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ABSTRACT

Previous study by Schmid & Kazda (2001) evaluated vertical distribution and radial growth of coarse
roots above 2 mm diameter in pure and mixed stands of Norway spruce (Picea abies L.) and European
beech (Fagus sylvatica (L.) Karst.) (Can. J. For. Res. 31: 539-548). The vertical distribution of roots of
Norway spruce was fitted by an exponential function, while the root distribution of European beech
was approximated by a gamma distribution. Now, in the present paper, planar point-process models
have been applied to investigate the spatial (two-dimensional) distribution of root data between 2 mm
and 5 mm diameter. After a homogenization with respect to the vertical axis, the pair correlation
function and the L-function have been estimated in order to fit Matérn-cluster point process models to
the given root data. The models were finally vertically retransformed to provide information about the
inhomogeneous spatial patterns of the small roots also regarding the original shape and size of the root
clusters. All models on the vertically transformed data confirmed that the root distribution patterns are
not completely random, indicating root clustering for both species with different degree of exploitation
intensity (clustering) between the two species. According to the Matérn-cluster models, Picea abies
had stronger clustering in smaller cluster regions, while roots of Fagus sylvatica formed weaker
clusters in larger cluster regions. Furthermore, beech root clusters seem to avoid an overlap. Together
with previous studies on the root system of both species, this indicates more intensive below-ground
intraspecific competition for spruce than for beech. On the other hand the clustering characteristics
described indicate a more sophisticated rooting system of European beech compared to Norway
spruce. Regarding the spatial distribution of the inhomogeneous raw data, there is a combination of the

clustering properties analysed in the present paper and the vertical distribution already known.

Keywords: Matérn-cluster process, model fitting, planar point pattern, Poisson process, root clustering;
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Statistical Modelling of the Spatial Distribution of Tree Roots

1. INTRODUCTION

Vertical root distribution can be described as a one-dimensional depth function (Parker & van Lear 1996) with the
greatest root density in the top soil layers for most forests (Jackson & Caldwell 1996). Besides the vertical
distribution, early studies assumed that the rooting zone is completely and almost homogeneously exploited by
roots (Krauss et al. 1939). Recent studies in natural ecosystems found, however, that fine roots concentrate in
distinct soil patches (Caldwell et al. 1996; Holscher et al. 2002; Pellerin & Pages 1996; Ryel et al. 1996). Several
experiments with small plants (Facelli & Facelli 2002; Linkohr et al. 2002; Wijesinghe & Hutschings 1997) have
shown that plants respond by proliferation of fine roots into zones of nutrient enrichment and water availability,
thus producing a patched root distribution. As the resources in natural soils are most abundant in the topsoil, fine
roots abundance still follows the vertical distribution function but on the horizontal scale heterogeneity of root

abundance can be expected in line with unevenly distributed soil resources.

Bouillet et al. (2002) found large spatial heterogeneity and clusters of fine roots in a clonal Eucalyptus plantation
independently from the distance to the planting row. The study also confirmed that more knowledge is required
about the root distribution of intermediate root classes between 2 mm and 20 mm diameter, because recent studies

showed water and nutrient uptake also for these roots (Lindenmair et al. 2001).

Trench soil profiles can be used for the assessment of two-dimensional root distribution, where roots on the wall
can be seen as points of different diameter. Previous evaluation methods counted the roots within a grid cell (B6hm
1976; Bouillet et al. 2002) or just evaluated the presence or absence of roots (Tardieu 1988). A new assessment
method (Schmid & Kazda 2001) provided (x, y)-coordinates of each root greater than 2 mm in diameter which
allows for two-dimensional evaluation of root distribution on a large scale. Using this method, small roots with a
diameter between 2 and 5 mm were assessed in 19 pits on altogether 72 m? of soil profiles in monospecific stands of

European beech (Fagus sylvatica L.) and of Norway spruce (Picea abies (L.) Karst.).

Evaluation of the root distribution data by Schmid & Kazda (2001) by the means of a geographical information
system showed aggregation of roots between 2 mm and 5 mm diameter in specific soil patches (Schmid & Kazda
2005). They provided some evidence, that these root clusters occur independently from the distance to and the

diameter of the neighboring trees. However this evaluation was not able to account for differences in root clustering
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between European beech and Norway spruces besides an indication that beech requires less roots to achieve the

same degree of clustering as Norway spruce.

The methodological task of the present paper was to test whether point process models can describe the spatial root
properties as the root distribution is non-random per se due to declining vertical frequency of roots (Parker & van
Lear 1996, Schmid & Kazda 2001). Or more specifically, whether after a homogenisation of the root data according
to a vertical distribution function, similarly to the one in Schmid & Kazda (2001), the spatial distribution of roots
between 2 mm and 5 mm diameter can be modelled by a homogeneous Poisson process (Stoyan et al. 1995), in
other words as a completely spatially random point pattern (notice that a point pattern being a realisation of a
Poisson point process is equivalent to a point pattern being completely spatially random, since the location of a

point of the point process is independent from the locations of the other points).

