Methoden zur Erzeugung von Kernen

Stefan Frommer

03.07.2007

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

Wiederholung: Kerne

Man wählt sich Kerne aus, um ein Ähnlichkeitsmaß zu haben, um damit verschiedene Objekte miteinander vergleichen zu können.

Zunächst: repräsentiere die Daten als Vektoren in einem Raum mit Skalarprodukt:

•
$$\Phi: X \to H$$

•
$$x \mapsto \Phi(x) = \mathbf{x}$$

Ein Kern ist ein Ähnlichkeitsmaß in diesem Merkmal-Raum.

- $k: X \times X \to \mathbb{K}$ üblicherweise mit $X \subset \mathbb{R}^N$, $X \neq \emptyset$ und $\mathbb{K} = \mathbb{R}$ oder \mathbb{C}
- $\dim(X) << \dim(H)$

•
$$(x, x') \mapsto k(x, x') := \langle \Phi(x), \Phi(x') \rangle = \langle \mathbf{x}, \mathbf{x}' \rangle$$

mit dem kanonischen Skalarprodukt:

$$<\mathbf{x},\mathbf{x}'>:=\sum\limits_{i=1}^{N}~[\mathbf{x}]_{i}[\mathbf{x}']_{i}~,\mathbf{x},\mathbf{x}'\in\mathbb{R}^{N}$$

und den Eigenschaften

- Symmetrie: $k(x, x') = \overline{k(x', x)}$
- positiver Definitheit $\sum_{i,j=1}^{m} c_i \overline{c_j} \ k(x_i, x_j) \ge 0 \ \forall c_i, \overline{c_j} \in \mathbb{K}$
- $\bullet \|x\| = \sqrt{\langle x, x \rangle}$

Wiederholung: Kerne

Beispiele für Kerne:

- Gauß'scher Kern: $k(x,x') = e^{-\frac{\|x-x'\|^2}{2\sigma^2}}$ mit $\sigma > 0$
- \bullet Polynomialer Kern der Ordnung d
: $k(x,x') = < x,x'>^d$

Im Folgenden betrachten wir nur noch positiv definite Kerne ("Kerne").

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

Auswahl eines Kerns

- suche ein Ähnlichkeitsmaß z.B. Skalarprodukt
- wähle lineare Repräsentation im Funktionenraum Hz. B. Ellipse: $X = \mathbb{R}^2$, $H = \mathbb{R}^3$, $\Phi: (x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ Ellipse ist linear in (z_1, z_2, z_3)
- wähle passende Funktion \rightarrow KERN z.B. polynomialer Kern $< x, x' >^d$

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

• Summen und Grenzwerte von Kernen

Die Menge aller Kerne bildet einen konvexen Kegel, abgeschlossen unter punktweiser Konvergenz:

$$-k_1, k_2$$
 Kerne, $\alpha_1, \alpha_2 \ge 0 \Rightarrow \alpha_1 k_1 + \alpha_2 k_2$ ist Kern

$$-k_i$$
 Kerne $\forall i \in \mathbb{N}$, $\lim_{n \to \infty} k_n(x, x') = k(x, x') \ \forall x, x' \in X$

 $\Rightarrow k$ ist wieder ein Kern

• Punktweises Produkt

$$k_1, k_2$$
 Kerne $\Rightarrow k(x, x') := k_1(x, x')k_2(x, x')$ ist Kern.

- Beispiel polynomiale Kerne: $< x, x' >^d < x, x' >^n = < x, x' >^{d+n}$

- Beispiel Konforme Transformationen:

gegeben: Kern k. Konstruiere k_f

 $k_f(x,x') := f(x)k(x,x')f(x')$ mit einer positiven Funktion f

dabei ist $k_1 = k$ und $k_2 = f(x) f(x')$

Diese Transformation ist winkeltreu:

$$cos(\angle(\Phi_f(x), \Phi_f(x'))) = \frac{f(x)k(x, x')f(x')}{\sqrt{f(x)k(x, x)f(x)}\sqrt{f(x')k(x', x')f(x')}}$$
$$= \frac{k(x, x')}{\sqrt{k(x, x)}\sqrt{k(x', x')}} = cos(\angle(\Phi(x), \Phi(x')))$$

