Rauschunterdrückung in der Theorie & Praxis

Florian Kramer Urs Pricking

Seminar "Simulation und Bildanalyse in Java" Universität Ulm, Abteilungen SAI & Stochastik 02.02.2004

Übersicht

- 1. Motivation
- 2. Arten von Rauschen
- 3. Eigenschaften von Glättungsfiltern
- 4. Lineare Filter
- 5. Nichtlineare Filter
- 6. Bilateraler Filter
- 7. Literatur

1. Motivation

Rauschunterdrückung:

Entfernen von Störungen (Noise), bei Erhalt möglichst aller ursprünglichen, signifikanten Bildeigenschaften.

Originalbild

Originalbild, beschädigt

1. Motivation

Originalbild

Beschädigtes Bild gefiltert

2. Arten von Rauschen

Gaußsches Rauschen:

Rauschen als additive Abweichung mit Erwartungswert 0:

$$G' = G + N$$
, mit $N \sim N_{0,\sigma^2}$

Weißes Rauschen:

Neuer Grauwert des Pixels ist nicht mit dem ursprünglichen Wert des Pixel korreliert.

Spezialfall: Salt and Pepper Rauschen (binäres Rauschen)

2. Arten von Rauschen

Gaußsches Rauschen

Salt and Pepper Rauschen

3. Eigenschaften von Glättungsfiltern

Was ist ein Filter?

Ein Filter ist definiert über eine Nachbarschaftsoperation N:

$$g'(x) = N(\lbrace g(x') \rbrace, \forall (x - x') \in M)$$

g(x): Wert des Pixels an Position x

N: beliebiger Nachbarschaftsoperator

M: kompaktes Gebiet mit Bezugspunkt (Maske)

Beispiel:

[...
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 ...] \xrightarrow{N} [... ... 6] $g(x)$ $g'(x) = 1 + 2 + 3$

3. Eigenschaften von Glättungsfiltern

a) Verschiebungsinvarianz Objekte behalten Position.

b) Erhaltung des Mittelwertes Erhaltung des Bildmittelwertes.

c) Monotonie

Kleine Strukturen dürfen nicht verbleiben, wenn größere verschwinden.

d) Isotropie

Glättung richtungsunabhängig.

- **DEMO 1** -

Vorführung:

- Verschiebungsinvarianz verletzt: Objekt verschiebt sich
- Mittelwert wird nicht erhalten: Bild wird heller

4.1 Lineare Filter - Rechteckfilter

Rechteckfilter:

- Mittelung der Pixel-Werte in einem kleinen Bereich.
- Addition der Pixel-Werte und Division durch die Anzahl der Pixel der Maske.
- Durch Skalierung Erhalt des Mittelwertes.
- Beispiel: 1x3 Rechtecksfilter (1-dimensional)

$$R = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

4.1.1 Lineare Filter – Rechteckfilter – 1 dimensional

Filteroperation angewandt auf ein Bild:

$$g(x) = 7$$

$$g'(x) = \frac{5}{3} + \frac{7}{3} + \frac{12}{3} = 8$$

$$\begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \end{bmatrix}$$

4.1.1 Lineare Filter – Rechteckfilter – 1 dimensional

Schneller Algorithmus:

Nur 3 Rechenoperationen pro Bildpunkt, unabhängig von der Filtergröße:

$$g'_{m} = g'_{m-1} + \frac{1}{2p+1} (g_{m+p} - g_{m-p-1})$$

 g'_m : Neuer Wertdes Pixels an Position m

2p+1: Größe der Filtermaske

 g_{m+p} : Alter Wertdes Pixels an Position m+p

4.1.2 Lineare Filter – Rechteckfilter – 2 dimensional

2-D Rechteckfilter:

Beispiel: 3x3 Filter

$$R = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Schneller Algorithmus:

Maske separierbar (Symmetrie)

$$R = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} * \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = R_x * R_y$$