Point process characteristics like e.g. the pair correlation function, the L-function and Baddeley's J-function are
widely used in the statistical analysis of spatial point patterns (Diggle 2003; Ripley 1981; Stoyan et al. 1995). They
offer the possibility to get not only qualitative knowledge about the spatial structure of such point patterns, but to
quantify them for specific regions of point-pair distances. Another advantage of these methods compared to
alternative techniques of spatial analysis like e.g. Voronoi-tessellations (Marcelpoil & Usson 1992; Okabe et al.
2000) or minimum spanning trees (Dussert et al. 1986, 1987) is their independence of underlying point process
intensities i.e. of the average number of points per unit square. Thus point process modelling seems to be suitable
especially for root studies where the number of roots found varies within wide ranges and where the underlying

vertical distribution is different between the studied species (Schmid & Kazda 2001).

The aim of the presented application of point process modelling to the root data was to quantify the degree of root
aggregation in neighbouring mature stands of Fagus sylvatica and Picea abies. Root clustering in order to exploit a
maximum of soil resources was demonstrated for soil water and nutrients P and K by Smucker and Aiken (1992)
and Mou et al. (1995), respectively. Investigations of 2D root distribution on trench soil profiles by point process
modelling can hereby provide further information for understanding of below-ground processes in mature tree
stands. The hypothesis tested is, that under comparable soil properties in these two adjacent stands no differences
exist between the clustering of roots in stands of Fagus sylvatica and Picea abies and thus both species exploit the

soil resources with the same intensity.
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Statistical Modelling of the Spatial Distribution of Tree Roots

2. MATERIAL AND METHODS

2.1 Data description

For details of site description, pit excavation and root mapping, see Schmid & Kazda (2001). Investigations in the
present paper are based upon this article and thus only a short summary of the most important facts is given.

Data collection took place near Wilhelmsburg, Austria (48°05'51" N, 15°39'48" E) in adjoining pure stands of
Fagus sylvatica and of planted Picea abies. One experimental plot of about 0.5 ha was selected within each stand.
The sites were similar in aspect (NNE), inclination (10 %) and altitude (480 m). The characteristics of the spruce
and beech stands, e.g. the age (55 and 65 years), the dominant tree height (27 m and 28 m) and the stand density
(57.3 and 46.6 trees /ha), also were similar to each other. The soils with only thin organic layer (about 4 c¢m) can be
classified as stagnic cambisols developed from Flysch sediments. Annual rainfall in Wilhelmsburg averages 843
mm with a mean summer precipitation from May to September of 433 mm. The mean annual temperature is 8.4° C,
and the mean summer temperature is 15.7° C.

In every stand 10 soil pits with a size of 2X1 m were excavated, leading to 20 vertical profile walls of Fagus
sylvatica and to 16 vertical profile walls of Picea abies that are analyzed in the following. Notice that in the case of
Picea abies only 16 of the 20 profile walls can be used due to failures in data collection.

In most cases 13-19 trees were within a radius of 10 m around the pit centre. The minimum distance from the pit
centre to the nearest tree ranged from 0.5 m to 2.8 m. On each wall all coarse roots were identified and divided into

living and dead. All living small roots (2-5 mm) were marked with pins and digitally photographed. These pictures

were evaluated and a coordinate plane was drawn over each profile wall W, so that every root corresponds to a

point x, in the plane. Thus, for each profile wall W', a point pattern {xn} C W of root locations was determined.
After the root mapping the images of the profile walls W with area |W| =200 cm X 100 cm are regarded as

realisations of stochastic point processes { X n } in R? observed within the sampling window W (Fig. 1).

2.2 Data analysis

Data analysis and simulation was done using the GeoStoch library system. GeoStoch is a Java-based open-library

system developed by the Department of Applied Information Processing and the Department of Stochastics of the
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University of Ulm which can be used for stochastic-geometric data analysis and spatial statistics (Mayer 2003;

Mayer et al. 2004); see also the internet description of this project under http://www.geostoch.de. Statistical

comparison of the two groups of data sets was based on the Wilcoxon-Mann-Whitney test, e.g. to compare mean

numbers of points (see Section 3.1).

2.3 Vertical homogenisation

The hypotheses, similarly to the ones made in Schmid & Kazda (2001) that the depth densities of the roots of Picea
abies and Fagus sylvatica can be approximated by exponential and gamma distributions, respectively, were tested
and the results were satisfactorial. Therefore, in order to be able to assume stationarity and isotropy for models of

generating point processes, the data had to be homogenised with respect to the vertical axis. Such a homogenisation

is based on the fact that each random variable ¥ with a continuous distribution function F, can be transformed to
a uniformly distributed random variable U on the interval [0,1] by

(2.1) U=F,(J).

