone genesis as a spatial point process
- From meteorology, no interactions between points of genesis are known
- \Rightarrow Poisson point process seems appropriate
 - The locations of the points of genesis within the observation window are distributed inhomogenously
- \Rightarrow Estimation for the intensity field $f(\mathbf{t})$ of the inhomogeneous Poisson process is needed

Basic Considerations Points of Genesis Track Shape

Modeling approach

- Intuitive approach: modeling points of cyclone genesis as a spatial point process
- From meteorology, no interactions between points of genesis are known
- \Rightarrow Poisson point process seems appropriate
 - The locations of the points of genesis within the observation window are distributed inhomogenously
- \Rightarrow Estimation for the intensity field $f(\mathbf{t})$ of the inhomogeneous Poisson process is needed
 - No parametric distribution immediately comes to mind
- \Rightarrow non-parametric estimation technique is needed

Basic Considerations Points of Genesis Track Shape

Intensity Field Estimation

Generalized nearest neighbor estimator for the intensity field $f(\mathbf{t})$:

$$\widehat{f}(\mathbf{t}) = n^{-1} r_k(\mathbf{t})^{-2} \sum_{i=1}^n \mathcal{K}_e\left\{r_k(\mathbf{t})^{-1}(\mathbf{t} - \mathbf{X}_i)\right\} , \qquad (1)$$

where $r_k(\mathbf{t})$ is the distance of the *k*-th nearest neighbor of **t** from the point **t**, \mathbf{X}_i the *i*-th observation and K_e the Epanechnikov-Kernel:

$$\mathcal{K}_{e}(\mathbf{x}) = \begin{cases} \frac{2}{\pi} (1 - \mathbf{x}^{\top} \mathbf{x}) & \text{if } \mathbf{x}^{\top} \mathbf{x} < 1, \\ 0 & \text{otherwise,} \end{cases}$$
(2)

For details, see [Silverman, 1986].

Basic Considerations Points of Genesis Track Shape

Points of Cyclone Genesis, Class 0

Basic Considerations Points of Genesis Track Shape

Points of Cyclone Genesis, Class 1

Basic Considerations Points of Genesis Track Shape

Points of Cyclone Genesis, Class 2

Basic Considerations Points of Genesis Track Shape

Points of Cyclone Genesis, Class 3

Basic Considerations Points of Genesis Track Shape

Points of Cyclone Genesis, Class 4

Basic Considerations Points of Genesis Track Shape

Points of Cyclone Genesis, Class 5

Basic Considerations Points of Genesis Track Shape

Modeling Approach: Direction

Consider the direction of movement X as the sum of an initial direction X₀ and i.i.d. changes in direction X_i :

$$X = (X_0 + \sum_{i=1}^n X_i) \mod 360^\circ$$
 (3)

⇒ Direction of movement can be modeled as a generalized random walk

Basic Considerations Points of Genesis Track Shape

Modeling Approach: Direction

Consider the direction of movement X as the sum of an initial direction X₀ and i.i.d. changes in direction X_i :

$$X = (X_0 + \sum_{i=1}^n X_i) \mod 360^\circ$$
 (3)

- ⇒ Direction of movement can be modeled as a generalized random walk
 - Densities of X₀ and X_i need to be estimated from the historical data
- ⇒ Kernel techniques similar to those in the estimation of intensity fields can be used

Basic Considerations Points of Genesis Track Shape

Example Densities

• Density estimation: initial direction, class 1

Basic Considerations Points of Genesis Track Shape

Example Densities

• Density estimation: initial direction, class 1

• Density estimation: change in direction, class 1

Basic Considerations Points of Genesis Track Shape

Modeling Approach: Translation Speed

• Consider the translation speed Y as the sum of an initial translation speed Y₀ and i.i.d. changes in translation speed Y_i :

$$Y = Y_0 + \sum_{i=1}^n Y_i \tag{4}$$

- Similar approach as for the direction, but certain boundary conditions have to be considered (e. g. $Y \ge 0$)
- ⇒ Translation speed can be modeled as a generalized random walk
 - Densities of Y₀ and Y_i need to be estimated from the historical data
- ⇒ Kernel techniques similar to those in the estimation of intensity fields can be used

Basic Considerations Points of Genesis Track Shape

Example Densities

• Density estimation: initial translation speed, class 2

• Density estimation: change in translation speed, class 2

Basic Considerations Points of Genesis Track Shape

Modeling Approach: Wind Speed

• Consider the wind speed Z as the sum of an initial wind speed Z_0 and i.i.d. changes in wind speed Z_i :

$$Z = Z_0 + \sum_{i=1}^{n} Z_i$$
 (5)

- Similar approach as for the direction, but certain boundary conditions have to be considered (e. g. $Z \ge 0$)
- ⇒ Translation speed can be modeled as a generalized random walk
 - Densities of Z₀ and Z_i need to be estimated from the historical data
- \Rightarrow Kernel techniques similar to those used in the estimation of intensity fields can be used

Basic Considerations Points of Genesis Track Shape

Example Densities

• Density estimation: initial wind speed, class 5

• Density estimation: change in wind speed, class 5

Basic Considerations Points of Genesis Track Shape

Stopping Probability

- Basic meteorological knowledge: Storms will get weaker and end . . .
 - ... when moving over land or
 - ... when moving over cold water or
 - ... when moving too close to the equator