• Polynomiale Kerne

Das sind Kerne der Form $k(x, x') = \langle \Phi(x), \Phi(x') \rangle^d$

- betrachte dazu die Abbildung $\Phi: X \to H$ so dass $<\Phi(x), \Phi(x')>$ effizient berechnet werden kann.
- Betrachte Abbildungen $x \mapsto f_x$, mit reellwertigen f_x oft mit $f_x : [0,1] \to \mathbb{R}$
- falls Φ zu komplizierte Gestalt hat, soll $\langle f_x, f_{x'} \rangle \approx \langle \Phi(x), \Phi(x') \rangle$ als Approximation erreicht werden.
- statte den Raum H aus mit dem Skalarprodukt $\langle f_x, f_{x'} \rangle = \int f_x(u) f_{x'}(u) du$.
- eine gute Approximation dazu ist dann $k(x, x') = \langle f_x, f_{x'} \rangle^d$

Kern-Kompositionen

Beispiel: Die Eingabe-Muster $x_i \in X$ sind $q \times q$ -Bilder

 f_{x_i} : 2-dimensionale Bilddichte-Funktionen, z. B. auf $[0,1]^2$.

Mit den f_{x_i} ergibt sich folgende Annäherung an das Skalarprodukt:

$$k(x,x') := \int_{0}^{1} \int_{0}^{1} f_x(u) f_{x'}(u) du du$$

Dies wiederum wird angenähert durch:

$$\frac{1}{q^2} \sum_{i=1}^{q} \sum_{j=1}^{q} f_x\left(\frac{i-\frac{1}{2}}{q}, \frac{j-\frac{1}{2}}{q}\right) f_{x'}\left(\frac{i-\frac{1}{2}}{q}, \frac{j-\frac{1}{2}}{q}\right)$$

Kern-Kompositionen

• iterierte Kerne

Gegeben sei ein Kern k. Dann definiert man

$$k^{(2)}(x,x'):=\int k(x,x'')k(x',x'')dx''$$

$$k^{(n)}(x,x') := \int k^{(n-1)}(x,x^{(n)})k(x',x^{(n)})dx^{(n)}$$

Vorteil von iterierten Kernen: falls k nicht positiv definit ist, ist $k^{(2)}$ trotzdem positiv definit

• Tensor-Produkte

 k_1, k_2 Kerne mit $k_1 \in X_1 \times X_1, k_2 \in X_2 \times X_2$

Das Tensor-Produkt $(k_1 \otimes k_2)(x_1, x_2, x_1', x_2') = k_1(x_1, x_1')k_2(x_2, x_2')$ mit $x_1, x_1' \in X_1$ und $x_2, x_2' \in X_2$ ist wieder Kern auf $(X_1 \times X_2) \times (X_1 \times X_2)$ da Produkt von Kernen.

• Direkte Summen

 k_1, k_2 Kerne mit $k_1 \in X_1 \times X_1, k_2 \in X_2 \times X_2$

Die direkte Summe $(k_1 \oplus k_2)(x_1, x_2, x_1', x_2') = k_1(x_1, x_1') + k_2(x_2, x_2')$ mit $x_1, x_1' \in X_1$ und $x_2, x_2' \in X_2$ ist wieder Kern auf $(X_1 \times X_2) \times (X_1 \times X_2)$

• Interpolation zwischen Produkten und Summen von Kernen: Faltungskerne

- $R(x_1,..,x_D,x)$ ist Relation: $x_1,..,x_D$ erzeugen das Objekt x, z. B. Teilstrings x_i vom String x
- $k_d \in X_d \times X_d$ ist Kern bezüglich X_d

Dann bezeichnet man
$$(k_1 * ... * k_D)(x, x') := \sum_{R} \prod_{d=1}^{D} k_d(x_d, x'_d)$$

als R-Faltung von $k_1, ..., k_d$. Falls die Summe endlich ist, ist die Faltung ein gültiger Kern.

Vorteil von solchen Kompositionen:

Falls man den Input in zwei verschiedene Teile zerlegen kann, für die es gültige Kerne gibt, können diese dann zu einem Kern für den kompletten Input zusammengelegt werden.

Beispiel: Stringkerne

Kern-Kompositionen

• Spezialfall der R-Faltung: ANOVA-Kerne

sei $X = S^N$ mit S beliebig.

mit gegebenen Kernen $k^{(i)}$ auf $S \times S$, i=1,...,N und D=1,...,N ist dann

$$k_D(x, x') := \sum_{1 \le i_1 < \dots < i_D \le N} \prod_{d=1}^{D} k^{(i_d)}(x_{i_d}, x'_{i_d})$$

ANOVA-Kern der Ordnung D.