Hence, the raw data is processed as follows: Denoting the original depths, the total depth of the sampling window

and the obtained transformed depths as / h_ and h respectively, the transformed depths h_ are

orig ° tot tran tran

obtained as

_F*(h

orig )

(22) ran g% .7~ ot
1 F (hu)l) tot

where F x(x) symbolises the suitable distribution function, i.e. the exponential distribution function in the case of

Picea abies and the gamma distribution function in the case of Fagus sylvatica. The total depth was given as

h,,, =100 cm . Therefore, for Picea abies we can provide the analytic formula
_ ,TY’.).I'U[(’
1_ e ﬂ'exp orig
spruce __
(23) htran - 1 e—lOOﬂ‘,XIJ hz‘at ’

where ﬂexp_l represents the mean value of the exponential distribution. In the case of Fagus sylvatica no analytical

beech . . .
formula for htrZ;Cl can be given. Here computations have to be performed numerically. Parameters (/10Xp and

(o, ,3 ), respectively) for the distribution functions F x(x) are estimated using maximum-likelihood-estimators

for each sampling window individually. Notice that in the following, first only preprocessed data is regarded, which

6
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Statistical Modelling of the Spatial Distribution of Tree Roots

is vertically homogenised (Fig. 1), that means that the vertical coordinate is assumed to be uniformly distributed on
[0,h,,]. Later on, the results obtained for homogenised data are re-interpreted for original root data, where an

inverse model transformation is used.

2.4 Statistical methods

In order to analyse the given samples of small root point patterns we used estimated point process characteristics. In
particular we focused on two functions, namely the pair correlation function and the L-function. Additionally the J-
function was considered for a justification of the results obtained for the two other functionals. Formal definitions
of the mentioned functions as well as descriptions of estimators used are provided in Appendix A. Thus only a short
explanation of the above mentioned functions is given in this section. Notice that for point pair distances of more
than 40 cm estimations become unstable because of the sampling window size and are therefore omitted in the

following.

Pair correlation function

In order to define the pair correlation function, the product density of second order ,0(2) has to be introduced first.
If two discs C, and C, are regarded that have infinitesimal areas dF,, dF, and midpoints X,, X, respectively,
the probability for having in each disc at least one point of X is approximately equal to ,0(2) (x;,x, )dFlsz
(Stoyan & Stoyan 1994). Note that in the motion-invariant case the product density of second order p(z) (x,,x,)
can be replaced by p(z)(l’), where r = ||x] —x2|| is the Euclidean distance between X, and X,. The pair

correlation function g(r)is then defined by

p(r)
22

(1.1) g(r)=
In the case of complete spatial randomness we have that gpoi(r) =1. A possible interpretation of the pair
correlation function is that it reflects the scaled density function for the distances of point pairs. Hence g(r)>1

indicates that there are more point pairs having distance 7 than in the Poisson case, while g(r) <1 indicates that

there are less point pairs of such a distance. To estimate g(r) kernel estimation is used and the bandwidth A of
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the Epanechnikov kernel was chosen as h=cA™"? (cf. Appendix A). Several ce€ [0.1,0.2] were used,
according to the suggestion given in Stoyan & Stoyan (1994). Since all of them provided similar results, in the

following graphs are displayed for ¢ =0.15.

L-function
Since for Poisson processes K, .(r) =T rz, the K-function is scaled to get a variance-stabilized characteristic,

called L-function which is equal to 7 under complete spatial randomness. Therefore L(r) is defined as

2.4) L) = | KO

and can be estimated by

2.5) L(r)= K
/4

Especially the estimated difference lA,(r) —r is useful for analytical purposes since L(7)—r is identical to 0 in

the Poisson case and if it has a positive slope this is a sign of attraction between point pairs of such a distance, while

on the other hand if it has a negative slope this is a sign of rejection between point pairs of such a distance.

J-function

In order to validate the results obtained for the pair correlation function and for the L-function, Baddeley’s J-
function has been used. Based on the spherical contact distribution function H () and on the nearest neighbour
distribution function D(r), it is defined by

1-H (r
(2.6) J(ry= =820
1-D(r)
In the case of Poisson point processes we have that J,(r) =1, since then H((r)= D(r) because of the

independent scattering of points. If J(r)>1, it holds that D(r) > H ((r) and therefore one can conclude that

there is repulsion between point pairs of distance 7. On the other hand if J(r) <1, itis true that D(r) < H(7)

and hence there is attraction between point pairs of distance 7 compared to the case of complete spatial

randomness.
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Matérn-cluster point process
The Matérn-cluster point process X . is based on a Poisson process with intensity ﬂp whose points are called

parent points. Around each parent point a disc with radius R is taken in which the points of the Matérn-cluster

process are scattered uniformly and independently from each other. The number of points in such a disc is Poisson
distributed with parameter TR A - Note that ﬂd is the mean number of points per unit area generated by a single
parent point in a disc of radius R . Since the parent points themselves are not part of the Matérn-cluster process, the

intensity of the Matérn-cluster process is given by ﬂmc = ERzﬂdﬂp . Thus, the Matérn-cluster point process X me
is uniquely determined by three of the four parameters /7,[] , ﬂd , R and ﬂmc . Obviously, for small distances, there
is a bigger mean number of points of X . in a disc around an arbitrarily chosen point of X than for Poisson

processes of comparable intensity. For X the point process characteristics described in above are known

mc °

(Stoyan & Stoyan 1994).

