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In the present paper, we show how a consistent estimator can be derived for the
asymptotic covariance matrix of stationary 0—1-valued vector fields in IR¢, whose
supports are jointly stationary random closed sets. As an example, which is of
particular interest for statistical applications, we consider jointly stationary random
closed sets associated with the Boolean model in IR? such that the components
indicate the frequency of coverage by the single grains of the Boolean model. For this
model, a representation formula for the entries of the covariance matrix is obtained.
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1 Preliminaries

In the following we recall some basic notions and results from stochastic geometry.
More details on this can be found, e.g., in STOYAN, KENDALL and MECKE (1995),
CRESSIE (1993), OHSER and MUCKLICH (2000), and MOLCHANOV (1997). Let £(z) =
(& (z),...,& ()", z € R?, be a stationary r—dimensional vector field in IR? such that
the components &(z), 1 < k < r, are given by

&(z) = Lz, (z), 1<k<r, (1)

where Zi,...,E, are jointly stationary random closed sets (RACS) in IR* and 1 4
denotes the indicator function of a Borel set A ¢ IR%.
Notice that for each pair k,l with 1 < k,l < r, the covariance

Cov(&(x),&(y)) = E&(@)a(y) —E& (@) E&(y), w2,y € R
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is a function of y — x. We thus write
Covii(h) = Cov(&(0),&(h)),  heRY,
where o € IR? denotes the origin. Furthermore, suppose that the volume fraction
pr = IP(o € Z) (2)

of the RACS = is (hypothetically) given for each k£ = 1,...,r, where 0 < p, < 1.
Then, we we have

Covi(h) = PPlo€ Ex,h €Z) — ke, 1<k, 1<T. (3)
Notice that Covy,(—h) = Covy(h). In the following, the function
Cu(h) = P(o€ 5y, h €5;), helRY, (4)
will be called the cross—covariance of = and =Z;. For k = [ we get in particular
Cr(h) = P(o € ¢, h € Ey),

i.e. the covariance of the stationary RACS Z;. Similar to (3), the centered covariance
function Covy(h) , h € IR?, of Z is given by Covi(h) = Ck(h) —pi?, 1 < k < r. Notice
that Covg(h), h € IR, coincides with the covariance function of the stationary random
field {&(z), z € R}, i.e.,

Cov(h) = Cov(&(0), &k (h)) - (5)

Using the stationarity of =, 1 < k < r, we obtain for any Borel set A C IR? with
positive and finite Lebesgue measure |A| and for each h € IR? that

EZ.NEL+h)NA

Accordingly, since = and =; are jointly stationary RACS for each 1 < k,1 < r, we
have (S, N (5, + ) N Al

Nz +h)N
Culh) = ==—"1

2 Motivation from image analysis

In this section, the consistent estimation of the covariances Covy(h), 1 < k,I < r,
given in (3) will be motivated by considering an asymptotic test for the r—dimensional
vector (pi1,...,pr)" of (hypothetically given) volume fractions. Suppose that an image
with r different phases is observed within a given (Borel measurable) sampling window
W C R? satisfying 0 < |[W| < oo, where the phases are visualized as different tones
of a grayscale image. Furthermore, we assume that the r different phases can be
described by realizations of the stationary RACS =, 1 < k < r, which are observed
within the sampling window W. Then, the empirical volume fraction pw, is given by

~ Enanid
Pwrp=—5—, 1<k,
W
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The covariances Covy(h), 1 < k,l < r, are of particular interest for the construction of
an asymptotic test (based on a single observation of the r different grayscales in a large
W) checking whether or not the r—dimensional vector (pi,...,p,)" is in accordance
with the observed image. Such an asymptotic test can be performed using a multi-
variate central limit theorem for the r—dimensional random vectors (Pw,, 1, - - -, Pw,.r) |,
where W, n € IN, denotes an increasing sequence of convex, compact sets in IR with
unboundedly growing inball radius p(W,). Indeed, under appropriate moment and
mixing conditions imposed on the stationary RACS =, 1 < k£ < r, the following

central limit theorem for the vector (Pw,, 1,---,Pw, )  can be proved:
VIWal (Pwaa — p1)
i d
Yn,r - : e N(O’ ET) ) (6)
n—oo

|Wn‘ (ﬁWn,r - pr)

see, for example, HEINRICH (2004) and MASE (1982). Related central limit the-
orems for general random fields with statistical applications can be found e.g. in
GUYON (1995), IvANOV and LEONENKO (1989).

