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Abstract

We observe stationary random tessellations X = {Ξn}n≥1 in IRd through a convex sam-
pling window W that expands unboundedly and we determine the total (k − 1)-volume
of those (k − 1)–dimensional manifold processes which are induced on the k–facets of X
(1 ≤ k ≤ d−1) by their intersection with the (d−1)-facets of independent and identically
distributed motion-invariant tessellations Xn generated within each cell Ξn of X . The
cases of X being either a Poisson hyperplane tessellation or a random tessellation with
weak dependences are treated separately. In both cases however we obtain that all the
total volumes measured in W are approximately normally distributed when W is suffi-
ciently large. Structural formulae for mean values and asymptotic variances are derived
and explicit numerical values are given for planar Poisson-Voronoi tessellations (PVTs)
and Poisson line tessellations (PLTs).
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1 Introduction

In this paper we consider stationary random tessellations X = {Ξn}n≥1 of the d–dimensional
Euclidean space IRd with convex cells Ξn. We assume that within each cell Ξn of the initial tes-
sellation X a further random tessellation Xn = {Ξnℓ}ℓ≥1 of IRd is nested, i.e., Ξn is subdivided
into cells Ξn ∩ Ξnℓ , ℓ ≥ 1 , where the sequence of component tessellations (Xn)n≥1 consists of
independent copies of a generic motion–invariant tessellation X0 drawn independently of X .
The assumption of motion–invariance of X0 will play a crucial role in deriving explicit moment
formulae. This type of iterated random tessellation is said to be an X/X0–nesting in IRd.

Having available only a single observation of such an X/X0–nesting in a presumably large,
convex sampling window W , we are interested in the asymptotic behaviour of the random
sums

Z
(d)
k (W ) =

∑

n≥1

ϑ(k)
n (W ) , 1 ≤ k ≤ d − 1 , (1.1)

1
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where ’asymptotic’ means that W ↑ IRd and where the random measures

ϑ(k)
n (·) = νk−1(X

(d−1)
n ∩ Ξ(k)

n ∩ ·) , 1 ≤ k ≤ d − 1 , (1.2)

act on the Borel sets of IRd. The functional ϑ
(k)
n (W ) measures the (k − 1)–volume of the

random subsets induced in W by the intersection of the motion–invariant manifold process

X
(d−1)
n of (d − 1)-facets of Xn with the union Ξ

(k)
n of all k-faces belonging to the boundary

∂Ξn of the nth cell of X; cf. Section 2.1 for details and precise definitions. Note that, by

definition, the random measures ϑ
(k)
1 (·) , ϑ

(k)
2 (·) , . . . in (1.2) are conditionally independent given

the tessellation X.

Our results supplement earlier central limits theorems (CLTs) for cumulative measures of
stationary ergodic tessellations modelling the total effect of random internal cell structures;
[14]. Whereas in the latter reference the random measures corresponding to those in the sum

(1.1) act on the interior of the cells Ξn, the measures ϑ
(k)
n (·) defined in (1.2) are concentrated

on the cell boundaries ∂Ξn of X . Hence, certain new effects arise due to the interactions
between the stationary random manifold process

⋃
n≥1 ∂Ξn of cell boundaries of X and the

component tessellations (Xn)n≥1 . It turns out that there are considerable differences between
X being a stationary Poisson hyperplane tessellation (PHT) and X satisfying certain weak
dependence assumptions. In the first case, due to the overnormalization in the CLTs for Poisson
hyperplane processes, caused by inherent long-range dependences, cf. [15], the influence of X0

on the Gaussian limit distribution is relatively weak. The other case seems to be somewhat
more delicate because the asymptotic variance of the existing Gaussian limits are influenced
by first– and second–order characteristics of both X and X0 .

We present our derived CLTs in the general case of the IRd, since this allows for a clearer
and more transparent expostion. Clearly however, the CLTs find their applications in the
modelling of planar, but also spatial networks as they occur for example in cell biology and
telecommunication. Indeed, and concentrating on the latter example, often the problem arises
to handle and model data that represent the geometrical structure of the infrastructure system
(e.g. main roads and side streets) that supports the technical telecommunication equipment. In
recent years, stochastic–geometric modelling approaches have proven useful and are established
domains of research today. In particular, the Stochastic Subscriber Line Model (SSLM) has
been developed as an integrated and easily extendable model for telecommunication access
networks; cf. [25] and the references therein.

The SSLM employs (iterated) random tessellations to describe the geometric network support.
Having identified the best fitting model from a class of potentially suitable tessellations, cf.
[8], cost functionals and their distributions can be studied along the network geometry; cf. [9].

Assume that we use a planar X/X0–nesting to model the geometric support. In the framework

of our study we observe a single value Z
(2)
1 (W ), which counts the number of T–crossings in

a sampling region W ⊂ IR2 induced by the intersection of the edges of the tessellation Xn

with the edges of the nth cell Ξn for n ≥ 1 . Figure 1 shows two examples of this situation in
differently shaped sampling windows W . In particular, Figure 1 (a) shows a PLT/PLT–nesting
through a ball of radius r > 0 and centered at the origin, whereas in Figure 1 (b) we consider
a PVT/PLT–nesting within a rectangular sampling window.

The analysis of the mentioned T–crossings, i.e. of the connections between main roads and side
streets, plays an important role in telecommunication modelling since these crossings are the
entry points to the blockwise civil engineering of the local network. Let the type of the initial
tessellation X and the type of the nested tessellation X0 be known. Within a suitably large
region W the distribution of the number of T–crossings is then known through our results.
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(a) X = PLT (b) X = PVT

Figure 1: Realizations of planar tessellations X , where the nested tessellation X0 is a PLT.
The T–crossings are displayed as thick dots •.