4.1.2 Lineare Filter – Rechteckfilter – Laufzeitanalyse

Laufzeitanalyse (d-dimensionale Maske mit Länge (2p+1))

Nicht separiert:

$$(2p+1)^d$$
 - Multiplikationen
 $((2p+1)^d - 1)$ - Additionen

• Separiert (d. h. entlang der Achsen in eindimensionale Masken zerlegt):

$$d \cdot (2p+1)$$
 - Multiplikationen

$$d \cdot ((2p+1)-1)$$
 - Additionen

4.1.3 Lineare Filter – Rechteckfilter – Zusammenfassung

Vorteile:

- Gute Rauschunterdrückung bei Gaußschem Rauschen
- Schnelle Berechnung im 1-dimensionalen Fall
- Schnelle Berechnung im mehrdimensionalen Fall, da Maske symmetrisch (Separierbarkeit)

Nachteile:

- Rauschunterdrückung auf Kosten der Detailauflösung
- Kanten werden geglättet
- Monotonieeigenschaft nicht erfüllt

4.1.3 Lineare Filter – Rechteckfilter – Zusammenfassung

Fehlende Monotonieeigenschaft

4.1.3 Lineare Filter – Rechteckfilter – Zusammenfassung

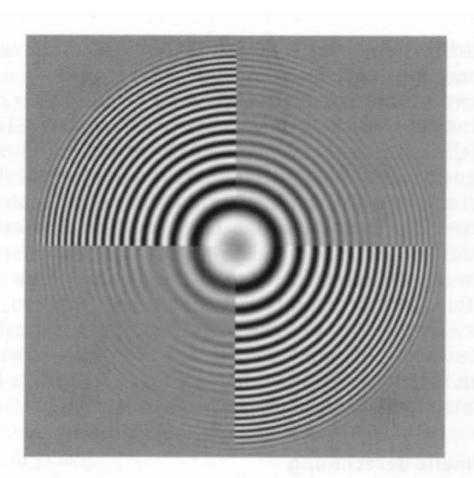


Abbildung 11.3: Glättung eines Testbildes mit konzentrischen Ringen mit einem 5×5 - und einem 9×9 -Rechteckfilter im oberen rechten bzw. unteren linken Quadranten. Die maximale Wellenzahl \tilde{k} am Rande des Musters ist 0,6.

4.2 Lineare Filter - Binomialfilter

Binomialfilter:

- Stärkere Gewichtung der Pixelwerte zur Maskenmitte hin gemäß der Binomialverteilung
- Einfachste Glättungsmaske:

$$B = \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix}$$

• p-mal hintereinander:

$$B^{p} = \underbrace{BB...B}_{p \text{ mal}} = \underbrace{\frac{1}{2^{p}} \begin{bmatrix} 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 1 \end{bmatrix} * ... * \begin{bmatrix} 1 & 1 \end{bmatrix}}_{p \text{ mal}}$$

Betrachtung gerader Masken

4.2.1 Lineare Filter - Binomialfilter - 1 dimensional

Beispiele (1-dimensional):

$$B^{4} = \frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

$$B^{8} = \frac{1}{256} \begin{bmatrix} 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 \end{bmatrix}$$

Berechnung der Masken nach dem Pascalschen Dreieck:

p	f	material state and the key	σ^2
0	1	1	0
1	1/2	11	1/4
2	1/4	121	1/2
3	1/8	1331	3/4
4	1/16	1 4 6 4 1	1
5	1/32	1 5 10 10 5 1	5/4
6	1/64	1 6 15 20 15 6 1	3/2
7	1/128	1 7 21 35 35 21 7 1	7/4
8	1/256	1 8 28 56 70 56 28 8 1	2

4.2.2 Lineare Filter – Binomialfilter – 2-dimensional

2D-Binomialfilter (analog zu 2D-Rechtecksfilter):

$$B^{2} = B_{x}^{2} * B_{y}^{2} = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} * \frac{1}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