The covariance matrix Y, , of the random vector Y, , is given by

Var pw,, 1 oo Cov(pw,,1, Pw,.r)
En,r = ‘Wn|
COV(ﬁWn,r ) ﬁWn,l) s Varﬁwn,r

Notice that the entries of ¥, , can be written as

R 1
Var pw, k = W /’yWn(h)(Ck(h) —p?)dh, 1<k<r, (7)
and
~ -~ 1
Cov(Pw,k » Do) = AR /’YWn(h)(Ckz(h) —pep)dh, 1<kl<r, (8)

]Rd
where Y, (h) = |[W,, N (W,, + h)| denotes the set—covariance function of the sampling
window W,. Thus, assuming that [pa|Cki(h) — pepi| dh < oo for 1 < k,1 < 7, the
asymptotic covariance matrix X, = lim,,_,o >, , equals
fRd (01(h) - p12) dh  --- f]Rd (Clr(h) - plpr) dh
f]Rd (Crl (h) - prpl) dh --- f]Rd (Cr(h) - pr2) dh

Usually the covariance Cy(h) of the RACS = appearing in (7) and the cross—
covariance C(h) of Z; and Z; in (8) are unknown, which prevents an exact evaluation
of the entries of the covariance matrix X, ,. Therefore, we need a consistent esti-
mator for the asymptotic covariance matrix Y,.. Then, Slutsky-type arguments can
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be employed in order to establish an asymptotic test for the r—dimensional vector
(p1,...,pr)". Such consistent estimators can be obtained by considering the spectral
representations of Ci(h) and Cy(h) and evaluating a consistent kernel estimator of
the corresponding spectral density from the observed image; see BOHM, HEINRICH
and SCHMIDT (2004). On the other hand, unbiased estimators for Ci(h) and Cy(h),
which are given by

BN G+ h) N W, N (W, + h)|

Cw 1(h) = 1<k<
Wn,k( ) |Wnﬂ(Wn+h)| 3 >~ ST,

and
~ ZN(Ex +h) "W, (W, + h)|
C h) = 1<k, 1< 9
Wn,kl() ‘Wnﬂ(Wn—f—h” ) SKREST, ()

(provided that vy, (k) > 0) can be used in order to get a consistent estimator for ¥,.

3 Consistent estimator of the covariance matrix

In the following we will specify conditions on the r—dimensional vector field given in
Section 1, such that the matrix

~

1 ~ r
Your = —— h)(C h) — D dh , V,CcW, 10
, (\Wnl /vn Yw,, (B) (Cw,, k1 (h) — Pw, & P, 1) )k C (10)

J=1
is an asymptotically unbiased and mean—square consistent estimator for ¥,, i.e.,

lim IE in,,« =Y, or,equivalently, lim ||IE ,E\?n,, -% =0 (11)
n—oo n—oo

and, moreover, R
lim E||S,, - %|°=0, (12)
n—0o0

r

1/2
where ||A]| = ( > a%l) for some matrix A = (le)
k=1

.
k=1

To state our result we introduce the mixed cumulant I'y(Z1, ..., Zx) of order k of the
random vector (Zy,...,7Z;)" € IR*, which is defined by

1 dF

Fk(Zl, . .,Zk) = l—km

log ]E ei(tlz1+...+tkzk)

t1=...=t=0
if IE|Z;|¥ < oo for each 1 < i < k. Using Z; = Z; — IE Z; we obtain for k = 2,3, 4 that
Uo(Z1, Zs) = EZ1Z5 = Cov(Z1, Zs) U3(Z1, 25, 25) =€ 217575,
F4(Zla ZQa Z3a Z4)
=E2,Z,7Z3Z,~E Z1Z,JE Z3Z,—~E Z,Z5E Z9Z4—E Z1 Z,E Z2Z+ .
Furthermore, we have

Ui(Zrys - - Zniy) = Ui(Z1, - .., Zy)
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for any permutation 7 of the set {1,...,k}. We will use the following notation for any
k,le{l,...,r}.

iV (@) = Ty(¢4(0), &(x)) = Cov(&(0), &())
¢4 (z,y) = Ts(&(0), &(x), &(v))
0221’2) (z,y,2) = T4(&(0), &k(x), &(y), &(2)) .

Theorem 3.1 Let (=, ... ,E,n)T be a vector of jointly stationary RACS in R and
W,, n € IN, an increasing sequence of convex and compact sampling windows in IR?
with lim p(W,) = oo, where p(W,) = sup{r > 0 : b(z,r) C W,,x € W,} and
n—0o0
b(z,r) denotes the disk with radius r that is centered at x € IR®. Furthermore, let
Vi = b(0,en/p(Wy)) and &, | 0 a sequence such that lim e2p(W,) = oco. Assume
n—oo
that for any k,l € {1,...,r} andn € N

[ @) de < o0 (13)

and

1 - _ - -
|V|2/ / /Rd|]P(OE.:lﬂ(:k+.’L'),ZE:lﬂ(:k+y))
n n n

—PloeEN(Ex+2) PloeEN(Ex+vy))| dzdydx < cy<oo. (14)

A

Then, (11) and (12) hold, i.e., ¥, , is an asymptotically unbiased and mean-square
consistent estimator for .