Thus, the engineer is provided with useful information about the local network. For example
it is possible to deduce the dimensioning and capacity potential for each entry point in order
to provide blockwise optimal connection quality to the subscribers, where one block comprises
all those subscribers which are situated in the cells formed by the main roads.

In contrast to that, assume that we have, again in a suitably large region W , knowledge

about local information like the type of X0 and especially about the value Z
(2)
1 (W ) for the

T–crossings. Then the expression on the left hand side of (4.1) as well as the expression on
the left hand side of (5.7) can be calculated and used to test for normality. Depending on
the (unknown) type of X , representing the main road system, we expect to reject the null
hypothesis of normality either for the formula in (4.1) or in the formula in (5.7). This can
provide, in the framework of model selection, a hint to the structure of X before passing to
more refined fitting procedures.

The paper is organized as follows. In Section 2 we introduce basic notation and recall some
relevant facts from stochastic geometry. Section 3 presents mean value relations and formulae
for (asymptotic) variances. In Sections 4 and 5 we formulate and prove the announced CLTs
for the different cases of initial tessellations X . Finally in Section 6 we study some examples
of weakly dependent tessellations and discuss possible extensions of our results.

2 Preliminaries

In this section we introduce the basic notation and present a brief account of some relevant
material on random tessellations and stochastic geometry in general. For a detailed and
rigorous discussion of these topics we refer to the existing mathematical literature, in particular
to [21], [22], [24], [27], and [30], which contain a lot of further references as well as numerous
tessellation models with applications to various fields.

Throughout, let (Ω, σ(Ω), IP) be a common probability space on which all random objects
occurring in the present paper will be defined. Further, let 〈x, y〉 =

∑d
k=1 xkyk denote the
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scalar product of the coordinate vectors x = (x1, . . . , xd)
⊤ and y = (y1, . . . , yd)

⊤ in IRd. By
means of the Euclidean norm ‖ · ‖ =

√
〈·, ·〉 we define the closed ball Bd

r = {x ∈ IRd : ‖x‖ ≤ r}
with radius r ≥ 0 centered at the origin and the unit sphere S

d−1 = {x ∈ IRd : ‖x‖ = 1} in
IRd, respectively. Remember that each affine (d − 1)–dimensional subspace H of IRd, called
hyperplane in IRd in the sequel, admits a parameter representation H(p, v) = {x ∈ IRd :
〈x, v〉 = p} . Here, p ∈ IR1 denotes the signed perpendicular distance of H from the origin,
and v ∈ S

d−1
+ = {(x1, . . . , xd)

⊤ ∈ S
d−1 : xd ≥ 0} is the directional vector belonging to the

upper unit hemisphere. Further, let νk(·) designate the Lebesgue or k–volume measure in IRk

for k = 0, . . . , d , where we briefly write νd(·) = | · | . The k–dimensional Lebesgue measure
will also be used instead of the k-dimensional Hausdorff measure on (affine) k–dimensional
subspaces in IRd for any k = 0, . . . , d−1 . As usual, ν0(·) coincides with the counting measure,
i.e., ν0(B) = #B. For brevity, put

κd = |Bd
1 | =

π
d
2

Γ
(

d
2 + 1

) , where Γ(s) =

∫ ∞

0
e−yys−1dy for s > 0 .

The family of all non–empty closed, compact, and compact and convex sets in IRd is denoted
by F ′

d , K′
d, and C′

d respectively. Note that B(S) stands for the σ–algebra of Borel sets in the
metric space S .

2.1 Random Tessellations and Random Nestings

In this section we sketch the mathematical rigorous approach to random tessellations as used
in stochastic geometry and we recall some basic facts, where we point to [21], [22], [24], [27],
and [30] for a systematic study of these topics.

A tessellation of the IRd is a countable family τ = {Cn}n≥1 of convex bodies Cn ∈ C′
d such that

int Cn 6= ∅ for all n, int Cn∩int Cm = ∅ for all n 6= m,
⋃

n≥1 Cn = IRd, and
∑

n≥1 1I{Cn∩K 6=∅} <
∞ for any K ∈ K′

d . Notice that the sets Cn, called the cells of τ , are necessarily polytopes in
IRd. The family of all tessellations in IRd is denoted by T . A random tessellation X = {Ξn}n≥1

in IRd is a sequence of random convex bodies Ξn such that IP(X ∈ T ) = 1.

Note that a (stationary) random tessellation X can also be modelled as a (stationary) marked
point process

∑
n≥1 δ[α(Ξn),Ξ0

n], where α : C′
d → IRd is a B(F ′

d)-measurable mapping such that

α(C) ∈ C and α(C + x) = α(C) + x for any C ∈ C′
d and x ∈ IRd, and where Ξ0

n = Ξn − α(Ξn)
is the centered cell corresponding to Ξn which contains the origin. The point α(C) is called
the associated point of C and is mostly chosen to be the centroid or lexicographically smallest
point of C.