4.2.2 Lineare Filter – Rechteckfilter – Laufzeitanalyse

Laufzeitanalyse (d-dimensionale Maske mit Länge (2p+1))

• Nicht separiert:

$$(2p+1)^d$$
 - Multiplikationen
 $((2p+1)^d - 1)$ - Additionen

• Separiert (d. h. Zerlegung in Elementarmasken B):

Multiplikationen als Shift - Operationen

$$d \cdot ((2p+1)-1)$$
 - Additionen

4.2.3 Lineare Filter – Binomialfilter – Zusammenfassung

Vorteile:

- Erfüllung der Monotonieeigenschaft.
- Gute Unterdrückung von Gaußschem Rauschen.
- Schneller Algorithmus

Nachteile:

- Schlechte Detailauflösung.
- Kantenglättung.
- Schlechte Unterdrückung von Salt-and-Pepper Rauschen.

4.2.3 Lineare Filter – Binomialfilter – Zusammenfassung

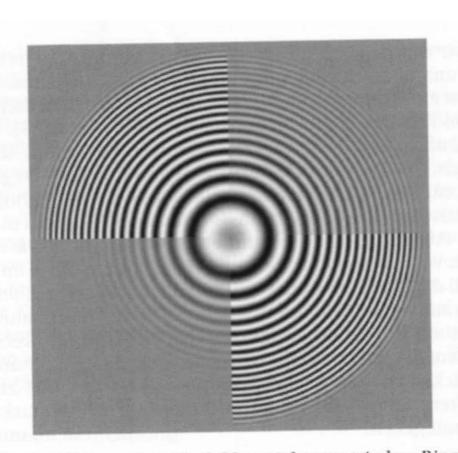


Abbildung 11.4: Glättung eines Testbildes mit konzentrischen Ringen mit einem \mathcal{B}^4 - und einem \mathcal{B}^{16} -Binomialfilter im oberen rechten bzw. unteren linken Quadranten. Die maximale Wellenzahl \tilde{k} am Rand des Musters ist 0,6.

4.3 Lineare Filter - Mehrschrittmittelung

Mehrschrittmittelung:

- Mittelung weiter voneinander entfernter Pixel. (Geschwindigkeitsvorteil)
- Am effizientesten sind Mehrschrittmasken entlang der Achsen (Separierbarkeit)
- Beispiel (2-dimensional): $B_{2x}^{2}B_{2y}^{2} = \frac{1}{4}\begin{bmatrix} 1 & 0 & 2 & 0 & 1 \end{bmatrix} * \frac{1}{4}\begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} = \frac{1}{16}\begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 \end{bmatrix}$

4.3 Lineare Filter - Mehrschrittmittelung

Problem:

- Verlust der Filtereigenschaft für größere Strukturen (Monotonie)
- => Kaskadierte Mehrschritt-Binomialfilterung, z.B. Verdoppelung der Schrittweite:

$$\underbrace{B_{2^{s-1}x}^{p}\cdots B_{8x}^{p}B_{4x}^{p}B_{2x}^{p}B_{x}^{p}}_{s-mal}$$

5.1 Nichtlineare Filter - Medianfilter

Medianfilter:

- Medianfilter:
 Sortierung der Grauwerte innerhalb der Maske nach Ihrer Größe und Selektion des "mittleren" Pixels bzgl. Ihrer Ordnung (Median)
- Medianfilter ist Rangordnungsfilter
- Rangordnungsfilter (rank value filter):
 Operationen zur Kombination benachbarter Pixel:
 Vergleichen und Selektieren