Basic Considerations Points of Genesis Track Shape

Stopping Probability

- Basic meteorological knowledge: Storms will get weaker and end ...
 - ... when moving over land or
 - $\bullet \ \ldots$ when moving over cold water or
 - ... when moving too close to the equator
- For every location in the observation window, the stopping probability of a storm is estimated depending on ...
 - ... geographical circumstances
 - ... meteorological circumstances

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (I)

 Generate one realization of an inhomogeneous Poisson process according to the estimated intensity field ⇒ points of genesis for a set of storms

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (I)

- Generate one realization of an inhomogeneous Poisson process according to the estimated intensity field ⇒ points of genesis for a set of storms
- 2. Generate realizations of the random variables *initial direction*, *initial translation speed*, and *initial wind speed* according to the estimated densities

 \Rightarrow initial segment for a storm

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (I)

- Generate one realization of an inhomogeneous Poisson process according to the estimated intensity field ⇒ points of genesis for a set of storms
- 2. Generate realizations of the random variables *initial direction*, *initial translation speed*, and *initial wind speed* according to the estimated densities

 \Rightarrow initial segment for a storm

3. Determine the stopping probability of the storm according to the storm's current position

 \Rightarrow decision whether the storm ends or not

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (II)

4. Generate realizations of the random variables change in direction, change in translation speed, and change in wind speed according to the estimated densities
 ⇒ next track segment for a storm

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (II)

- Generate realizations of the random variables change in direction, change in translation speed, and change in wind speed according to the estimated densities
 ⇒ next track segment for a storm
- 5. Repeat steps 3 and 4 until the track ends
 - \Rightarrow complete storm track

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (II)

- Generate realizations of the random variables change in direction, change in translation speed, and change in wind speed according to the estimated densities
 ⇒ next track segment for a storm
- 5. Repeat steps 3 and 4 until the track ends \Rightarrow complete storm track
- 6. Determine, if the class of the storm track created in step 5 matches the class of the storm according to step 1
 ⇒ accord or reject the storm

 \Rightarrow accept or reject the storm

Model Algorithm Examples for Simulated Tracks Evaluation

Model Algorithm (II)

- Generate realizations of the random variables change in direction, change in translation speed, and change in wind speed according to the estimated densities
 ⇒ next track segment for a storm
- 5. Repeat steps 3 and 4 until the track ends \Rightarrow complete storm track
- 6. Determine, if the class of the storm track created in step 5 matches the class of the storm according to step 1 ⇒ accept or reject the storm
- 7. Repeat steps 2 through 6 for every point generated in step 1 until for each point, an accepted track is generated ⇒ complete set of storm tracks

Model Algorithm Examples for Simulated Tracks Evaluation

Synthetic Storm Tracks, Class 0

Model Algorithm Examples for Simulated Tracks Evaluation

Synthetic Storm Tracks, Class 1

Model Algorithm Examples for Simulated Tracks Evaluation

Synthetic Storm Tracks, Class 2

Model Algorithm Examples for Simulated Tracks Evaluation

Synthetic Storm Tracks, Class 3

Model Algorithm Examples for Simulated Tracks Evaluation

Synthetic Storm Tracks, Class 4

Model Algorithm Examples for Simulated Tracks Evaluation

Synthetic Storm Tracks, Class 5

Model Algorithm Examples for Simulated Tracks Evaluation

Evaluation (I)

Comparison: Historical and Synthetic Cyclone Tracks, Class 1

Model Algorithm Examples for Simulated Tracks Evaluation

Evaluation (II)

Comparison: Historical and Synthetic Cyclone Tracks, Class 2

Continued Research

- Project will be expanded with the continuing support of Munich Reinsurance Company
- Current Focus:
 - Making the distributions of X_i , Y_i , Z_i location-dependent
 - Making the distribution of Z_i (wind speed) dependent on Z_{i-1}
 - Readjusting the rules for calculating the stopping probability

Continued Research

- Project will be expanded with the continuing support of Munich Reinsurance Company
- Current Focus:
 - Making the distributions of X_i , Y_i , Z_i location-dependent
 - Making the distribution of Z_i (wind speed) dependent on Z_{i-1}
 - Readjusting the rules for calculating the stopping probability
- Plans for future model enhancements:
 - Modeling the points of cyclone genesis as more general point processes, e. g. Gibbs Processes
 - Modeling possible autocorrelation in X_i , Y_i , Z_i
 - Transfering the model to other ocean basins,
 - e. g. the North Atlantic

Literature

- B. W. Silverman (1986)
 Density Estimation for Statistics and Data Analysis
 Chapman & Hall, New York
- K. Emanuel, S. Ravela, E. Vivant, C. Risi (2005)
 A combined statistical-deterministic approach to hurricane risk assessment

To appear in: Bulletin of the American Meteorological Society

T. Hall, S. Jewson (2005)

Statistical modelling of tropical cyclone tracks, part 1-6 arXiv:physics/0503231, 0505103, 0509024, 0510203, 0512091, 0512135

Thank you for your attention!

jonas.rumpf@uni-ulm.de