Model fitting
After the analysis of estimated point process characteristics, a Matérn-cluster model was fitted to the transformed

data. After an estimation of /ﬂimc by using the estimator given in (A.4), the parameters ﬁp and R can be estimated

by numerical minimisation of the integral

@7 [ (6= g ()Y r,

0

where g(7) is the averaged estimated pair correlation function for the Epanechnikov kernel with ¢ =0.15 and
& iheo (r) is the theoretical value for the pair correlation function of the Matérn-cluster process with parameters

A,, Rand A . The range has been chosen from O cm to 7, =50 cm, where 7, equals half the minimum

X

of the given depth and width of the sampling window.

3. RESULTS

Notice that in the following the transformed point patterns of spruce and beech were analyzed, which are

considered stationary and isotropic.
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3.1 Estimated point pattern characteristics

The average number of roots (i.e. points in the sampling window) for profile walls of Picea abies is significantly

higher than for the profile walls of Fagus sylvatica (& = 0.05). Since the sampling windows have the same size, a

similar result is obtained regarding intensities per cm® (AP = 0.00403 vs. A" =0.00262).

Isotropy was tested by determining the empirical directional distribution of the angles of point pairs to the axes and
testing them for uniform distribution. The hypothesis of isotropy could not be rejected (& =0.05), hence in the
following isotropy is assumed. The quadrat count method (Stoyan & Stoyan 1994) was used to test on complete
spatial randomness. Here, using a 4X4 grid, the hypothesis that the given point patterns are extracts of realisations
of homogeneous Poisson processes was rejected (& = 0.05). This implies that after the vertical root distributions
were compensated by the estimated distribution functions (2.2) roots between 2 and 5 mm diameter are aggregated
in specific parts of soil.

It is important to notice that even regarding the number of roots in the profile walls, the variability of root numbers
in both groups, spruce and beech, is bigger than between the two groups. Therefore, means for spruce and beech
respectively are regarded in the applied functions instead of individual values for each wall investigated. Hence in
the following we look at the mean behaviour of the two species. Notice also that it was not tested whether the
differences in the plots were statistically significant. For functions the mean was taken in a pointwise sense
resulting in mean value functions, where each sample had the same weight. Means based on weighted average
estimation (Diggle et al. 2000) were also regarded, but resulted in almost identical graphs, compared to graphs for

means using equal weights. They are therefore omitted here.

The graphs for averaged estimated pair correlation functions (Fig. 2) provide strong indication for root clustering,

where this effect seems to be stronger for spruce than for beech. For both tree species the estimated pair correlation
function runs above / for a radius 7 <14 c¢m and the function for spruce (crosses) is bigger than the function for

beech (diamonds) for r <9 cm .

Graphs for the averaged estimated values of L(r)—r are shown in Fig. 3. Since in the Poisson case L(r)=r a
positive slope means that there is an attraction, while a negative slope indicates repulsion. Again there are signs of

attraction for small distances, less than 9.5 cm and less than 13.5 cm respectively, and the attraction seems to

10
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be stronger for spruce (crosses) compared to beech (diamonds) since the slope of lA,(r)—r is bigger. Fig. 3

indicates further that less point pairs for beech occur in a range between about 12 cm and 40 cm .

Averaged estimated J-functions for both groups (Fig. 4) give clear indication for attraction between point pairs of a

distance less than 12 cm, since both functions are below 1 in this region and have a negative slope. A second
observation is that the line for spruce (crosses) lies beneath the line for beech (diamonds), which means that root

pairs of spruce are more attracted to each other than roots of beech for such distances. Notice that for radii larger

than 20 cm the estimator becomes numerically unstable, and therefore should not be taken into further
consideration. Also one should keep in mind that the J-function is the quotient of two cumulative quantities, that
means that often the slope of the J-function is more of interest than the absolute value at a specific point pair

distance r.

All regarded estimated point pattern characteristics show that there are strong signs of clustering effects for roots at
a distance of less than about 12 cm and that the clustering seems to be stronger for spruce compared to beech, but

in a smaller cluster region. Additionally by looking at the estimated L-function, it can be seen that for beech and
distances of less than 0.5 cm there seems to be a slight repulsion effect, since lA,(r) —r<0 for r<0.5cm .

