Simulation of typical Poisson-Voronoi-Cox-Voronoi cells with applications to telecommunication network modelling

Frank Fleischer

Workshop SGSSA
February 14-17 2007
Motivation

Telecommunication networks

Infrastructure of Paris
Motivation

Agenda

- Motivation
- Introduction of PVCVT
- Palm representation of the typical cell
- Simulation algorithm
- Related cost functionals
- Conclusion and outlook
System of main roads
System of main roads and side streets
Motivation
Modelling

System of roads with network components
Motivation
Modelling

Serving zones
Motivation

Aims

- Modelling by random-geometric networks
 - Description of networks by few parameters
 - Simulation of present and future network design scenarios
 - Cost analysis and risk evaluation
- Models necessary
 - Streets => geometry model
 - Network components => equipment model
Introduction of PVCVT

PLCVT

Geometry model PLT
Introduction of PVCVT

PVCVT

Geometry model PVT
A sequence $\tau = \{C_n\}_{n \in \mathbb{N}}$ of convex compact polygons $C_n \in \mathbb{R}^2$ is called a (deterministic) tessellation of \mathbb{R}^2 if:

- $C_n \neq \emptyset \forall n \in \mathbb{N}$, $\text{int} C_n \cap \text{int} C_m = \emptyset \forall n \neq m$
- $\bigcup_{n \in \mathbb{N}} C_n = \mathbb{R}^2$
- $\sum_{n \in \mathbb{N}} 1\{C_n \cap K \neq \emptyset\} < \infty$ for all compact sets $K \subset \mathbb{R}^2$

The sets C_n are called the cells of τ.

Introduction of PVCVT

(Deterministic) Tessellation
Introduction of PVCVT

Associated point and intensity

- Let C_n be a cell of a tessellation. Then the point $\alpha(C_n)$ is called associated point of C_n if
 - $\alpha(C_n) \in C_n$
 - $\alpha(C_n + x) = \alpha(C_n) + x$

- Let T be a stationary random tessellation. Then
 $$\lambda_T := \mathbb{E}\#\{n : \alpha(\Xi_n) \in [0, 1)^2\}$$

is called the intensity of T.
Introduction of PVCVT

Cells of T are formed with respect to a point process $\{X_n\}_{n \in \mathbb{N}}$

$$\Xi_n = \left\{ x \in \mathbb{R}^2 : \| x - X_n \| \leq \| x - X_m \| \ \forall n \neq m \right\}$$

$$= \bigcap_{m \in \mathbb{N} : m \neq n} H(X_n, X_m)$$

with half spaces

$$H(X_n, X_m) = \left\{ x \in \mathbb{R}^2 : \| x - X_n \| \leq \| x - X_m \| \right\}$$

Possible associated point: $\alpha(\Xi_n) = X_n$

X_p Poisson point process $\Rightarrow \tau_{X_p}$ Poisson-Voronoi tessellation (PVT)
Introduction of PVCVT

Realization of a Poisson process and corresponding Voronoi tessellation
Introduction of PVCVT

PVCVT

- Consider Cox process X_c with (random) intensity measure Λ_{X_c}
 - $\Lambda_{X_c}(B) = \lambda_\ell \nu_1 (B \cap \tau_{X_p}^{(1)})$
 - $\tau_{X_p}^{(1)}$ process of edges of PVT τ_{X_p}
 - Linear Poisson processes on the the edges of τ_{X_p} with intensity λ_ℓ
- PVT induced by $X_c \Rightarrow$ Poisson-Voronoi-Cox-Voronoi tessellation (PVCVT) τ_{X_c}
- Intensity $\lambda_c = 2\lambda_\ell \sqrt{\lambda_p}$
Introduction of PVCVT

Realization of a PVCVT
Palm representation of the typical cell

Aims

- Typical cell <=> cell chosen randomly out of all cells available
- According to Palm mark distribution
- Important
 - Serving zone (geometric characteristics)
 - Estimation of cost functionals
- Simulation algorithm based on suitable Palm representation
 - For generating Cox process
 - One-to-one correspondence to Voronoi tessellation
Palm representation of the typical cell

Palm distribution

Let τ_X be a random tessellation. The Palm distribution $\mathbb{P}^*_\tau_X$ is defined as

$$
\mathbb{P}^*_\tau_X(A \times G) = \frac{\mathbb{E} \# \{ n : \alpha(\Xi_n) \in [0, 1)^2, T- \alpha(\Xi_n) \in A, \Xi_n-\alpha(\Xi_n) \in G \} }{\lambda_{\tau_X}}
$$

where $A \in \mathcal{T}$, $G \in \mathcal{B}(\mathcal{F}) \cap \mathcal{P}^{(o)}$ with

- $\mathcal{P}^{(o)}$ family of all convex polytopes with associated point at o
- \mathcal{F} family of all closed sets in \mathbb{R}^2
Palm representation of the typical cell

Palm mark distribution

- The Palm mark distribution \mathbb{P}^* of τ_X is defined as

$$\mathbb{P}^*(G) = \frac{\mathbb{E}\#\{n : \alpha(\Xi_n) \in [0, 1)^2, \Xi_n - \alpha(\Xi_n) \in G\}}{\lambda_{\tau_X}}$$

- A random polygon with distribution \mathbb{P}^* is called the typical cell of the tessellation τ_X

- Local characterisation

$$\mathbb{P}^*(G) = \lim_{\epsilon \to 0} \mathbb{P}(\Xi^{(o)} - \alpha(\Xi^{(o)}) \in G \mid \alpha(\Xi^{(o)}) \in B(o, \epsilon))$$
Palm representation of the typical cell