Kern-Kompositionen

ANOVA-Kern der Ordnung D=N:

Die Summe besteht aus einem Term mit $(i_1,..,i_D)=(1,..,N)$ $\Rightarrow k=k^{(1)}\otimes...\otimes k^{(N)}$ ist das Tensor-Produkt

ANOVA-Kern der Ordnung D=1:

Das Produkt besteht aus einem Faktor $\Rightarrow k=k^{(1)}\oplus \ldots \oplus k^{(N)} \text{ ist die direkte Summe}$

für 1 < D < N erhält man Kerne zwischen Tensor-Produkt und direkter Summe

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 verschiedene Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

Vergleich von zwei Bildern in Pixeldarstellung:

- betrachte die Bilder x und x' in Pixeldarstellung
- berechne ein drittes Bild (x. * x') als pixelweises Produkt von x und x'
- berechne daraus mit "pyramidischer" Gewichtung ein viertes Bild mit den Pixeln

$$z_{ij} := \sum_{i'j'} \omega(\max\{|i-i'|, |j-j'|\}) (x.*x')_{i'j'}$$

- wähle dabei den Durchmesser der Pyramide p=2q+1; daraus ergibt sich der Parameter $q\in\mathbb{N}_0$
- dann ist die Gewichtungsfunktion gegeben durch:

$$\omega: \mathbb{N}_0 \to \mathbb{R}$$

$$\omega(n) = \max\{q - n, 0\}$$

Beispiel: $q=3 \Rightarrow \omega(n) = max\{3-n,0\} \in \{0,1,2,3\}$

Daraus ergeben sich für die Berechnung von z_{ij} folgende Gewichte $\omega_{z_{ij}}$, zentriert um $(x.*x')_{ij}$:

Interpretiere die Gewichte als Abbildungen $P_{ij}:(x.*x')\to\mathbb{N}_0$ \Rightarrow Pyramide mit Durchmesser p und Radius q. Der zugehörige Kern ist dann definiert als

$$k_p^{d_1,d_2}(x,x') := \left(\begin{array}{cc} \sum_{ij} & \mathbf{z}_{ij}^{d_1} \\ \end{array} \right)^{d_2}$$

- d_1 berücksichtigt die lokalen Korrelationen innerhalb der Pyramide
- d_2 erlaubt weit entfernte Korrelationen von Ordnung d_2 .
- dieser Kern entspricht einem Skalarprodukt in einem Raum, in dem das Problem in polynomieller (in der Bildgröße) Zeit berechnet wird. Dieser Raum wird von lokal korrelierten Pixeln z_{ij} aufgespannt.
- dieser Kern hat die Ordnung $d_1 * d_2$.

Vorteile dieses Verfahrens:

- Ein solcher Kern kann in polynomieller Zeit berechnet werden
- Dieser Kern hat einen kleineren Fehler als ein polynomialer Kern gleicher Ordnung

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

Ziel: Vergleiche zwei Texte

Gesucht: Merkmal-Abbildung Φ : Text \rightarrow Raum mit Skalarprodukt

Erste Ansätze:

- (i) Φ : Text \to $(0,...,0,1,0,...0)^T$: i-te Komponente ist 1, falls Wort i im Text vorkommt, 0 sonst. Skalarprodukt zwischen 2 solche Vektoren ist einfach zu berechnen \to gültiger Kern.
- (ii) Φ : Text \rightarrow Menge der Wortpaare innerhalb eines Satzes
- (iii) Φ : Text \rightarrow Wortpaare, deren Worte innerhalb einer bestimmten Nähe zueinander sind

Zentrale Ideen:

- Vergleiche die Strings durch die Teilstrings, die sie enthalten.
- Je mehr Teilstrings zwei Strings haben, desto ähnlicher sind sie.
- Teilstrings dürfen von anderen Elementen oder Leerzeichen unterbrochen sein.

Notation zu Konstruktion von Stringkernen:

 Σ : endliches Alphabet

 Σ^n : Menge aller Strings der Länge n

 $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$ Menge aller endlichen Strings

s: String

|s|: Länge von s s(1),..,s(|s|): Elemente von s

st: Verknüpfung von $s \in \Sigma^*$ und $t \in \Sigma^*$

 $i := (i_1, .., i_{|u|}):$ Index-Sequenz $1 \le i_1 < .. < i_{|u|} \le |s|:$ Index-Menge

 $u := s(i) := s(i_1), ..., s(i_{|u|})$: Teilsequenz von String s

 $l(i) := i_{|u|} - i_1 + 1$: Länge von Teilsequenz; l(i) länger als u, falls i nicht zusammenhängend