Suppose that the stationary marked point process
∑

n≥1 δ[α(Ξn),Ξ0
n] has positive and finite

intensity γ = IE#{n : α(Ξn) ∈ [0, 1)d}. By P0
d we denote the set of all compact and convex

d-polytopes whose associated point is located at the origin. The corresponding Palm mark
distribution P 0 of X is then given by

P 0(B) = γ−1 IE#{n : α(Ξn) ∈ [0, 1)d, Ξ0
n ∈ B} , B ∈ B(F ′

d) ∩ P0
d . (2.1)

The notion typical cell of X refers to a random polytope Ξ∗ : Ω → P0
d whose distribution

coincides with P 0 . Since the cells Ξn are space filling and nonoverlapping (up to a null set),
we have the mean value relationship

1

γ
=

∫

P0
d

|C|P 0(dC) , (2.2)
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i.e., the cell intensity γ equals the reciprocal of IE|Ξ∗| .
A (deterministic) iterated tessellation τ = {Cnℓ ∩ Cn : int Cnℓ ∩ int Cn 6= ∅} in IRd consists of
an initial tessellation τ = {Cn}n≥1 in IRd and a sequence (τn)n≥1 of component tessellations
τn = {Cnℓ}ℓ≥1. In order to define a random iterated tessellation, we can proceed along the
lines of [19]. Let Ξ be a random convex body in IRd with IP–a.s. nonempty interior, and let
X = {Ξn}n≥1 be a random tessellation in IRd. Then, the counting measure Y (· | Ξ) defined by
Y (B | Ξ) =

∑
n≥1 δΞn∩Ξ(B) 1I{int Ξn∩int Ξ 6=∅} for B ∈ B(F ′

d) is a point process in C′
d describing

a random tessellation of Ξ .

Furthermore, if X = {Ξn}n≥1 is an arbitrary random tessellation in IRd and if Xn = {Ξnℓ}ℓ≥1 ,
n = 1, 2... , are independent copies of a generic random tessellation X0 in IRd drawn indepen-
dent of X, the random counting measure Y (B) =

∑
n Yn(B | Ξn) , where Yn(B | Ξn) =∑

ℓ≥1 δΞnℓ∩Ξn(B) 1I{int Ξnℓ∩int Ξn 6=∅} for B ∈ B(F ′
d) , is called the point–process representation

of an iterated random tessellation (briefly X/X0–nesting) in IRd with initial tessellation X and
component tessellations X1, X2, . . .. Clearly, the point process Y is stationary (and isotropic),
provided that both the initial tessellation X and the generic component tessellation X0 are
stationary (and isotropic). Moreover, Y is ergodic if X possesses this property.

Each stationary (motion-invariant) random tessellation X = {Ξn}n≥1 in IRd induces d station-
ary (motion-invariant) random lower dimensional manifold processes X(k), which are briefly
called k–facet process of X for k = 0, 1, . . . , d − 1 . For example, X(0) is the point process of
vertices and X(1) is the line segment process of edges of X.

To be precise, X(k) is defined to be the union of all the k–facets of X, whereas Ξ
(k)
n denotes

the union of all k–faces of its nth cell Ξn . Here, the k-facets of X are k–polytopes in IRk

which arise from a finite intersection of neighbouring cells of X. The (d − 1)-faces of Ξn are
(d−1)-polytopes in the boundary ∂Ξn and k-faces are defined recursivlely for k = 0, ..., d−2 as
k-polytopes in the relative boundaries of the (k+1)-faces. Note that the set of all k-faces may
differ from the set of k-facets and that, for example in [27], Chapter 6, X(k) is used slightly
differently to denote the point process of k–facets.

A random tessellation X = {Ξn}n≥1 in IRd is said to be normal (or ordinary) if IP–a.s. every
k-facet of X lies in the bounderies of exactly d − k + 1 cells, k = 0, ..., d − 1 . Many real life
tessellations in IR2 and IR3 possess this property, which motivates the term ‘normal’. There are
important classes of stationary tessellations in IRd whose cells are constructed (realizationwise)
according to specific geometric rules from the atoms of a stationary point process in IRd .
Among them are Voronoi and Laguerre tessellations, see for example [24] for details, which
turn out to be normal if the generating point process is Poisson, see [21]. It seems that this
fact remains preserved for a large class of (even instationary) generating point processes which
are mixing in certain sense or/and whose higher-order moment measures possess Lebesgue
densities. In [13] it is shown that Voronoi tessellations in IRd are normal if the (d + 2)th-
order product density of the generating stationary point process exists. Finally, it should be
mentioned that there are more general definitions of tessellations, cf. e.g. [32], allowing for
the rigorous treatment of random tessellations which do not necessarily consist of only convex
cells. Without doubt, the most prominent example is the Johnson-Mehl tessellation, see also
[24] for details. For this model CLTs have been proved based on α-mixing conditions derived
from the generating (Poisson) point process, cf. [4] and [5].
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2.2 Stationary Poisson Hyperplane Tessellations

Let Ψ =
∑

i≥1 δ[Pi,Vi] be a stationary and independently marked Poisson point process on the

real line IR1 with intensity λ and mark distribution Θ on the mark space S
d−1
+ , see [6]. By

means of the parameter representation H(p, v) , (p, v) ∈ IR1 × S
d−1
+ of a hyperplane in IRd

we may represent a Poisson hyperplane process (PHT) Φ (defined in [27] as point process
on the space of affine (d − 1)-dimensional subspaces in IRd) with intensity λ and (spherical)
orientation distribution Θ by

Φ =
∑

i≥1

δH(Pi,Vi) . (2.3)

The Poisson hyperplane process Φ given in (2.3) is said to be nondegenerate if Θ(H(0, v) ∩
S

d−1
+ ) < 1 for any v ∈ S

d−1
+ . In this case, (2.3) induces stationary k–flat processes Φk for

k = 0, 1, ..., d − 1 whose countable support consists of the affine k-dimensional subspaces (k-
intersection flats) H(Pi1 , Vi1) ∩ · ∩ H(Pid−k

, Vid−k
) for pairwise distinct indices i1, ..., id−k ≥

1 . The union of these k-flats coincides with the k-facet process X(k) of the corresponding
stationary PHT X = {Ξn}n≥1 generated by (2.3). The cells Ξn ,n ≥ 1 are bounded d-
polytopes (IP-a.s.) if and only if Φ is nondegenerate, see [27], Chapter 6. Furthermore, this
property implies that the stationary k-volume measure ϑk,d(·) associated with Φk (respectively
X(k)) and defined by

ϑk,d(B) =
1

(d − k)!