- PVT τ_{X_p} generated by X_p
- PVCVT τ_{X_c} generated by X_c
- $h : \mathcal{P}^0 \rightarrow \mathbb{R}_+$ measurable

\[
\int h(\Xi^*) \mathbb{P}^*_{X_c} = \frac{1}{\mathbb{E}_\nu_1(\partial\Xi^*)} \int \int h(\Xi_c(u)) du \mathbb{P}^*_{X_p}
\]

where

- $\mathbb{P}^*_{X_c}, \mathbb{P}^*_{X_p}$ palm mark distributions of τ_{X_c} and τ_{X_p}
- Ξ^*, Ξ^* typical cells of τ_{X_c} and τ_{X_p}
- $\Xi_c(u)$ cell of τ_{X_c} with nucleus $u \in \partial\Xi^*$ given X_c and τ_{X_p}
Palm representation of the typical cell

- \(\mathbb{E} \nu_1(\partial \Xi^*_p) = \frac{4}{\sqrt{\lambda_p}} \)

- \(\mathbb{E}_{X_p} \int_{\partial \Xi^*_p} h(\Xi_c(u)) \, du = \mathbb{E}_{X_p} [\nu_1(\partial \Xi^*_p) \mathbb{E} h(\Xi_c(Z) | X_p)] \)

- where \(Z \in \partial \Xi^*_p \ a.s. \) and \(Z \sim U(\partial \Xi^*_p) \)

- \(\int h(\Xi^*_c) \mathbb{P}^*_X \Xi_c = \frac{\sqrt{\lambda_p}}{4} \mathbb{E}_{X_p} [\nu_1(\partial \Xi^*_p) \mathbb{E} h(\Xi_c(Z) | X_p)] \)

- Representation induces simulation algorithm

- No direct simulation of the typical cell

- Information about characteristics w.r.t
 - Moments
 - Distribution
Simulation algorithm

General considerations

- Averaging over large sampling windows
 - Edge effects
 - Memory and runtime problems
- Direct simulation of typical cell avoids these problems
 - Simulation not clear/very complicated
 - Usage of Palm representation
Simulation algorithm

Concept

Simulation algorithm for distributional properties of the typical cell of PVCVT

- Radial simulation
- Simulate PVT τ_{X_p} w.r.t. its Palm distribution
- Put points on the edges, one additional (random) point Z on $\partial \Xi^*_p$
- Construct cell $\Xi_c(Z)$ around Z
- Weight characteristic $h(\Xi_c(Z))$ by $\nu_1(\partial \Xi^*_p) \sqrt{\lambda_p}/4$
- Estimation by sample means of weighted characteristic
Simulation algorithm

Typical cell of PVT

Simulate $X_p \cup \{o\}$ radially until typical cell Ξ^*_p of τX_p can be constructed.
Simulation algorithm

First points on edges

Simulate $N + 1$ points uniform random on $\partial \Xi_p^*$, where

$$N \sim \text{Poi}(\lambda \nu_1(\partial \Xi_p^*))$$
Simulate further cells of τ_{X_p} and place N_i points on the new edges s_i, $N_i \sim \text{Poi}(\lambda \nu_1(s_i))$
Simulation algorithm

Initial cell

Construct initial cell
Simulation algorithm

Further intersections of initial cell

Simulate further points and cells, intersect initial cell with bisectors
Simulation algorithm
Stopping criterion

Stopping criterion
Simulation algorithm

Final cell

Realization of cell $\Xi_c(Z)$
Simulation algorithm

Functionals of interest

- Computation of distributions (and moments) of
 - Number of vertices
 - Perimeter
 - Area
- Computation of related cost functionals
 - Shortest path length
 - Subscriber line length
 - Capacity
- Comparison to results for PLCVT
Simulation algorithm
First numerical results

Histogram of perimeter length for $\sqrt{\lambda_p} = 0.0625$ and $\lambda_\ell = 0.0125$
Related cost functionals

Shortest path length

- Two Cox processes X_H and X_L
- (Spatial) intensities λ_H and λ_L
- Connected to same PVT τ_{X_p}

- Distance from a point of X_L to its nearest neighbor of X_H
 - Along the edges of τ_{X_p}
 - (Random) shortest path length c_{LH}
 - Mean shortest path length $\mathbb{E}_{c_{LH}} = \mathbb{E}_{X_L} c(P(o, N(o)))$
Related cost functionals

Shortest path length

Realisation of X_L and X_H with serving zones
Related cost functionals

Shortest path length

\[\mathbb{E}_{X_L} c(P(o, N(o))) = \frac{1}{\mathbb{E}_{X_H} \nu_1(L(\Xi^*_H))} \mathbb{E}_{X_H} \int_{L(\Xi^*_H)} c(P(u, o))du \]

- \(\Xi^*_H \) typical Voronoi cell of \(X_H \)
- \(L(\Xi^*_H) = \tau^{(1)}_{X_p} \cap \Xi^*_H \)
- \(h(\Xi^*_H) = \int_{L(\Xi^*_H)} c(P(u, o))du \Rightarrow \text{Palm representation for} \ \Xi^*_H \ \text{usable} \)

\[\mathbb{E}_{X_L} c(P(o, N(o))) = \frac{\lambda_H}{8} \mathbb{E}_{X_p}[\nu_1(\partial \Xi^*_p)\mathbb{E}(\int_{L(\Xi^*_H(Z))} c(P(u, o))du|X_p)] \]

where \(Z \sim U(\partial \Xi^*_p) \)
Conclusion and outlook

- PVCVT
 - Model for road system
 - Palm representation of typical cell
 - Simulation algorithm
 - Palm representation of shortest path length

- Further steps
 - Systematic numerical analysis (scaling invariance)
 - Usage for estimation of cost functionals
 - Approximation formulae
 - Comparison to other geometry models (PLCVT, PDCVT, ...)

Frank Fleischer, February 16 2007