 $\Phi: X \to H_n := \mathbb{R}^{(\Sigma^n)}$: H_n aufgespannt von Strings der Länge n; H_n hat eine Dimension für jedes

Element von Σ^n , bezeichnet durch dieses Element

Für $0 < \lambda \le 1$ und $u \in \Sigma^n$ ist die Merkmal-Abbildung gegeben durch:

$$[\Phi_n(s)]_u := \sum_{i:s(i)=u} \lambda^{l(i)}$$

also: suche im String s Teilstrings u der Länge n

u lang
$$\Rightarrow [\Phi_n(s)]_u$$
 klein

Beispiel:
$$s_1$$
="bestes", s_2 ="bester", u ="bes", n =3

$$[\Phi_3(bestes)]_{bes} = \lambda^3 + 2\lambda^6$$
$$[\Phi_3(bester)]_{bes} = \lambda^3$$

 Φ_n erzeugt den Kern (ANOVA-Kern der Ordnung 2) zum Vergleich von zwei Texten s und t durch Teilstrings der Länge n

$$k_n(s,t) = \sum_{u \in \Sigma^n} [\Phi_n(s)]_u [\Phi_n(t)]_u = \sum_{u \in \Sigma^n} \sum_{(i,j): s(i) = t(j) = u} \lambda^{l(i)} \lambda^{l(j)}$$

Für $c_n \ge 0$, c_n monoton wachsend, setzt man

$$\tilde{k} = \sum_{n} c_{n} k_{n}$$

Mit dieser Definition erhält man den normierten String-Kern

$$k(s,t) := \frac{\tilde{k}(s,t)}{\sqrt{\tilde{k}(s,s)\tilde{k}(t,t)}}$$

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

- Im Genom gibt es Codesequenzen, die Proteine verschlüsseln.
- Solche Codesequenzen beginnen mit Nukleotiden-Tripeln
- Man bestimmt die Startstellen solcher Codesequenzen

Ziel: Finde diese Startstellen in einem DNA-String.



die Codesequenzen werden charakterisiert durch

- Abgleichmethode von gleichwertigen Proteinen
- wesentliche Eigenschaften der Nukleotiden-Sequenz

Modelliere die Suche nach Startstellen als Klassifikationsproblem:

- der String "ATG" ist ein potentieller Kandidat für eine Startstelle
- konstruiere symmetrisches Intervall um ATG
- entscheide: deutet dieses Intervall auf wahre Startstelle hin oder nicht?
- jedes Nukleotid im Intervall wird repräsentiert durch: 1, falls Nukleotid bekannt(lesbar) Verteilung bezüglich der 4 Nukleotide gemäß deren Häufigkeiten in der Sequenz, sonst
- SVM bekommt Trainingsmenge (X_i, Y_i) X_i : Nukleotidenstrings der Länge 200, um "ATG" zentriert Y_i : TRUE/FALSE Startstelle
- nützlich für Startstellen-Erkennung: füge biologisches Wissen hinzu.

1. Ansatz:

Abhängigkeiten zwischen entfernten Positionen sind unwichtig / nicht existent.

• Bei jeder Sequenz-Position vergleichen wir beide Sequenzen lokal innerhalb eines Intervalls der Länge 2l + 1 um die jeweilige Position:

$$match_{p+j}(x, x') = \begin{cases} 1, \text{ falls } \mathbf{x}_{p+j} = x'_{p+j} \\ 0, \text{ sonst} \end{cases}$$

• summiere "passende" Nukleotide auf, gewichtet mit ν_j , die von den Grenzen des Intervalls zum Zentrum hin wachsen (wie im Bildvergleich).

$$win_p(x, x') = \sum_{j=-l}^{l} \nu_i \ match_{p+j}(x, x')$$

$$\nu_i := l - |x_i - x_p|$$

 \bullet potenziere die Summe mit d_1 , um lokale Korrelation widerzugeben.

$$win_p(x, x') = \left(\sum_{j=-l}^{l} \nu_i \ match_{p+j}(x, x')\right)^{d_1}$$

• Dies führt zum Lokalitäts-verbessertem Kern:

$$k(x, x') = \left(\sum_{p \in Sequenz} win_p(x, x')\right)^{d_2} = \left(\sum_{p \in Sequenz} \left(\sum_{j=-l}^{l} \nu_i \ match_{p+j}(x, x')\right)^{d_1}\right)^{d_2}$$

 d_2 berücksichtigt dabei Korrelationen zwischen Intervallen bis zur Ordnung d_2 .