∑∗

i1,...,id−k≥1

νk(
d−k⋂

j=1

H(Pij , Vij ) ∩ B) for bounded B ∈ B(IRd) , (2.4)

where
∑∗ denotes summation over pairwise distinct indices, has positive intensity

λk,d = IEϑk,d([0, 1)d) =
(2λ)d−k

(d − k)! κd
IEgk,d(Q0, V0) for k = 0, 1, . . . , d − 1 . (2.5)

Here, the function (p, v) 7→ g
(d)
k (p, v) is defined on [−1, 1] × S

d−1
+ by

gk,d(p, v) = IEνk(∩d−k−1
i=1 H(Qi, Vi) ∩ H(p, v) ∩ Bd

1) , (2.6)

where (Qi, Vi) , i = 0, 1, ..., d − 1 , are i.i.d. random vectors with independent components.
Note that the generic random variable Q0 is uniformly distributed on [−1, 1] and the generic
random vector V0 has the orientation distribution Θ ; see [15].

It is well-known from convex geometry, see [26], Chapter 3.5, that the probability measure
Θ on S

d−1
+ determines a unique centrally symmetric convex body ZΘ , called the associated

zonoid, which is given by

h(ZΘ, u) =

∫

S
d−1
+

| 〈u, v〉 |Θ(dv) for u ∈ IRd ,

where h(K, u) = maxx∈K〈u, x〉 denotes the support function of an arbitrary K ∈ C′
d .

In [16] the following closed-form expression of gk,d(p, v) in terms of ZΘ has been derived

gk,d(p, v) =
(d − k − 1)! κd−1

2d−k−1
(1 − p2)(d−1)/2 1I[−1,1](p)V

(d−1)
d−k−1(Z

v
Θ) , (2.7)

where Kv denotes the image of K ∈ C′
d under orthogonal projection onto H(0, v) and V

(d−1)
j (K)

stands for the intrinsic j-volume of K ∈ C′
d−1 . Using the relationship

j V
(d)
j (ZΘ) =

∫

S
d−1
+

V
(d−1)
j−1 (Zv

Θ)Θ(dv) for j = 1, ..., d ,
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cf. [31], [26], Chapter 3.5, and [16], combined with (2.5) and (2.7) yields that λk,d =

λd−k V
(d)
d−k(ZΘ) for k = 0, 1, ..., d − 1 , which has already been stated in [20], Chapter 6.

The stationary Poisson hyperplane process Φ given in (2.3) is isotropic (and hence motion-
invariant) if and only if Θ is the uniform distribution, which means that ZΘ =

κd−1

d κd
Bd

1 . This
in turn leads to the explicit formula

λk,d =

(
d

k

)
κd

κk

(
κd−1

d κd

)d−k

λd−k for k = 0, 1, . . . , d − 1 . (2.8)

Now we are in a position to formulate a CLT for the total k-volume ϑk,d(B
d
̺) of the support

of the k-flat process Φk contained in the ball Bd
̺ . This result has been proved in [15] even in

a multidimensional version.

Theorem 2.1 Let Φ =
∑

i≥1 δH(Pi,Vi) be a stationary nondegenerate Poisson hyperplane pro-

cess with orientation distribution Θ on S
d−1
+ and intensity λ > 0. Then

ϑk,d(B
d
̺) − λk,d |Bd

̺ |
|Bd

̺ |1−1/2d

d−→
̺→∞

N
(
0, σ2

k,d

)
for k = 0, 1, . . . , d − 1 , (2.9)

where

σ2
k,d = lim

̺→∞

Var(ϑ
(d)
k (Bd

̺))

|Bd
̺ |2−1/d

=
( 2λ )2d−2k−1

( (d − k − 1)! )2 κ
2−1/d
d

IEg2
k,d(Q0, V0) (2.10)

with gk,d(p, v) and (Q0, V0) defined by (2.6). If Φ is additionally isotropic, i.e., Θ is the uniform
distribution on S

d−1
+ , then λk,d is given by (2.8) and σ2

k,d takes the explicit form

σ2
k,d = λ2d−2k−1 22d−1 κ

1/d
d

(2d − 1)!

(
d − 1

k

)2 (d! κd−1

k! κk

)2 (κd−1

d κd

)2(d−k)

. (2.11)

Note that even in the anisotropic case we have that

σ2
d−1,d = λ

22d−1 κ2
d−1

(2d − 1)! κ
2−1/d
d

, (2.12)

i.e., σ2
d−1,d coincides with the left hand side of (2.11) for k = d − 1 . This is accounted to the

fact that the (d− 1)-volume of the hyperplanes H(Pi, Vi) within the ball Bd
̺ does not depend

on Vi and so the distribution of ϑk,d(B
d
̺) is independent of the orientation distribution Θ .

