Prof. Dr. V. Schmidt Dipl.-Math. oec. J. Rumpf SS 2006 11.05.2006

Übungen zu Wahrscheinlichkeitstheorie - Blatt 3

(Abgabe: Donnerstag, 18.05.2006, vor den Übungen)

Aufgabe 1

Gegeben sei ein zusammengesetzter Poisson-Prozess $X_t = \sum_{i=1}^{N_t} U_i$.

Sei $\hat{g}_{N_t}(s) = \mathbb{E}(s^{N_t}), s \in (0,1)$, die erzeugende Funktion des Poisson-Prozesses $N_t, \hat{l}_U(s) = \mathbb{E}(e^{-sU})$ die Laplace-Transformierte von $U_i \, \forall i \, \text{und} \, \hat{l}_{X_t}(s)$ die Laplace-Transformierte von X_t . Zeige:

$$\hat{l}_{X_t}(s) = \hat{g}_{N_t}(\hat{l}_U(s)), s \ge 0$$
(4)

Aufgabe 2

Gegeben sei ein zusammengesetzter Poisson-Prozess $X_t = \sum_{i=1}^{N_t} U_i$ mit $U_i \sim Exp(\gamma)$ $\forall i$, wobei die Intensität von N_t durch λ gegeben sei. Zeige, dass für die Laplace-Transformierte $\hat{l}_{X_t}(s)$ von X_t gilt:

$$\hat{l}_{X_t}(s) = e^{-\frac{\lambda ts}{\gamma + s}} \tag{4}$$

Aufgabe 3

Schreibe ein Programm, dem als Parameter ein Zeitpunkt t, eine Intensität λ und ein Wert γ übergeben werden und das als Ergebnis den zufälligen Wert eines zusammengesetzten Poisson-Prozesses mit Charakteristiken $(\lambda, Exp(\gamma))$ (vgl. Aufgabe 2) zum Zeitpunkt t ausgibt. (2)

Zur Erinnerung: Wie bei allen Programmieraufgaben ist auch hier folgendes zu beachten: Abzugeben ist ein Ausdruck des lesbar kommentierten Programmcodes und der (ggf. beispielhaften) Ausgaben. Bevorzugt werden Programme in Java. Lösungen in anderen gebräuchlichen Programmiersprachen werden auch akzeptiert, wenn sie kommentiert, strukturiert und lesbar sind. Ein Link zur Java-Online-Dokumentation und anderen hilfreichen Seiten sowie aktuelle Informationen zur Vorlesung sind auf der Vorlesungshomepage zu finden:

http://www.mathematik.uni-ulm.de/stochastik/lehre/ss06/wt.html

Die Lösungen der Übungsblätter können zu zweit abgegeben werden. Bitte die Namen **deutlich** schreiben!

Aufgabe 4

Der stochastische Prozess $\{N_t\}$ sei ein Cox-Prozess mit Intensitätsfunktion $\lambda_t = Z$, wobei Z eine diskrete Zufallsvariable ist, welche die Werte λ_1 und λ_2 jeweils mit Wahrscheinlichkeit 1/2 annimmt. Bestimme die momenterzeugende Funktion sowie den Erwartungswert und die Varianz von N_t .

Aufgabe 5

Gegeben seien zwei unabhängige, homogene Poissonprozesse $\{N_t^{(1)}\}$ und $\{N_t^{(2)}\}$ mit den Intensitäten λ_1 bzw. λ_2 . Weiter sei $X \geq 0$ eine beliebige nichtnegative Zufallsvariable, die von $\{(N_t^{(1)}, N_t^{(2)})\}$ unabhängig ist.

Zeige, dass der Prozess $\{N_t\}$ mit

$$N_{t} = \begin{cases} N_{t}^{(1)}, & \text{falls } t \leq X, \\ N_{X}^{(1)} + N_{t-X}^{(2)}, & \text{falls } t > X \end{cases}$$

ein Cox-Prozess ist, dessen Intensitätsprozess $\{\lambda_t\}$ gegeben ist durch

$$\lambda_t = \begin{cases} \lambda_1, & \text{falls } t \leq X, \\ \lambda_2, & \text{falls } t > X. \end{cases}$$

(5)

(5)