2. Ansatz:

- Code-Sequenz hat Codon-Struktur. Ein Codon ist ein Tripel von benachbarten Nukleotiden.
- Codesequenz um drei Nukleotide verschoben sieht immer noch aus wie Codesequenz.

⇒ zusätzlich zum Zählen von "passenden" Nukleotiden an korrespondierenden Stellen zählt man auch "Treffer", die um drei Positionen verschoben sind.

$$match_{p+j}(x, x') = \begin{cases} 1, \ x_{p+j} = x'_{p+j} \ oder \ x_{p+j} = x'_{p+j\pm 3} \\ 0, \ sonst \end{cases}$$

Der dadurch wie oben erzeugte Kern heisst Codon-verbesserter Kern.

Untersuchung von DNA-Sequenzer	Untersuchung	von	DNA-	Sec	uenzer
--------------------------------	--------------	-----	------	-----	--------

Vorteil dieses Verfahrens:

Dieser Kern hat einen kleineren Fehler als ein entsprechendes neuronales Netz und einfache polynomiale Kerne

- 1. Theoretische Konstruktion von Kernen
- 1.1 Wiederholung: Kerne
- 1.2 Auswahl eines Kerns
- 1.3 Kern-Kompositionen
- 2. Rechenbeispiele für Kerne
- 2.1 Bildvergleiche
- 2.2 Vergleich von Texten
- 2.3 Untersuchung von DNA-Sequenzen
- 2.4 Kerne mit bekannter Wahrscheinlichkeitsverteilung

Ziel: Verwende eine gegebene Wahrscheinlichkeitsfunktion $p(x|\theta)$ der Inputdaten

- Kerne mit solchen Zusatzinformationen nennt man natürliche Kerne.
- \bullet Familie der Dichtefunktionen $p(x|\theta), \theta = (\theta_1,..,\theta_r)$
- Score-Funktion $V_{\theta}: X \to \mathbb{R}^r; V_{\theta}(x) := \nabla_{\theta} \ln(p(x|\theta))$
- Fisher-Informations-Matrix

$$-I := E_p[V_{\theta}(x) \ V_{\theta}^T]$$

$$-I_{ij} := E_p \left[\frac{\partial ln(p(x|\theta))}{\partial \theta_i} \frac{\partial ln(p(x|\theta))}{\partial \theta_j} \right]$$

Mit einer pos. def. Matrix M (natürliche Matrix) ist ein natürlicher Kern gegeben durch:

$$k_M^{nat}(x, x') := V_{\theta}(x)^T M^{-1} V_{\theta}(x')$$
$$= (\nabla_{\theta} ln(p(x|\theta)))^T M^{-1} \nabla_{\theta} ln(p(x'|\theta))$$

falls M=I, so spricht man vom Fisher-Kern.

Berechnung eines natürlichen Kerns:

 \bullet allgemein gilt: Es existieren Funktionen $\psi_i,$ so dass gilt

$$k(x, x') = \sum_{i} \frac{d_i}{\lambda_i} \psi_i(x) \psi_i(x')$$

mit Parametern λ_i und $d_i,$ für die gilt

$$d_n \in \{0,1\} \ \forall n$$

$$\sum_i \frac{d_i}{\lambda_i} < \infty$$

• Berechnung von ψ_i und λ_i :

- berechne $\left(M^{-\frac{1}{2}}IM^{-\frac{1}{2}}\right)$
- berechne Eigenwerte Λ_i und Eigenvektoren s_i von $\left(M^{-\frac{1}{2}}IM^{-\frac{1}{2}}\right)$
- setze dann

$$\psi_i(x) := \frac{1}{\sqrt{\Lambda_i}} s_i^T \nabla_{\theta} ln(p(x|\theta))$$

$$\lambda_i := \Lambda_i$$

Damit ergibt sich der natürliche Kern

$$k_M^{nat}(x, x') = \sum_i \frac{d_i}{\lambda_i} \frac{1}{\sqrt{\Lambda_i}} s_i^T \nabla_{\theta} ln(p(x|\theta)) \frac{1}{\sqrt{\Lambda_i}} s_i^T \nabla_{\theta} ln(p(x'|\theta))$$

Danke für eure Aufmerksamkeit!

Quellen:

- B. Schölkopf, A. Smola. *Learning with kernels*. MIT Press, 2002 Kapitel 1, 2 und 13
- www.wikipedia.de