Proof Exploiting the fact that W, is a convex body we get
(Wal = Wa 0 (Wy + h)| < [{z € Wy 2 b(a, [|B])) n Wi # 0} < ||Al]] Ha1 (0Wr)

for any h € b(o, p(W,,)), where Hy_1(0W,,) denotes the (d — 1)-dimensional Hausdorff
measure of the surface W, C IR%; see HEINRICH and PAWLAS (2004) for details.
Together with the well-known inequality

proved by WILLs (1970), we arrive at
W Wat )| _ dilh]

1 < for h € blo,p(W,)).
Wl p(W)
Thus,
Yw, (h)
sup |1 — — 0.
he‘Ifi |Wn| n—00

Therefore, in order to prove (11), we show that for each 1 < k,[ <r

im B [ (G (k) — P s Pws) dh = / (Cu(h) = papr) dh. (15)

n—oo Vn ]Rd
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Since IE awn,kl(h) = Ckl(h,) and EﬁWn,k = Pr We have

IE (aWn,kl(h) — Pw, k Pw,,1) dh = / (Cri(h) — prpi) dh
Vi a
— Vol IE Pw, ks — pr) Pwny — 21) -

Using
[ Catm—pan| < [ 1 @)laa 0.

n—o0

|Vn| IE (ﬁWn,k - Pk)(ﬁwn,z - pl)

e L @) L ) T, 600)

|W| /Rd/]Rd z) Ly, (z-i—:r)cél )( Ydz dz < |‘VVH|| " cgl’l)(z)\dz,

and |W,| > |b(o, p(W},))| we obtain (15). Now, we prove (12) by showing that for each
1<EkIl<r

~ 2
lim IE (/ (Cw, k1 (h) — Dw,y g P, 1) dh — / (Cri(h) — prp1) dh) =0.

n—00
n R4

This is satisfied whenever

Jim B (/ (Cw,ii(h) — Cua(h)) dh)2 =0,

since

‘ / (Cri(h) — prpr) dh ‘ 7;20 and  |V,|>IE (Bw, x Dw,, — pkpl)Qﬁooa
where the latter relation is valid because of

Val? _ [blo, 1) Per? (p(Wn))* 2
= = < |b(o,1)|e," — 0
W A < [b(o, 1) e5” —

and

2
E ((ﬁWn,k — Pk)Pw, 1 + Pk (P, i — pl))

IE (Dw, x Pw, 1 — pap1)’

< QIE(ank_pk) +2IE( an,l_pl
2

< |c (x) x)| dz.
(Wal Jre \W|

Using the definition of @Wn,kl(h) and Cy;(h) we obtain that

1
|Wi

Cw,pi(h) — Cra(h) = (]lEm(Em—h) (u) = IE Lz, +n) (U)> du,




where Wy, , = W,, N (W,, + h). This gives
—~ 2
E( [ @)~ Culh))an)
- / E (Cuv, () — Cua(@)) (Covoia(y) — Cra(y)) dar dy
n Vn

dx dy / /
= Lw,,(u) Lw,,(v)
/Vn Vi |Wn m| |W nyl JR? JR? o N

X COV( ]]‘Elﬁ(Ek+z) (U’)’ 1151“(519-1-3/) (U)) du dv
_ /// Wo,n Wy +2)N(W, —2)N (W, +y — 2)|
Sl e W (Wt 2)] [Wa 0 (Wa + )
X COV(]IEID(EkHE)(O)v H510(5k+y) (Z)) dzdydz .

Using (14) we have

E ( / n (Covra(h) = Cra(h) dh)2 <

Val?
inf |[W, N (W, + z)|
TEV,

and consequently, by [W, N (Wy + )| = [b(o, p(Wa) — [lz])],

Vol < |b(o 1)|( e )d—>o
inf W, 0 (Wt 2)] L=eu/\/p(Wa) ) 7o
which completes the proof.
Notice that assumption (14) can be replaced by certain conditions on c,(fl 2) cgl 2),
and cl;’Q) if the following decomposition is considered:

COV( Lz +2)(0), ﬂaln(zwy)(z))
= Cov ((2=,(0) = p)(Lza(0) = pr). (L= (2) = 2) (L (2) — 0))
+ T (p(1z,(0) = p) + pi( Uz, 4a(0) — i) ) (1= )Lz (2) — 1)
+16 (1L,(0) — p)( 1z, 0(0) — pi) (pe( Uz, (2) = pz>+pl<n:k+y(>—pk))
+E (pe(12,(0) = p) + i Lz,2(0) = 1)
% (pe(1=,(2) = 1) + Pz (2) — 1))
Using the stationarity of the random field (& (z), &(2)) ", z € RY, we get