Furthermore, we mention that in [16] Theorem 2.1 could be extended to non-spherical convex
sampling windows W̺ = ̺ W1 ; cf. Section 5 below. However, in this case the formulae (2.7)
and (2.11) depend on W1 and are less explicit.

3 First– and Second–Order Moment Formulae

Let X = {Ξn}n≥1 be a stationary random tessellation of the IRd and let X0 be a motion–
invariant tessellation independent of X . We consider an X/X0–nesting in IRd as in Section 2.1,
observed within a convex sampling window W . In order to calculate expectation and variance

of the random variables Z
(d)
k in (1.1) for k = 1, . . . , d − 1 we need two intensity values.
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First, we consider λ
(k,d)
0 , the intensity of the stationary (k − 1)-dimensional manifold process

X
(d−1)
0 ∩L generated by the intersection of the (d− 1)–facet process X

(d−1)
0 with an arbitrary

k-flat L in IRd . Since X
(d−1)
0 is motion–invariant by the assumption of motion–invariance of

X0 , we may identify L with IRk so that λ
(k,d)
0 can be defined by

λ
(k,d)
0 = IE νk−1(X

(d−1)
0 ∩ IRk ∩ [0, 1)k) , 1 ≤ k ≤ d − 1 . (3.1)

By using quite general stereological relationships derived in [18] we may express λ
(k,d)
0 by

the (full dimensional) intensity λ
(d,d)
0 = IE νd−1(X

(d−1)
0 ∩ [0, 1)d) of the manifold process of

(d − 1)–facets X
(d−1)
0 through

λ
(k,d)
0 = c

(d)
k λ

(d,d)
0 with c

(d)
k =

Γ(k+1
2 ) Γ(d

2)

Γ(k
2 ) Γ(d+1

2 )
, 1 ≤ k ≤ d − 1 . (3.2)

Further, let

µ
(d)
k = IEνk(X

(k) ∩ [0, 1)d) (3.3)

denote the intensity of the stationary k–facet process X(k) associated with X. To avoid rather

involved formulae, in particular for the variance of Z
(d)
k (W ) , we put an additional condition

on the tessellation X = {Ξn}n≥1 .

Condition F. For k = 1, . . . , d − 1 assume that there exists a non–random integer m
(d)
k ≥ 1

such that
m

(d)
k νk(X

(k) ∩ W ) =
∑

n≥1

νk(Ξ
(k)
n ∩ W ) IP–a.s. ,

for any W ∈ C′
d with |W | > 0 .

Condition F means that, for k = 1, .., d−1 , each k–facet of X lies in a constant number m
(d)
k of

k-faces of cells Ξn , n ≥ 1 . Obviously, Condition F is satisfied for any planar tessellation with

m
(2)
1 = 2 . For d ≥ 3 , by the very definition, any normal tessellation X obeys Condition F with

m
(d)
k = d − k + 1 , and a nondegenerate stationary Poisson hyperplane tessellation X is easily

seen to satisfy Condition F with m
(d)
k = 2d−k , see [27]. Note however that Poisson–Delaunay

tessellations do not satisfy Condition F for d ≥ 3 .

Lemma 3.1 Consider an X/X0–nesting in IRd with stationary initial tessellation X = {Ξn}n≥1

and motion–invariant component tessellation X0 . Assume that X satisfies Condition F and

that 0 < γ−1 = IE|Ξ∗| < ∞ , cf. (2.2). If µ
(d)
k < ∞ or, equivalently, IE νk(Ξ

∗(k)) < ∞ , and

λ
(k,d)
0 < ∞ for any k = 1, ..., d − 1 , then

IEZ
(d)
k (W ) = λ

(k,d)
0 m

(d)
k µ

(d)
k |W | for any W ∈ C′

d , k = 1, ..., d − 1 . (3.4)

Moreover, if additionally

IE ν2
k(X(k) ∩ [0, 1)d) < ∞ and

∫

P0
d

IE ν2
k−1(X

(d−1)
0 ∩ C(k) )P 0(dC) < ∞ , (3.5)

then for W ∈ C′
d and k = 1, ..., d − 1 ,

Var
(
Z

(d)
k (W )

)
= γ

∫

P0
d

∫

IRd
Var
(
νk−1(X

d−1
0 ∩ C(k) ∩ (W − x))

)
dx P 0(dC)

+
(
λ

(k,d)
0 m

(d)
k

)2
Var
(
νk(X

(k) ∩ W )
)

.

(3.6)
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Proof Let k ∈ {1, . . . , d−1} be fixed and let IEX(·) denote the conditional expectation IE(·|X)

given the tessellation X = {Ξn}n≥1 . Hence, we may rewrite the expectation of Z
(d)
k (W )

introduced in (1.1) as

IEZ
(d)
k (W ) = IE

∑

n≥1

IEX νk−1(X
(d−1)
0 ∩ Ξ(k)

n ∩ W ) .