Another interesting observation is that in a range between 12 ¢m and 40 ¢m the number of point pairs in beech

stands is reduced compared to the number of point pairs in spruce stands.
3.2 Fitting of the Matérn-cluster model

Regarding the results of the estimated point process characteristics described in Section 3.1 and because of its

simplicity, Matérn-cluster processes are chosen as a model for the underlying point processes. This model is fitted
to the transformed data and the parameter /?,mc , indicating the root intensity, is estimated as in (A.4), resulting in

——~ spru

ce ——~ beech
A =0.00403 and A, =0.00262 . After the estimation of A for the roots of both species,

C

minimisations of the integral given in (2.7) yield estimates for R and lp. The obtained parameters are

N ~ spruce N
R =49 cm and ﬂp =0.00690 for spruce roots, while for beech roots they are R™*" =7.4 cm and

11
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— beech

/1p =0.00603. The parameter R indicates different ranges of attraction for roots between 2 -5 mm

diameter at smaller cluster regions for spruce than for beech.

The given point patterns are modelled as extracts of realisations of stationary Matérn-cluster processes with

intensities ﬂ;pcmce =0.00403 and ﬂ:ﬁec}l =0.00262, with cluster radii R¥*“°*=49cm and

R™*" =7.4 cm , and with parent-process intensities ﬂ,;pmce =0.00690 and ﬂ;eec}‘ =0.00603. In order to get

an idea for the degree of clustering, the quantity

ﬂ’mc
(3.1) /111 =W

spruce

was evaluated. For Picea abies one gets ﬂd

=0.00774, while for Fagus sylvatica ﬂ;mh =0.00253 is

obtained. These parameters allow us to conclude that there is stronger clustering within a smaller cluster radius for

spruce roots, while for the beech roots the clustering is substantially weaker.

These models were validated by Monte-Carlo tests. The estimated Matérn-cluster models were simulated 200 times
and the pair correlation functions were estimated to get 95 % envelopes for the pair correlation functions of the
data. Since the pair correlation functions of spruce (Fig. 5a) and beech (Fig. 5b) lies between these envelopes, the

Matérn-cluster models fit well to the data. For L-functions similar results were obtained and are omitted here.

In Figs 6a and 7a realisations of the homogeneous Matérn-cluster models are displayed, utilising the estimated
model parameters of Picea abies and Fagus sylvatica, respectively. In Figs 6b and 7b the discs, in which the points
are scattered uniformly and independently, are displayed. After the inverse transformations (cf. Appendix B), the
corresponding inhomogeneous Matérn-cluster models are obtained. The results of the inverse transformation are
visualised in Figs 6¢c, 6d, 7c and 7d. Structures originating from the inversely transformed data shown in the upper
part of Figs 6d and 7d suggest clusters with the longest extension along the horizontal axis. The lower part of Figs
6d and 7d should not be used for structural interpretation however since the data transformation and

retransformation of the sparsely distributed roots dominates the original spatial structure in larger soil depths.

12
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4. DISCUSSION

The point process characteristics using the transformed data described the two dimensional distributions of small
roots (2 - 5 mm diameter) in pure stands of Picea abies and Fagus sylvatica. As a first characteristic, estimated pair

correlation functions have been analysed. Afterwards in order to get a validation for the results as well as to get

further information, the function L(7)—r has been applied. Finally, estimated J-functions were taken into account

to get another proof for the inferences made. This approach of looking at several different characteristics has
obvious advantages, since conclusions derived from several independently calculated parameters are more profound
and can elucidate such specific behaviour like the repulsion effect for very small beech root distances.

In forest soils, there is a pronounced gradient of nutrient turn-over providing the highest availability in the topsoil.
This is true for the investigated stands, where the fine roots of both species showed the highest biomass of 600 -
800 g m” in 0 and 10 cm soil depth (Schmid 2002). The small roots of spruce followed the same distribution
whereas beech small roots showed the highest abundance between 10 and 20 c¢m soil depth (Schmid & Kazda
2001). After small root positions within the trench soil profiles (i.e. points within a sampling window) were
homogenised (transformed) using the specifically calculated distribution function (2.2), the averaged estimated pair
correlation functions (Fig. 2) show that attraction can be observed for point pairs with distances less than
approximately 14 cm. This means that roots of both species tend to cluster in areas up to this diameter. As roots
react to nutrient enriched soil patches by enhanced growth and greater biomass in these areas (Drew 1975; Morris
1996), this attraction of roots within this diameter could also be a direct link to a local occurrence of soil resources.
These inferences were validated further by estimated J-functions revealing root clustering at pair distances below
12 cm (see Fig. 4). Here we want to stress once more the fact that the estimated functions are pointwise means of

the estimations for the individual sample windows.