5.1 Nichtlineare Filter - Medianfilter

• **Beispiel** (1x3 Medianfilter):

$$g(x) = 3$$
 $g'(x) = Median(2,3,7) = 3$
 $\mathbf{M}[... \ 1 \ [2 \ 3 \ 7] \ 8 \ 9 \ ...] = [... \ 1 \ 2 \ 3 \ 7 \ 8 \ 9 \ ...]$

$$g(x) = 102$$
 $g'(x) = Median(2,102,4) = 4$
 $\mathbf{M}[... \ 1 [2 \ 102 \ 4] \ 5 \ 6 \ ...] = [... \ 1 \ 2 \ 4 \ 5 \ 5 \ 6 \ ...]$

$$g(x) = 0$$
 $g'(x) = Median(0,0,9) = 0$
 $M[... \ 0 \ [0 \ 0 \ 9] \ 9 \ 9 \ ...] = [... \ 0 \ 0 \ 0 \ 9 \ 9 \ 9 \ ...]$
Florian Kramer, Urs Pricking

5.1 Nichtlineare Filter - Medianfilter - Zusammenfassung

Vorteile:

- Monoton ansteigende Rampen werden erhalten
- Ausreißer (binäres Rauschen) werden eliminiert
- Konstante Nachbarschaften und Kanten sind Fixpunkte
- Bei einzelnen gestörten Pixel reicht bereits ein 3x3 Medianfilter
- Konzept erweiterbar: Minimum- und Maximumfilter

5.1 Nichtlineare Filter - Medianfilter - Zusammenfassung

Nachteile:

- Schlechte Rauschunterdrückung von Gaußschem Rauschen
- Bei wiederholter Anwendung bleiben nur konstante Bereiche und Kanten zurück

5.2 Nichtlineare Filter - Gewichtete Mittelung

Gewichtete Mittelung:

- Jeder Bildpunkt geht mit einem gewissen Wichtungsfaktor in die Berechnung ein
- Definition:

$$G' = \frac{H * (W \cdot G)}{H * W}$$

H - beliebige Faltungsmaske

G - das zu bearbeitende Bild

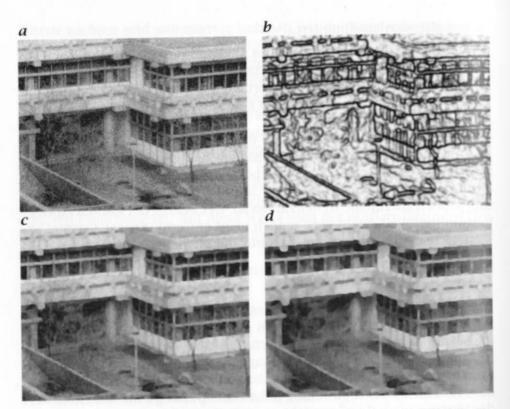
W - das Bild, das die Wichtungsfaktoren enthält

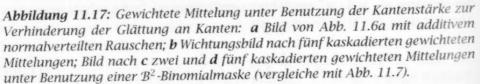
5.2 Nichtlineare Filter - Gewichtete Mittelung

Beispiel:

Gewichtete Mittelung

Rechteckfilter





5.2 Nichtlineare Filter - Gewichtete Mittelung - Zusammenfassung

Vorteile:

- Berücksichtigung von variierenden statistischen Fehlern der Pixel
- Flexibilität, da die Gewichtung beliebig gewählt werden kann

Nachteile:

- Rechenaufwand
- Wahl eines passenden Wichtungsbildes

5.3 Nichtlineare Filter - Steuerbare Mittelung

Steuerbare Mittelung:

- Die Maske wird abhängig von der lokalen Bildstruktur gemacht
- Einstellbare Filter besitzen frei justierbare Parameter wie Glättungsgrad oder Glättungsrichtung, über die sich die Filterung steuern lässt
- Ineffizient (Rechenaufwand)
- Alternative:
 - Berechnung eines Satzes gefilterter Bilder aus einer Basis von Filtern und dem ursprünglichen Bild
 - Interpolation dieser Bilder unter Verwendung von justierbaren Parametern

5.3 Nichtlineare Filter - Steuerbare Mittelung

• In Operatornotation:

$$H(\alpha) = \sum_{p=1}^{P} f_p(\alpha) H_p$$

$$H_p$$
 - p - te Filter
$${\bf f_p}(\alpha)$$
 - skalare Interpolations funktion des Steuerparameters α

- Probleme:
 - Existenz einer Filterbasis
 - Beziehung zwischen H_p α und f_p .