Cov( L2z +0(0); Lzn@ ) (2))

= v o—yzt+ma)+ c+r—y) @)+ v —2) Y (2 + @)

~+ pg c,(cll’2) (y,y — 2) + p c;l )(x, T+2)+p cl(,c )(—y, —z—x)+p cl(,i’z)(—x, )

+p2d @)+ N+ —y) o V(2 = y) + pepi P (2 + 2)

This immediately leads to the following result.
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Lemma 3.1 Assuming that [ga |c,($’1)(a:)|dac < oo for any k,l € {1,...,r}, condi-
tion (14) is satisfied if

1
o[z <o
n n n J R

and

|V|// |c xz|dzdx<cz<oo (17)

Notice that conditions (16) and (17) are satisfied whenever

///|ckl (z,y,x |dzdyd:v+/ / |c :Ez|dzda:<oo (18)
R? JR?

sup / |ckl (z y+z,2)|dz < oo and sup/ \cg’2)(x,z)|dz<oo. (19)
z,y€RY R4 zeR4 JR?

or

We also remark that the volume fraction of stationary RACS can be seen as one
of the d + 1 specific intrinsic volumes, or, equivalently, specific Minkowski functionals
of stationary RACS in IR%. Joint estimators for such multidimensional characteristics
of stationary RACS and consistent estimators for their asymptotic covariance matrix
have been investigated in SCHMIDT and SPODAREV (2004); see also KLENK, SCHMIDT
and SPODAREV (2004) for related computational issues.

4 A multiphase Boolean model

In the following we consider stationary RACS =1, =, ..., which are deduced from the
Boolean model in IR? such that the different sets indicate the frequency of coverage
by the single grains of the underlying Boolean model. Notice that these RACS are
not Boolean models anymore. However, for these RACS representation formulas of
the quantities py, Ck(h), and Ck(h) can be given. For certain grain distributions even
explicit formulae can be obtained for these quantities. Therefore, the definition of the
Boolean model will be briefly recalled in the following. Let

U= b~ Pra

n>1

be an independently marked stationary Poisson process in IR? with finite and positive
intensity A of the points {X,,, n > 1} and with marks {M,,, n > 1} being a sequence
of independent copies of a non-empty, compact RACS M, in IR? (called typical grain),
where () denotes the distribution of the marks {M,, n > 1} and P, ¢ the distribution
of the marked Poisson process V. Furthermore, we assume that

E M| = /K K| QAK) < oo, (20)
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where K denotes the space of all non-empty, compact sets in IR%. Then, the union set

== J O, + X,) (21)

n>1

is called a stationary Boolean (Poisson-grain) model in IR?, where the X, are called
germs, and the M, grains. Notice that in general condition (20) does not ensure
the closeness of =. However, provided that (20) holds, the union = given in (21)
is almost surely closed if and only if IE |My @ b(o,e)| < oo for some € > 0; see
also HEINRICH (2004) and references therein. Now we consider the random field

(I)(.CE) = Z ]]‘(Mn+Xn)(x)’ T € IRd,

n>1

and the r—dimensional random vector £(z) = (& (z),...,&(z)) ", z € R?, with com-
ponents &(z) = L(®(z) > k), 1 < k < r, which is a stationary r—dimensional vector
field in IR%. Then, for each 1 < k < r,

Er={z€E: &) =1} (22)

is a stationary RACS in IR?, where Z; contains those areas of the Boolean model =,
which are covered by at least £ of the shifted grains M,, + X,,, n > 1. Conversely,
according to (1), we have the relation

&(z) = 1g, (), 1<k<r.

Notice that =1 D Zy D ... D Z,, where Z; = =. This decomposition of the Boolean
model = into the sequence of stationary RACS =1, =,, . .., =, will be called a multiphase
model deduced from the Boolean model = with r different phases =, 1 < k <r.

The decomposition of the Boolean model = into the infinite sequence of stationary
RACS =4, =y, ... will just be called a multiphase model deduced from the Boolean model
=. In addition, for this model let us denote by the stationary RACS

20 =g \int(Zipq), i>1,

those areas of the Boolean model =, which are covered by exactly ¢ of the shifted grains
M, + X,, n > 1, where int(Z;,1) denotes the set of all interior points of =; .

In Figure 1, the realization of a multiphase model deduced from the Boolean model
= in IR? with two different phases =; and Z, is given within a sampling window of 800 x
800 pixel points. The underlying Boolean model Z has intensity A = 8.8254-107° and
volume fraction p = 0.5, where the typical grain is a disc with uniformly distributed
radius between 40 and 60 pixel points. Here, the multiphase model is visualized by a
grayscale image, where the gray phase represents the RACS Z(Y) and the black phase
the RACS =,. This means that the gray phase indicates those areas of the Boolean
model =, which are covered by exactly one of the shifted grains M,, + X,,, n > 1, and
the black phase those areas, which are covered by at least two of the shifted grains.