The estimated function i(r) —r (Fig. 3) indicates that the number of roots (point pairs) with a distance between

12 cm and 40 cm was reduced in the case of Fagus sylvatica, while for Picea abies the number of roots of such a
distance was more like in the case of a Poisson process, indicated by function values oscillating between 2 and 2.5
for distances more than 10 cm (Fig. 3). Whereas no interaction between the clusters themselves was found for
Norway spruce, slight rejection between the root clusters occurred for European beech. Such avoidance of
competition for resources was reported also for roots of Sweetgum and Loblolly pine, which showed a tendency to

avoid overlap with roots of other plant while foraging for nutrients (Mou et al. 1995). In this context it is important

13



N O AW

o0

10
11
12
13
14
15
16
17
18
19

20

21

22

23
24
25
26
27
28
29
30

F. Fleischer, S. Eckel, 1. Schmid, V. Schmidt, and M. Kazda

to notice that these structural differences are independent of the observed significant difference in the average

number of roots for Picea abies and Fagus sylvatica.

The homogenised point patterns were modelled as Matérn-cluster processes that have some serious advantages.
Besides certain simplicity and known theoretical values for point process characteristic, the sample data were fitted
well by this model (Fig. 5). The estimated point process characteristics using the Matérn-cluster processes further

differentiated between the species. The results show for spruces a stronger clustering in a smaller range of attraction

(R™™*° =4.9 ¢m), while the clustering is weaker for beeches, but the range of attraction (R"™*™" =7.4 cm)
seems to be larger. This finding is in accordance with another investigation calculating influence areas for each root
by Schmid & Kazda (2005). Their results indicated that the root system of spruce requires more roots to achieve a
similar degree of space acquisition and thus beech exploits patchily distributed soil resources at lower root
numbers. Furthermore, the evaluation of the diameter growth of coarse roots (> 5 mm) found that growth rates of
beech roots exceeded those of spruce by up to 25 % (Schmid & Kazda 2001). Results of both investigations provide
an evidence for higher growth and more efficient space acquisition by roots of European beech compared to
Norway spruce. From the structural point of view, there is a combination of two effects, the depth distribution,

similarly described in Schmid & Kazda (2001) and the cluster effects quantified in the present paper.

Stronger clustering in the case of spruce than in the case of beech can be also seen regarding the characteristics

mentioned above as well as by a comparison of the estimated parameters for the homogeneous model

spruce

A

=0.00774 vs. /?,;emh =0.00253, which are measures for the degree of clustering in a specific cluster.

These substantial differences between the species is significant as the average numbers of cluster regions are almost

—~~ spruce —~ beech
equal (/7,p =0.00690 vs. ﬂp =0.00603). The previous GIS-based investigation of root distribution

(Schmid & Kazda 2005) was not able to quantify the differences of clustering between the two species as precisely
as the applied modelling by point processes. Stronger root clustering of spruce can be seen as an indication of more
intensive intraspecific competition than in the case of beech. This is supported by a structural link established by
Schmid (2002) between fine and coarse roots in the two investigated stands providing an identical ratio between the
biomass of fine and coarse roots of 0.9. The same ratio between fine and coarse roots suggests therefore higher
abundance of fine roots in spruce clusters and thus more intensive intraspecific competition (Smucker & Aiken
1992) in spruce than in beech. Beech also requires fewer roots than spruce to achieve the same degree of root

clustering (Schmid & Kazda 2005) and the clustering is weaker but the range of attraction larger as indicated by the

14
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parameters of the fitted Matérn-cluster processes. Furthermore beech root clusters themselves seem to avoid an
overlap which together with the clustering characteristics described above indicates a more sophisticated rooting

system than in the case of Norway spruce.

The non-homogeneous Matérn-cluster model constructed by a retransformation of the homogeneous model
reflected the observed depth distribution of the tree roots. The visualisation of the retransformed data suggests a
depth-dependent size and shape of root clusters. Close to the soil surface, roots form clusters along the horizontal
axis. This shape agrees also with the horizontally distributed root points in the original samples (Figs la and Ic).
Horizontally growing roots as well as the shape of generated clusters may reflect the attractive soil patches in the
nutrient-rich topsoil layers. Deeper, the real size of clusters is larger and more circular. However, because the
transformation and retransformation of root data at low intensities in the deep parts of the soil profile makes the
results unstable, the lower third of Figs 6d and 7d are not really useful for interpretation of spatial structures. The
small roots investigated in this study were described regarding water and nutrient uptake (Lindenmair et al. 2001)
and they mediate to the most active fine roots (< 2 mm). Thus, clusters of small roots reflect the presence of nutrient
patches or zones of better water availability (Jackson & Caldwell 1993; Parker & Lear 1996; Ryel et al. 1996). As
the number of small roots and their clustering was independent of the distance to the surrounding trees and of their
diameter (Schmid & Kazda 2005), the root clusters are suggested as an inherent property of below-ground space

acquisition.