- DEMO 2 -

Wirkung von linearen und nicht-linearen Filtern bzgl.

- beschädigten Bildern
 (Lineare vs. Medianfilter)
 (Min, Maxfilter ⇔ "Erosion", "Dilatation")
- Gauß'schem Rauschen (Lineare vs. Medianfilter)
- Salt and Pepper (Lineare vs. Medianfilter)
- Kantenerhaltung (Lineare vs. Medianfilter)

Zugabe (siehe Vortrag letztes Semester)

• Kantenextraktion (horizontal, vertikal, beide Richtungen)

6. Bilateraler Filter

Bilateraler Filter:

- Glättung von Bildern bei Erhalt der Kanten (Objekterkennung)
- Bevorzugung **naher und ähnlicher** Pixel bei der Gewichtung (domain and range filtering)
- Gute Anwendbarkeit auf Graustufen- und Farbbilder

6.1 Bilateraler Filter – Domain Filter – 2 dimensional

Klassischer Bildbereich-Filter (domain filter, allgemeiner und stetiger Fall):

$$h(x) = k_d^{-1}(x) \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi, x)d\xi$$

$$\operatorname{mit} k_d(x) = \int_{-\infty - \infty}^{\infty} \int_{-\infty - \infty}^{\infty} c(\xi, x) d\xi$$

h(x): Neuer Wert des Pixels an Position x

 $k_d(x)$: Normierungsfaktor für Pixel x

 $f(\xi)$: Alter Wert des Pixels an Position ξ

 $c(\xi, x)$: Abstandsfunktionswert für x und ξ

6.1 Bilateraler Filter – Range Filter – 2 dimensional

Bildwerte-Filter

(range filter, allgemeiner und stetiger Fall):

$$h(x) = k_r^{-1}(x) \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) s(f(\xi), f(x)) d\xi$$

$$\operatorname{mit} k_r(x) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} s(f(\xi), f(x)) d\xi$$

h(x): Neuer Wert des Pixels an Position x

 $k_r(x)$: Normierungsfaktor für Pixel x

 $f(\xi)$: Alter Wert des Pixels an Position ξ

 $s(f(\xi), f(x))$: Abstandsfunktionswert für f(x) und $f(\xi)$

6.1 Bilateraler Filter – 2 dimensional

Bilateraler Filter

(domain and range filtering, allgemeiner und stetiger Fall):

$$h(x) = k^{-1}(x) \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)c(\xi, x)s(f(\xi), f(x))d\xi$$

$$\operatorname{mit} k(x) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} c(\xi, x) s(f(\xi), f(x)) d\xi$$