Owing to the motion-invariance of X
(d−1)
0 , we get, together with (3.1), that

IEX νk−1(X
(d−1)
0 ∩ Ξ(k)

n ∩ W ) = λ
(k,d)
0 νk(Ξ

(k)
n ∩ W )

for any cell Ξn . In view of Condition F we may proceed with writing that

IEX Z
(d)
k (W ) = λ

(k,d)
0

∑

n≥1

νk(Ξ
(k)
n ∩ W ) = λ

(k,d)
0 m

(d)
k νk(X

(k) ∩ W ) . (3.7)

Combined with the stationarity of X(k) this gives IE νk(X
(k) ∩ W ) = µ

(d)
k |W | , which in turn

proves (3.4). Recall that by using the notion of the typical cell, cf. (2.2), we have that

IE
∑

n≥1

νk(Ξ
(k)
n ∩ W ) = γ IEνk(Ξ

∗(k)) |W | ( = m
(d)
k λk,d |W | )

which establishes the relationship IEνk(Ξ
∗,(k)) = m

(d)
k λk,d IE|Ξ∗| . To verify (3.6) we start with

well-known identity

Var
(
Z

(d)
k (W )

)
= IE

(
VarX Z

(d)
k (W )

)
+Var

(
IEX Z

(d)
k (W )

)
, (3.8)

where VarX(·) denotes the conditional variance Var(·|X) given X. Since, conditional on the

tessellation X = {Ξn}n≥1 the random measures ϑ
(k)
1 (·) , ϑ

(k)
2 (·) , . . . in (1.2) are stochastically

independent, we get that

VarX Z
(d)
k (W ) =

∑

n≥1

VarX

(
νk−1(X

(d−1)
0 ∩ Ξ(k)

n ∩ W )
)
. (3.9)

With Ξn = Ξ0
n +α(Ξn) we may apply the refined Campbell theorem to the stationary marked

point process
∑

n≥1 δ[α(Ξn),Ξ0
n] , cf. [6] or [21], where we find together with (2.1) that

IE
(
VarXZ

(d)
k (W )

)
= γ

∫

IRd

∫

P0
d

Var
(
νk−1(X

(d−1)
0 ∩ (C(k) + x) ∩ W )

)
P 0(dC) dx

= γ

∫

P0
d

∫

IRd
Var
(
νk−1(X

(d−1)
0 ∩ C(k) ∩ (W − x))

)
dx P 0(dC) .

(3.10)

Here we used (3.5), the stationarity of X
(d−1)
0 , Fubini’s theorem, and the fact that

νk−1((B + x) ∩ W ) = νk−1(B ∩ (W − x))

for any bounded B ∈ B(IRk−1) and x ∈ IRd . The existence of the inner Lebesgue integral in
the second line of (3.10) is also seen by applying Fubini’s theorem and the second condition
of (3.5), i.e.,

∫

IRd
IE ν2

k−1(X
(d−1)
0 ∩ C(k) ∩ (W − x)) dx

= IE

∫

X
(d−1)
0 ∩C(k)

∫

X
(d−1)
0 ∩C(k)

| (W − u) ∩ (W − v) | νk−1(du) νk−1(dv)

≤ IE ν2
k−1(X

(d−1)
0 ∩ C(k)) |W | .
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From (3.7) combined with the first condition in (3.5) it is immediately seen that the second
term on the right hand side of (3.8) is finite and takes the form

Var
(
IEX Z

(d)
k (W )

)
= (λ

(k,d)
0 m

(d)
k )2 Var

(
νk(X

(k) ∩ W )
)

.

The latter equality together with (3.10) and (3.8) confirms the validity of (3.6). 2

The second condition of (3.5) imposes restrictions on both the initial and the component
tessellation. Note that this condition is fulfilled if

IE ν2
k−1(X

(d−1)
0 ∩ IRk ∩ [0, 1)k) < ∞ and IEN2

k (Ξ∗)
(
1 + D(Ξ∗)

)2k
< ∞ (3.11)

for k = 1, .., d − 1 , where Nk(C) and D(C) = sup{||x − y|| : x, y ∈ C} denote the number of
k-faces and the diameter of the d-polytope C ∈ P0

d , respectively. To see that (3.11) implies

indeed the second condition in (3.5) we write C(k) as union of the k-faces C
(k)
l , l = 1, ..., Nk(C) ,

and use the motion-invariance of X
(d−1)
0 to get the estimate

IE ν2
k−1(X

(d−1)
0 ∩ C(k)) ≤ IE

(Nk(C)∑

l=1

νk−1(X
(d−1)
0 ∩ C

(k)
l )
)2

≤ N2
k (C) IE ν2

k−1(X
(d−1)
0 ∩ IRk ∩ [0, D(C))k)

≤ N2
k (C)

(
1 + D(C)

)2k
IE ν2

k−1(X
(d−1)
0 ∩ IRk ∩ [0, 1)k)

for k = 1, . . . , d − 1 .

Note that if ϑ
(k)
n (·) acts on the interior of Ξn as supposed in [14], the conditional expectation

IEX ϑ
(k)
n (W ) is a constant multiple of |Ξn∩W | and therefore IEX Z

(d)
k (W ) =

∑
n≥1 IEX ϑ

(k)
n (W )

is proportional to |W | . In this case the second variance term on the right–hand side of (3.8)

vanishes. Due to this fact the formula for the variance of Z
(d)
k (W ) given in Heinrich et al.

(2005) is relatively simple and the ergodicity of the initial tessellation X suffices to prove

asymptotic normality of Z
(d)
k (W ) .