The method of data collection provided an exceptionally large amount of data describing the spatial distributions of
roots and thereby enabled us to perform a statistical analysis of the random spatial distributions by the usage of
point pattern characteristics. Summarizing the structures found, we can state that after root abundances were
compensated vertically, spatial distribution of roots for both tree species is still not completely random. Returning
to the hypothesis postulated in the introduction, we have quantified the degree of clustering as well as the size of
the cluster region by a model fitting and parameter estimation for Matérn-cluster models with respect to
transformed data. Looking at the real data, of course we have a mixing of the effects detected for the transformed
case and the given depth distributions that were assumed as being exponentially distributed in the case of Picea
abies and as being gamma-distributed in the case of Fagus sylvatica (Schmid & Kazda 2001). A reason for such
clustering effects is seen in the inhomogeneity of soil resources. Therefore a simultaneous spatial analysis of root
and nutrient distribution would be very interesting, in order to test the concomitant root and nutrient heterogeneity

in different regions of natural soils.
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FIGURE CAPTIONS

Figure 1. Sample of small root distribution for Picea abies (original (a), transformed (b)) and for Fagus sylvatica
(original (c), transformed (d)).

Figure 2. Averaged estimated pair correlation functions for Picea abies (crosses) and Fagus sylvatica (diamonds).

The line g(r) = 1is the pair correlation function in case of the Poisson point process.

Figure 3. Averaged estimated functions lA,(r) —r for Picea abies (crosses) and Fagus sylvatica (diamonds).

Figure 4. Averaged estimated J-functions for Picea abies (crosses) and Fagus sylvatica (diamonds).

Figure 5. Estimated mean pair correlation function of Picea abies (a) and Fagus sylvatica (b). The 95 % envelopes
displayed are based on Matérn-cluster processes with fitted parameters.

Figure 6. Realization of the homogeneous Matérn-cluster model, showing the daughter points (a) and the cluster
regions (b). A realization (c) of the inhomogeneous Matérn-cluster model for Picea abies. Retransformation of the
discs around the daughter points (d).

Figure 7. Realization of the homogeneous Matérn-cluster model, showing the daughter points (a) and the cluster
regions (b). A realization (c) of the inhomogeneous Matérn-cluster model for Fagus sylvatica. Retransformation of

the discs around the daughter points (d).

19



O 00 N O N B~ WO

10

12
13

F. Fleischer, S. Eckel, 1. Schmid, V. Schmidt, and M. Kazda

a)

b)

b

€)

d)

Fig. 1

20




o N9 O W kA W N =

Statistical Modelling of the Spatial Distribution of Tree Roots

g(r)

10 20 30 40 50

Radiusr

Fig. 2

21



O o0 9 O U B~ W N =

F. Fleischer, S. Eckel, 1. Schmid, V. Schmidt, and M. Kazda

2.5 :’: :.:#\:";’J"«
o e e,
e - . P W,y
Fe? otk T
:N ’400 1‘&
- (=3 -
o L€ ortonton
, & X z
JEI. g -,
:'. 6? t -
151 ., % ©¢ Y
. & 3‘%00 °
L(r)r . ® e A
J% kS
& -3
14 K
. %
o % 2
E=3
@ -
0.5 ?%,
o
‘o %4‘%
A @
& o
0 10 20 30 40
=]
% T in cm
=3

Fig. 3

22



O 00 9 O U B~ W N =

e e e
A W N = O

p—
|91

J(r)

Fig. 4

Statistical Modelling of the Spatial Distribution of Tree Roots

23



F. Fleischer, S. Eckel, 1. Schmid, V. Schmidt, and M. Kazda

b
6
5
o
4
a(r)
3
2 \
m——— e
1 V\\W
0 10 20 30 40 50
rincm
2 Fig. 5a
6
5%
4
%
alr) 4l
s
215
| \_,\_
0 10 20 30 40 50
rincm
4 Fig.5b

24



DIo—

10

11

12

13

14

15

16

17

Fig. 6

25

Statistical Modelling of the Spatial Distribution of Tree Roots




Do—

10

11

12

13

14

15

16

17

F. Fleischer, S. Eckel, 1. Schmid, V. Schmidt, and M. Kazda

b)

8 o

E‘u
=

&
o

=

Fig. 7

26




11
12

13

14

15

16

17

18

19

20

21

22

23

24
25

Statistical Modelling of the Spatial Distribution of Tree Roots

APPENDIX
A. Point process characteristics and their estimators

In the following let X ={X,} be a point process in R* and let X (W)=#{n:X, € W} denote the random
number of points X, of X located in a window W . The point process X is called stationary if the distribution

of X is invariant under translation and X is called isotropic if the distribution of X is invariant under rotation

about the origin.

Intensity

The intensity measure A is defined as

(A.1) AW)=EX(W)
for a given set W, where E denotes expectation. Hence A(W) is the mean number of points in W . Often it is

possible to express the intensity measure in terms of an intensity function A4(x), where

(A2) A(W) = j A(x)dx.