h(x): Neuer Wert des Pixels an Position x

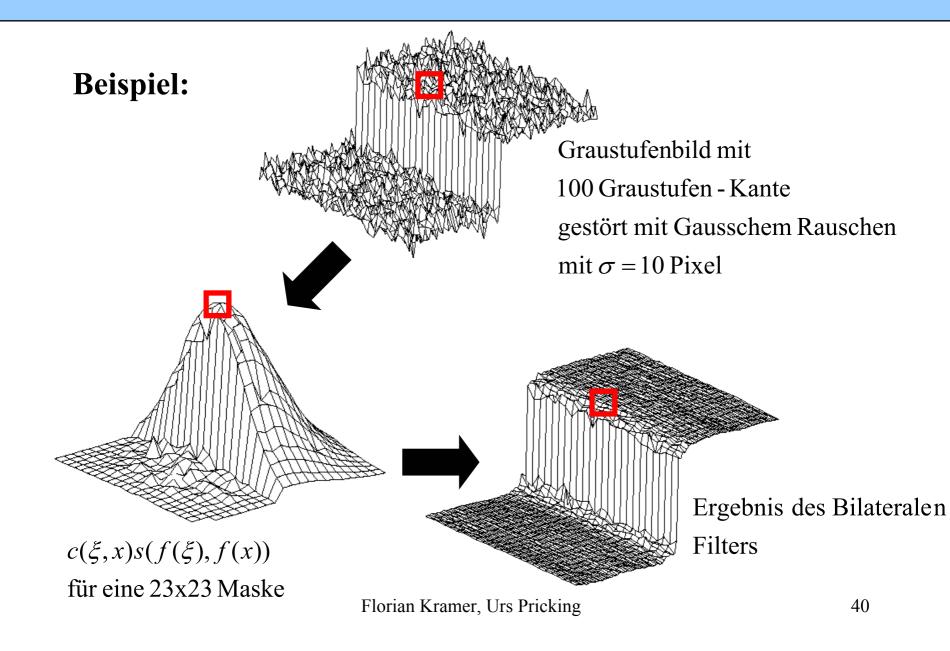
k(x): Normierungsfaktor für Pixel x

 $f(\xi)$: Alter Wert des Pixels an Position ξ

 $s(f(\xi), f(x))$: Abstandsfunktionswert für f(x) und $f(\xi)$

 $c(\xi, x)$: Abstandsfunktionswert für x und ξ

6.1 Bilateraler Filter - Konzept



6.2 Bilateraler Filter - Gewichtungsfunktionen

Gewichtungsfunktionen:

- Prinzipiell frei wählbar
- Beispiel: Gaußscher Fall

$$c(\xi, x) = e^{-\frac{1}{2} \left(\frac{d(\xi, x)}{\sigma_d^2} \right)},$$

$$(\xi, x) = \|\xi - x\| \text{ euklidischer Abstand.}$$

$$s(\xi, x) = e^{-\frac{1}{2} \left(\frac{\delta(f(\xi), f(x))}{\sigma_r^2} \right)},$$

$$\delta(\Phi, f) = \delta(\Phi - f) = \|\Phi - f\| \text{ euklidischer Abstand}$$

6.2 Bilateraler Filter - Gewichtungsfunktionen

Eigenschaften:

- σ_r und σ_d können "passend" (frei) gewählt werden
- Domain-Filter ist verschiebungsinvariant
- Range-Filter ist verschiebungsinvariant

Glättung feiner Strukturen:

=> Datenreduktion bei Erhalt essentieller Eigenschaften

Originalbild

Originalbild, gefiltert

Florian Kramer, Urs Pricking

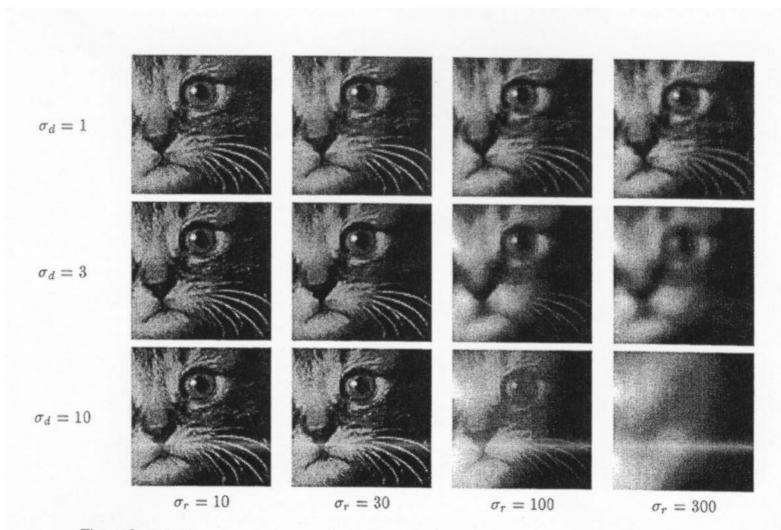
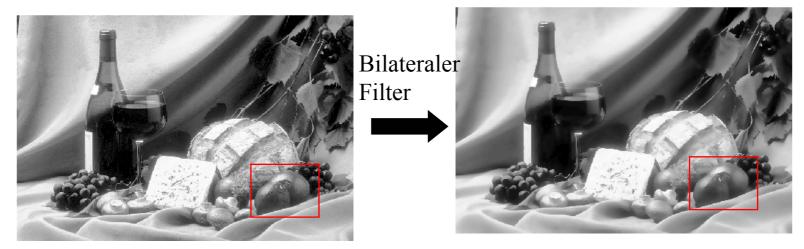