4 CLTs for manifold processes on facets of a stationary PHT

In this section we consider the random measures ϑ
(k)
n (·) given in (1.2) for n ≥ 1 whose support

lies in the cell boundaries ∂Ξn , more precisely in the k-facets (for k = 1, . . . , d − 1), of a
nondegenerate stationary PHT X = {Ξn}n≥1 in IRd. For the sake of simplicity we assume
in this section that the sampling window W is the d–dimensional ball Bd

̺ centered at the
origin and with radius ̺ > 0 . For more general expanding sampling windows we refer to
the comment at the end of Section 2.2. By Theorem 2.1 combined with the geometric and
probabilistic properties of PHTs, we prove a CLT (as ̺ → ∞) for the total (k−1)-volume of the
sets (contained in Bd

̺) arising from the intersection of the k-faces of Ξn with the (d− 1)-facets
of the component tessellations Xn for n ≥ 1 .

Theorem 4.1 Let X = {Ξn}n≥1 be the stationary PHT in IRd generated by a stationary
nondegenerate Poisson hyperplane process Φ given in (2.3) with orientation distribution Θ and
intensity λ > 0 . Furthermore, let X0 be a motion-invariant random tessellation in IRd having

the intensities λ
(k,d)
0 > 0 , cf. (3.1) and (3.2), respectively. Assume IEν2

k−1(X
(d−1)
0 ∩ IRk ∩
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(0, 1]k) < ∞ for k = 1, . . . , d− 1 and that the corresponding X/X0-nesting is observed through
the spherical sampling window Bd

̺ . Then,

Z
(d)
k (Bd

̺) − µ̃
(d)
k |Bd

̺ |
|Bd

̺ |1−1/(2d)

d−→
̺→∞

N
(
0, σ̃2

k,d

)
for k = 1, . . . , d − 1 , (4.1)

where

µ̃
(d)
k = 2d−k λ

(k,d)
0 λk,d , σ̃2

k,d = lim
̺→∞

Var
(
Z

(d)
k (Bd

̺)
)

|Bd
̺ |2−1/d

=
(
2d−k λ

(k,d)
0

)2
σ2

k,d , (4.2)

and λk,d , σ2
k,d , and λ

(k,d)
0 are defined by (2.5), (2.10), and (3.1), respectively.

Proof We first recall that in case of a stationary PHT X we have that m
(d)
k = 2d−k and

that the intensity (3.3) of the k-facet process X(k) coincides with the intensity (2.5) of the

k-flat process Φk induced by (2.3), i.e. we have that µ
(d)
k = λk,d . Hence, the formulae for

the intensities µ̃
(d)
k = IEZ

(d)
k ([0, 1)d) of Z

(d)
k (·) follow from (3.4) as stated in (4.2). Next, we

rewrite the mean zero random variable Z
(d)
k (Bd

̺) − µ̃
(d)
k |Bd

̺ | as

Z
(d)
k (Bd

̺) − µ̃
(d)
k |Bd

̺ | = S(k)
̺ + 2d−k λ

(k,d)
0 T (k)

̺ , (4.3)

where
S(k)

̺ = Z
(d)
k (Bd

̺) − IEXZ
(d)
k (Bd

̺) = Z
(d)
k (Bd

̺) − 2d−k λ
(k,d)
0 νk(X

(k) ∩ Bd
̺) ,

and
T (k)

̺ = νk(X
(k) ∩ Bd

̺) − µ
(d)
k |Bd

̺ | = ϑk,d(B
d
̺) − λk,d |Bd

̺ | .

From Theorem 2.1 we obtain that

T
(k)
̺

|Bd
̺ |1−1/(2d)

d−→
̺→∞

N
(
0, σ2

k,d

)
for k = 1, . . . , d − 1 . (4.4)

By means of Slutsky’s theorem, cf. e.g. [17], the proof of the CLT (4.1) is complete whenever

S
(k)
̺

|Bd
̺ |1−1/(2d)

IP−→
̺→∞

0 . (4.5)

In view of Chebychev’s inequality, we only need to prove that

IE(S
(k)
̺ )2

|Bd
̺ |2−1/d

−→
̺→∞

0 , (4.6)

which includes first of all to ensure that IE(S
(k)
̺ )2 < ∞ . Since IE(S

(k)
̺ )2 = IEVarX(Z

(k)
̺ ) we

get, quite in analogy to the proof of Lemma 3.1 and by taking into account (3.11), that

IE
(
S(k)

̺

)2
= γ

∫

P0
d

∫

IRd
Var
(
νk−1(X

d−1
0 ∩ C(k) ∩ (Bd

̺ − x))
)
dx P 0(dC)

≤ γ

∫

P0
d

IE ν2
k−1(X

(d−1)
0 ∩ C(k) )P 0(dC) |Bd

̺ |

≤ γ IE ν2
k−1(X

(d−1)
0 ∩ IRk ∩ [0, 1)k) IEN2

k (Ξ∗)
(
1 + D(Ξ∗)

)2k |Bd
̺ | .
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Using the distributional properties of the typical cell Ξ∗ of a stationary PHT, in particular
that D(Ξ∗) has an exponential moment, cf. [2], we find that

IEN2
k (Ξ∗)

(
1 + D(Ξ∗)

)2k
< ∞ for k = 1, . . . , d − 1 ,

which immediately confirms (4.6) for any d ≥ 2 ; cf. also [7] and [28]. Finally, using the

formula (3.6) for the variance of Z
(d)
k (Bd

̺) together with the limiting relations (4.6) and (2.10)
we find that

σ̃2
k,d = lim

̺→∞

Var
(
Z

(d)
k (Bd

̺)
)

|Bd
̺ |2−1/d

=
(
2d−k λ

(k,d)
0

)2
σ2

k,d .