In the stationary case it suffices to regard an intensity A since then

(A.3) AW)=AW|,
where |W| denotes the area of W . A natural estimator for A is given by

5 X(W)
(A4) A=—.
W]

According to Stoyan & Stoyan (1994), an appropriate estimator for A* s

(A.5) 1= XW)(x (ZW)—l) |
4

since even in the case of complete spatial randomness (ﬂ,)2 is not an unbiased estimator for A°. In the following

let the point process X be motion-invariant, i.e. stationary and isotropic.
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Pair correlation function

As an estimator for ,0(2) ,

kh(r—HXl. —XjH)

— 1
(A.6) PP (r)=—o E
277 x, xiaw. v ‘Wx,. W,

is used (Stoyan & Stoyan 2000), where HX —X JH denotes the Euclidean distance between two points X, and

Xj. The term ‘WX,- ﬁWXi

is an edge correction term, where W, ={x+ X, :xe W1} is the window W
J

translated by the point X ;, the sum extends over all pairs of points X, X ; € W with i # j,and k,(x) denotes

the Epanechnikov kernel

2
X

3
(A7) k,(x) = T (1- F)I Cam (X)

with bandwidth 4. The product density P (r) is used to obtain the pair correlation function g(r) as

PO

(A8) g(N="—3

The pair correlation function can be estimated by using the estimators for p(z) (r) and A

L-function
The L-function is a scaled version of Ripley’s K-function which is defined such that AK(r) is the mean number

of points of the stationary point process X within a ball b(X ,r) centred at a randomly chosen point X, of X

which itself is not counted (Ripley 1981). As a formal definition one gets

X(b(X,,r)-1
(A.9) AK()=E n .
=E 2 =W

A possible estimator for K (r) is given by

(A.10) R(r)= K(A:) ’

A
where

I X —-X
(A1) K=Y o (X, =X

X, X €W, i#j ‘Wx NW,
. ; :
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where (W, MW, | is an edge correction term. Recall that A? is the estimator given in (A.5). The L-function is
i j
then defined by
K(r
(A12) L) = | K"
T

and can be estimated by
. K(r
(A13) in= %0
T

J-function
In order to define the J-function, the contact distribution function H (r) and the nearest neighbour distance

distribution function D(7) have to be introduced first. The spherical contact distribution function H (7)is
defined by

(A.14) H (r)=1-P(X(b(o,r))=0)

and can be interpreted as the distribution function of the random distance from an arbitrary point outside of X to
its nearest neighbour in X . The nearest neighbour distance distribution function D(r) is the distribution function
of the distance from a randomly chosen point X, of X to its nearest neighbour. In the case of complete spatial
randomness we have that

(A.15) H (r)=D(r)=1-exp(-Azr?).

The J-function is defined by

(A.16) ](r):ﬂ,
1-D(r)

where

(A17) J(r)= ﬂ
1-D(r)

is a natural estimator for J(r)with estimators H s(r) and D(r) for Hg(r) and D(r), respectively, as

considered e.g. in Lieshout & Baddeley (1996).
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B. Inhomogeneous Matérn-cluster model

For the original data, which shows a vertical distribution property, the Matérn-cluster model fitted for the

homogeneous case has to be retransformed, where the inverse transformation

),

tran )

(B.1) By = (F) ' (——2=

tot

of the depth is considered, with (F")'(y) representing the generalised inverse function of F (x). So for

example in the case of Picea abies an exponential depth distribution is assumed and therefore

1 1—¢ "
B.2 hxpmce - _ ln 1 hspruce ,
( ) orig 2/ ( tran 100 )

exp
where /Iequ is the mean value of the exponential distribution. Thereby it is possible to define a retransformed

model, where the parent process is given by an inhomogeneous Poisson process with intensity function

PRRACN
p F (h[m) tot ?

(B.3) A,(x, y) = 4,(y) =
where X and y represent the horizontal and vertical coordinate, f(x) is the density function of the suitable
distribution function F' x(x) (exponential distribution for spruce and gamma distribution for beech), ﬂp is the

intensity of the parent process of the homogeneous model and hm[ represents the total depth of the sampling

window. In this model the cluster regions are no longer circles, but the images of these circles under the mapping

given in (B.1). They can be written as

h,
B4 |y :(x=x,) +F (»N-F (y,) (F (hm)) <R},

where the corresponding parent point is denoted by (xp, Y, ). Since the mean total number of points in the given

window as well as the mean total number of points in a cluster stay the same compared to the homogeneous model,

the intensity function for the inhomogeneous Matérn-cluster point process is given as

£ P

B.5 A (x,y)=4 =1, —~——h,,
(B.5) e (5 V)= A (V) " oy

where /?,mc is the corresponding intensity of the homogeneous model.
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