Figure 3: A detail from figure 5 (a) processed with bilateral filters with various range and domain parameter values.

• Bilateraler Filter, $\sigma_d = 3$, $\sigma_r = 50$



Bilateraler Filter

Florian Kramer, Urs Pricking

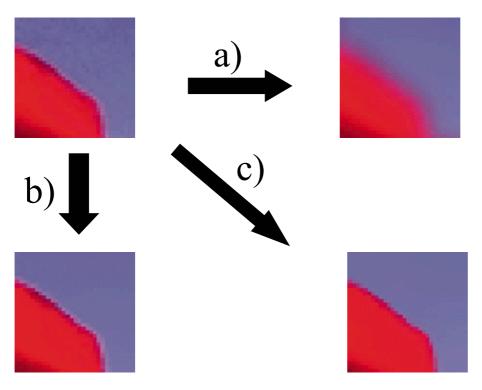
Laufzeitanalyse:

- Rechenoperationen:
 Doppelter Berechnungsaufwand (Domain und Range) wie bei nicht separierbaren klassischen Domain-Filtern (z.B. Rechtecksfilter) der gleichen Größe
- Verbesserung Gauß'scher Fall:
 Berechnung aller Werte der Rangefunktion im voraus (2n+1 Differenzwerte bei n-Graustufenbild)

6.4 Bilateraler Filter - Experimente mit Farbbildern

Problem mit Farbbildern:

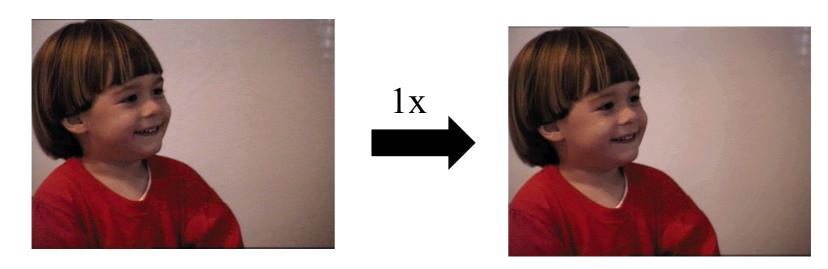
Entstehung unerwünschter Farben bei der Glättung von Kanten bei traditionellen Filtern.



- a) Linearer Filter
- b) Bilateraler Filter (Separierung der Bänder)
- c) Bilateraler Filter
 (Abstandsfunkt
 ion im CIE
 Bereich)

6.4 Bilateraler Filter - Experimente mit Farbbildern

Iterative Bilaterale Filterung:



6.5 Bilateraler Filter - Zusammenfassung

Vorteile:

- Vereinigt positive Eigenschaften von linearen und nichtlinearen Filtern
- Gewichtungsfunktionen frei wählbar und deren Parameter auf das gegebene Bild justierbar.

Nachteile:

 Gleicher Komplexitätsgrad wie nicht separierbare Standard Filter.

- **DEMO 3** -

Vorführung:

Glättung bei Erhaltung der Kanten am Beispiel von Graustufen und Farbbildern:

Lineare, Nicht-Lineare vs. Bilaterale Filter

7. Literatur

- 1. B. Jähne, "Digital Image Processing", 2002, Springer Verlag.
- 2. C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, India, 1998.

ENDE

Vielen Dank für Ihre Aufmerksamkeit!