Figure 1: Realisation of a multiphase model deduced from a Boolean model in R?.

For the above defined multiphase model deduced from the Boolean model = in IR¢,
the quantities py and Cy,(h) introduced in (2) and (4), respectively, can be determined
as follows. Since =M, Z®) .. forms a sequence of pairwise disjoint stationary RACS
in IR¢, we have

k—1
= P(o € 20) (23)
=0
and
Cra(h Y Poe=D he=), (24)
>k j>1

where 2 = IR?\int(Z). Since the probability IP(o € Z®) can be deduced from
IP(o € 9 h € 2U), only the evaluation of IP(o € 2@ h € Z) is required, which
is the probability that the origin o € IR? is covered by exactly i of the shifted grains
M, + X,, n > 1, and some point h € IR? is covered by exactly j of the shifted grains.

Theorem 4.1 Let = be a Boolean model in R® with intensity A and typical grain M,
satisfying (20). Then, for any h € R% and i,j € NU {0},

(0 oy -2 AT
PloeE? he=) = Y- GG =] (IE | My N (M + h)|)
m=0

x (IE |My| — IE |My 0 (Mo + h)|)"7 ™ exp(-ATE [ My U (Mg + h)]).
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Proof To begin with we assume that 1 < < j. Further, let mq,...,mg,n1,...,n; >
1 and ¢i,...,¢i—r > 1 be pairwise different indices with {qi,...,¢—x} C {n1,...,n;},
where 0 < k < 4. Then,

A q15--5qQi—k ;M1 524N 5 N1 5205

={ o€ My +Xg,..0€ My, + Xy ,0€ My + Xiny, -0 € My, + X,

o ¢ U (Ml +Xl)a

l ;ﬁ q1se-sQi— kM1 Mg

he My + Xoo h€ My + X hé () (Mi+X) )

l;ﬁ n1,.--,Nj

denotes the event that the origin o € IR? is covered by the shifted grains My +Xq, ...,
M, +X4_ o, My, + X0t - .o, M, + X, , but not touched by any other grain M;+ X,
and that the vector h € IR¢ is covered by the grains M,, + X,,,...,h € M,; + Xy,
but not touched by any other grain M; + X;, where M,, + X,,,...,M,_, + X,,_,
represent those grains, which cover both the origin o and h. Thus, the quantity
P(0 € 29, h € E9)) equals the probability of the event,

BZ;] = U U U Al]l;---;‘]i—k 3 ML -y 511 5--45T05 )

OS]CSZ {a1,---s 9k} 1<m <...<my,
C{ni,--es nj} 1§n1<...<nj

where the following two properties (i) and (ii) are valid.

(1) Aq1,---,Q¢_k;m1,---,mk;ﬂ1,---,nj = Aqﬂ(l)v"-aqﬂ(ifk);mﬂ'(l)v-"amﬂ'(k);nﬂ'(l)a'"vn‘rr(j) )

(11) Aql,...,qi,k;ml,...,mk;nl,...,nj N Ap’l,...,p;_k;m’l,...,m’k;n’l,...,n;. - 05

if{g1,...,qi—}x{m1,...,mp}x{n1,...,n;} # {p’l,...,p;_k}x{m’l,...,m}c}x{n’l,...,nj .

Using properties (i) and (ii) it follows that
P(o € 29 h € E9) = IP(B;;) = IE 1(B;,)

= IE Z Z Z H(Aql,...,qi_k;mh...,mk;n1,...,nj)

0<k<s {q15--9; 1} 1<m;<...<my,

C{ny,-.-s nj} 1<n1<...<ny
} : Z 1 *
= B k'j' 2: 1 (Aqlv---aQi—k;mly---vmk;nlv---,nj) ’ (25)
0<k<s {a1,-9—k} T my,emy > 1
C{n1s-es n]} AT nj >1

where the symbol 3~ * means the summation over pairwise different indices. Further-
more, we have

]]' (A q1s--5Qi—k ;M- ;nla“'7nj)

= ]]-Mql (th) Tt ]I'Mqi,k (X'Ii—k) ) ]lel (Xm1) et ]le (ka)

k
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H (1 - ]lMl(Xl)) : ]I‘Mnl-l-h(an) Teees ]]‘Mnj-l'h(X”j)

U# q15eGi— kM50,
H (1 - 1l]\7[,+h(Xl)) )
l:,énl,...,nj

where K = {—z : 2 € K} denotes the reflection at the origin 0 € IR%. Thus, we obtain
that

*
E § : ]j' (A q1y-yqQi—F 3 M1, ;nlr"anj)

-/ > L, (v0) o Ly, (20,)
Nk [wml,Kml],...,[a;mk,Kmk],[a;nl,Knl},...,[a;nj,Kn].]6511,
]lf(ml (Tmy) o ]lf(mk ("Emk) : ]lf(nl+h(37n1) el ]lknj+h(xnj)

I1 (1= 1:) (1- 1144(0)

[¥,L]1€ Sy \ {[Tmy1 ,Kmy s s[Tmy s Kmp Li[Tny : Kny 1y a[zn Kn 1}

I1 (1-1:0)

lv,L] € {[xnl aK‘nl]a---a[a"nj aKnj}} \ {[-75(11 ,qu],---,[l'qi_k ’in—k}}
H (1 - ]1E+h(y)> Py o(dy),
[y,L]E {[mmpK‘ml]:---:[wmk ;Kmk]}

where Nk denotes the space of the marked counting measure ¢ = Zn>1 [0, K] aDd
Sy the support of the marked counting measure v with

Sy ={[z,K]: [r,K] e R* x K, ¥({[z, K]}) > 0}.

Using the refined Campbell theorem with the reduced (k + j) — fold Palm distribution
PAQ [y Koy oo Emg s Kmg W s Koy ool K] of the marked Poisson process ¥ (see, for
example, Chapter 12 of DALEY and "VERE-JONES (1988)), we have

*
E E , ]]‘(A(Il;---;qv.'—k;ml,---amk;nla---,nj)

B /(Rd K)k+i H ]]_L(y) - ]1L+h(y)

[yaL} € {['7341 ’K<11]1""[zqi—k ’K‘li—k]}

I1 15(9) (1= L))

[y,L] € {[zm, ,Kml],...,[wmk,Kmk]}

11 (1 - ﬂi(y)) Lpn(y)

[yaL] € {[.’Knl ,Knl],---,[wnj 7K7’Lj]} \ {[wa 7K(11L"'5[$(1i_k 5qu,'_k]}

/N [T (1= 120) = Lin®) + Lingan(®)

[y,L] € Sy
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P/\Q [wmlmel]a 7[$mk7Kmk][33nlaKn1]a awn aKn (dw)

by (U K]y s Ko ]y s Ko, - [y Ky ))

where «; +; 1s the factorial moment measure of ¥ of order k£ + j. Since V¥ is an

independently marked stationary Poisson process in IR? with intensity A, the factorial
moment measure a,i 44 can be written as

o i (A Ko, g o) [y Ko, [y K)))
= N day, - dam, doy, - deg, Q(AKy,) - - - Q(dKyy,)
X Q(dKy,) -+ Q(dKy,;).  (26)
Furthermore, Slivnyak’s theorem (see e.g. DALEY and VERE-JONES (1988)) yields

P)‘Q [wmlaK‘mlL ’[wmk’Kmk} [wnl,Knl], ,[Z"n Kn] - P’\aQ’ (27)

and for any measurable function »([y, L]) on R% x K with 0 < v([y, L]) < 1 for all
[y, L] € R* x K the generating functional of ¥ becomes

/NK v([y, L]) Pro(dv) = exp< )\/RdXK (1—1/([y,L])> dyQ(dL)). (28)

[y,L] € Sy

Using (26), (27), and (28) we obtain that

*
E : : ]j'(Aql,---,q'i—k;ml,---,mk;nl,---,'ﬂj)

.....

S /R [ / 15(5) - Lin(v)

E{mql,qu wo[Ta;_ s Ka;_ 1}

I1 159) (1= 1p0(v))

[v.L] € {[zmy ;Kmy Lo [y Ko 1}

11 (1- 1) 1)

[yaL] € {[mn1 ,Knl},---,[l'nj 1Knj]} \ {[Iﬂ ,qu],---,[mqi_k ’in—k]}
exp (<3 [ (L) + L)~ L) dy QD)
RIxK
ATy, - ATy, - dy, - - dy, - QUK ) - QdKy,) - Q(dK,,) - -Q(dKnj)

_ )\’”j(/K|Lﬂ(i+h)|Q(dL))i_k(/K<|L|—|Lﬂ(L+h)|)Q(dL))k+j_(i_k)

exp (—A/K (212~ L (L + 1)) QL))

— Akt (]E | Mo N (Mo + h)\) <]E M| — E | My N (Mo + h)\)jﬂm
exp (—A <ZIE\MO\ —E My (M, +h)|)) .
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This formula combined with relation (25) proves Theorem 4.1 for 1 < ¢ < j. In
particular, setting s = j > 1 and h = o, we get a simple expression for IP(o € Z%);
see Corollary 4.2 below. If 1 < j <1, we make use of the fact that

PocZD heED)=Ploe ZYD, —h e ZV) = IP(o€ 9 h € EW)

where the first equality is due to stationarity and the second follows from the above-
derived formula for our multiphase Boolean model. Finally, for the remaining cases,
eg. i=0,j>1, werewrite IP(o € 2% h € 20) as

Poe = he =) = Ploe 2V) - Y P(oe =V, h e 20).
i>1
A short computation yields that
E [ M| — E My N (Mo + b))’

DY/
Ploc 2 he =) = ( ,
]

exp (AE |MoU(My+h)|)

completing the proof of Theorem 4.1.

As mentioned in the foregoing proof, Theorem 4.1 yields a well-known formula for
the probability IP(o € Z%)), which coincide with the volume fraction E|Z® N[0, 1]¢| of
that subset of the Boolean model = that is covered by exactly ¢ of the shifted grains
M, + X,,, n > 1; see, for example, Chapter 4 in HALL (1988).

Corollary 4.2 Under the assumptions of Theorem 4.1, for any i € NU {0} it holds

(VIE | M)’
1

P(o € E9) exp(-\ IE | Mp)) .

Remarks

1. For the multiphase model deduced from the Boolean model in (21) with r different
phases =, 1 < k < r, we are able to verify the conditions (13) and (14) of Theo-
rem 3.1. After some rather lengthy and technical calculations it turns out that not
only condition (13) but also condition (14) (or, alternatively, (16), (17) resp. (19)) is
satisfied whenever the volume of the typical grain M, possesses a finite second mo-
ment, i.e. IE|My|?> < oo. This condition also implies the validity of the central limit
theorem in (6) for the above—defined multiphase Boolean model, which can be seen by
applying a central limit theorem for m,,—dependent random fields with m,, — oo as
n — oo (see HEINRICH (1988)) combined with the Cramér—Wold device.

2. The estimate [pq ¢ ()| dz < 5 ATE | My|? holds for all k,1 > 1. To prove this we
use (23), (24) and the representation formulae given in Theorem 4.1 and Corollary 4.2.
With the abbreviations a(z) = AME | My N (Mp + )| and a = a(o) it is easily seen that
\cg’l)(a})\ is bounded by

ij>1

14



> mmij} a"(z) (a - “( DT @2

<
ij>1 m=1 m' (@ =m)! (G —m)
_ H—J At tT _ z—}—]
+ Z | a a ) a | e 2 + Z a a (ea(w)an _ 6720.)
Z' Z' jl
2,j>1 2,j>1

for any k,l > 1. After evaluating the multiple sums we obtain that the right-hand
side of the latter inequality does not exceed 5 (1 — e~ 2(*)). Finally, by the elementary
inequality 1 — e~ %®) < q(x) and Fubini’s theorem we get

/ (1—e*a<$>) dr <X | TE|Myn (My+ z)|dr = A\TE|M,[? (29)
R4 R4
proving the asserted estimate.

3. To verify condition (14) we rewrite the phase sets = and Z; as countable unions
of the disjoint RACS’s of the form (22). This leads to the estimate

| Ploe 5N (Z,—12),2€ 5N (S —y))
—]P(oEElﬂ(Ek—x)) ]P(OEElﬂ(Ek—y)H

1,3,P,4>1

—PloeE9 2 20) Poe 2P ye29)) (30)

for any k,l > 1. Following the lines of the proof of Theorem 4.1 we arrive at a series
representation for the probabilities IP(o0 € 20 2 € EU) 2z € ZP y + 2 € E@) by
infinite series in which, among others, exponential terms the form exp{—AIE|M, U
(My —z) U (My —y)U (My —y — 2))|} appear. Together with the formulae for the
probabilities IP(o € 2@ 2z € Z0)) and P(o € E®),y € E@) given in Theorem 4.1 it
can be shown that the four fold sum in (30) is bounded by

cra(z) +caly+z)+cesa(z —x) +caaly+ 2z —x)

where ¢, ..., ¢4 are constants depending only on A and IE|M,|. The details of the
computations are omitted here. Integrating the latter expression with respect to z
over IR? and taking into account (29) we get that the corresponding integral over the
left-hand side of (30) is bounded by A (c; + - - - + ¢4) IE [Mo|? for all z,y € R*. Thus,
condition (14) is satisfied if again IE |My|?> < oco. In a similar way and under the
same condition one can check that (19) is satisfied whereas (18) requires the stronger
assumption IE [ M|* < co.

2

4. For completeness we mention that the assumption IE [Mj|* < oo implies that

sup / Ti2(€(0), (1), s E(20), E(2)) d2 < 00 forany k> 1,
Rd

wl,...,wkE]Rd

where £(z) = L=(z) and = is the Boolean model defined by (21). This estimate is a
consequence of Lemma 7 in HEINRICH (2004) and obtained by an inductive proving
technique which also yields that IE |M,|**! < oo is sufficient to hold

/ ITet1(£(0),&(xq), ..., E(x))|dxy ... dxy, <00 for k>1.
de
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5 Asymptotic test for volume fractions

In this section we presuppose that the multivariate central limit theorem considered
in (6) holds and the asymptotic covariance matrix ¥, has a strictly positive determi-
nant det(3,). Further, assume that the symmetric, non—negative definite matrix in,r
defined by (10) is a (weakly) consistent estimator for X, which is guaranteed by the
conditions imposed on (Z;,...,Z,)" in Theorem 3.1. By standard arguments one can

show that Hf]n, — % £.0 implies
n—oo
det(S,,) — det(S,) >0,
n—oo

which in turn yields
1 (det(S,,) > 0)S;12512 Ty

n—oQ

where I, stands for the r—dimensional unit matrix and w2 (resp. i;}/ 2) denotes the
square root of 3, (resp. E_l ). There are computationally efficient ways of calculating

Z 1/ ? based on the spectral decomposition

En,r = Qn diag()\n,la ceey /):n,r) Q;[L_ ;

where l)\\n,l, ...,Xw are the positive eigenvalues of flw (provided that det(f]n,,.) > 0)
and @, is an orthogonal (r x r)-matrix whose colums are eigenvectors of ¥, , . Thus,

1/2 = @, diag(\ nll/z,...,/):;lrﬂ) Q;

is a possible choice for the square root of E;’, . There is an alternative approach, known

as Cholesky decomposition, to obtain the product representation f]n , = =5V 2(21/ 2) ,

where $/7 nr can be chosen as a lower triangular (r x r)-matrix. For details we refer

the reader to Chapter 3 in CRESSIE (1993).

Summarizing the above facts and using Slutsky-type arguments we are in a position
to state the following result: Under the hypothesis Hy : (p1,...,p,)" = (p%,...,p9)"
we have

Wl (Pw,1 — 1Y)
1 (det(S,,) > 0) ;12 : =L N(0, 1),

n—oo

an:

I

(Wl (Pw,r _pg)
which, by applying the continuous mapping theorem (see e.g. DALEY and VERE-
JONES (1988)), implies
d
1Zusl? = (INQLL)IP

where the random variable ||N(0, I,.)||? is x? distributed with r degrees of freedom.
Thus, for a given significance level a., we will reject the hypothesis Hy : (p1,...,pr) =
(), ...,pY) " if the test statistic |[Z,,||> exceeds the critical value x2,_,, which is
determined by the equation IP(|[N(0,L.)[* > x2, ,) = «.

In the particular case r = 2 we get x3, , = —2In(a) (since ||N(0 L)||? is expo—
nentially distributed with mean 2) so that the hypothesis Hy : (p1,p2)" = (0%, p3) "
rejected if ||Z, || > v/—2 In(c).
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6 Numerical example

To illustrate the fit of the estimator aw,kl(h) given in (9) to the theoretical covariance
Cii(h) in (4), we consider the realization of the multiphase model deduced from the
Boolean model = in IR? with two different phases Z; and =, within a sampling window

w.

0.20 7
0.181
0161
0.141
0.121
0.101

0.08

0.06 7

0.04 7

0.02

0 20 40 60 80 100 120

Figure 2: Comparison of Cia(h) (—) and Cw,12(r) (- - -) for the multiphase
model shown in Figure 1, where p; = 0.5, ps = 0.1534, and p; p2 = 0.0767.

If we additionally assume that = is isotropic, the covariance Cy;(h) depends only
on the radial coordinate » = |[|h||. Notice that the estimation of Cy;(h) from a
two—-dimensional image can only be done for vectors h, which take values on a two—
dimensional lattice. Therefore, in the isotropic case it is convenient to estimate the
covariance using the rotation average Cyy (), where

— 1 ~
Cwat) = i Ty, 2 Gt

Here, the set {h : ||h|| ~ r} can be obtained using the so—called midpoint circle
algorithm, which is a common algorithm in image analysis to detect a circle on a
lattice; see, for example, HEARN and BAKER (1997). This averaging method enables
us to improve the accuracy of the estimation.

An efficient way to compute the estimator aW,kl(h) from the observed image
is to use methods from spectral analysis; see, for example, BOHM, HEINRICH and
SCcHMIDT (2004), OHSER and MUCKLICH (2000), and PRESS, FLANNERY, TEUKOL-
sKY and VETTERLING (2002). In particular, we compare Ci2(h) using Theorem 4.1

17



with the corresponding estimator 5W,12(h) obtained from the realization of the mul-
tiphase model shown in Figure 1. In Figure 2 it can be seen that the estimator
Cw,12(r) fits the theoretical covariance Ci5(r) quite good for the considered range of
0<r<120.
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