This completes the proof of Theorem 4.1. 2

5 CLTs for manifold processes induced on the facets of a sta-

tionary weakly dependent tessellation

Throughout this section we consider a stationary X/X0-nesting which can be observed through
an expanding family of convex sampling windows W̺ with shape W̺ = ̺ W1 for ̺ > 0 , where
W1 ∈ C′

d contains a ball and is itself contained in a ball, i.e. Bd
r ⊆ W1 ⊆ Bd

R for some
0 < r ≤ R < ∞ . We assume that the stationary initial tessellation X = {Ξn}n≥1 is ergodic,
cf. [6], [24], [27], and possesses, in contrast to Poisson hyperplane tessellations, further weak
dependence properties. The latter properties ensure asymptotic normality of the total k-
volume of the k-facets in a large sampling window W̺ . More precisely, we impose on X the
following condition.

Condition G. For k = 1, . . . , d− 1 assume that there exists a real number τ2
k,d ≥ 0 such that

Var
(
νk(X

(k) ∩ W̺)
)

|W̺|
−→
̺→∞

τ2
k,d and

νk(X
(k) ∩ W̺) − µ

(d)
k |W̺|

|W̺|1/2

d−→
̺→∞

N (0, τ2
k,d) .

In analogy to Section 4 we shall prove that the centered and normalized cumulative functional
(1.1) on W̺ , i.e.,

Z
(d)
k (W̺) − η

(d)
k |W̺|

|W̺|1/2
with η

(d)
k = IEZ

(d)
k ([0, 1)d) (5.1)

converges in distribution to a Gaussian random variable N (0, τ̃2
k,d) for k = 1, . . . , d − 1 , as

W̺ ↑ IRd. Here, τ̃2
k,d denotes the asymptotic variance of the random variable (5.1) as ̺ → ∞ ,

i.e.,

τ̃2
k,d = lim

̺→∞

Var
(
Z

(d)
k (W̺)

)

|W̺|
for k = 1, . . . , d − 1 , (5.2)

the existence of which is shown in the subsequent lemma.

Lemma 5.1 Let there be given an X/X0-nesting in IRd with stationary (not necessarily er-
godic) initial tessellation X and motion-invariant component tessellation X0 satisfying the



CLTs for Functionals on Facets of Random Tessellations 13

assumptions of Lemma 3.1 such that the asymptotic variance τ2
k,d in the first part of Condition

G exists. Then, the asymptotic variance τ̃2
k,d in (5.2) exists and takes the form

τ̃2
k,d = (τ

(k,d)
0 )2 +

(
λ

(kd)
0 m

(d)
k

)2
τ2
k,d for k = 1, . . . , d − 1 , (5.3)

where

(τ
(k,d)
0 )2 = γ

∫

P0
d

Var
(
νk−1(X

(d−1)
0 ∩ C(k))

)
P 0(dC) . (5.4)

Proof The proof of (5.3) is based on the representation of the variance of Z
(d)
k (W̺) for

k = 1, . . . , d − 1 given in Lemma 3.1. From (3.6) and the first part of Condition G it is easily
seen that (5.3) holds if and only if the limit

lim
̺→∞

IE
(
VarX(Z

(d)
k (W̺)

)

|W̺|
= lim

̺→∞

γ

|W̺|

∫

P0
d

∫

IRd

Var(νk−1(X
(d−1)
0 ∩ C(k) ∩ (W̺ − x))) dx P 0(dC)

exists and equals (τ
(k,d)
0 )2 as defined in (5.4). To show this we apply the same arguments used

already in the proof of Lemma 3.1 to derive the estimate

IE
(
VarX Z

(d)
k (W )

)
≤ γ |W |

∫

P0
d

IE ν2
k−1(X

(d−1)
0 ∩ C(k))P 0(dC) .

By multiple application of Fubini’s theorem we arrive at

∫

P0
d

∫

IRd

IEν2
k−1(X

(d−1)
0 ∩ C(k) ∩ (W̺ − x))

|W̺|
dx P 0(dC)

=

∫

P0
d

IE
( ∫

IRd

ν2
k−1(X

(d−1)
0 ∩ C(k) ∩ (W̺ − x))

|W̺|
dx
)

P 0(dC)

=

∫

P0
d

IE
( ∫

X
(d−1)
0 ∩C(k)

∫

X
(d−1)
0 ∩C(k)

|(W̺ − u) ∩ (W̺ − v)|
|W̺|

νk−1(du) νk−1(dv)
)

P 0(dC)

−→
̺→∞

∫

P0
d

IEν2
k−1(X

(d−1)
0 ∩ C(k))P 0(dC) .

Note that, in view of lim̺→∞ |(W̺−u)∩ (W̺−v)|/|W̺| = 1 and |(W̺−u)∩ (W̺−v)| ≤ |W̺|
together with (3.5), we may apply Lebesgue’s dominated convergence theorem. Likewise, we



CLTs for Functionals on Facets of Random Tessellations 14

obtain that

∫

P0
d

∫

IRd

(
IEνk−1(X

(d−1)
0 ∩ C(k) ∩ (W̺ − x))

)2

|W̺|
dx P 0(dC)

= (λ
(k,d)
0 )2

∫

P0
d

∫

IRd

ν2
k(C(k) ∩ (W̺ − x))

|W̺|
dx P 0(dC)

= (λ
(k,d)
0 )2

∫

P0
d

∫

C(k)

∫

C(k)

|(W̺ − u) ∩ (W̺ − v)|
|W̺|

νk(du) νk(dv)P 0(dC)

−→
̺→∞

(λ
(k,d)
0 )2

∫

P0
d

ν2
k(C(k))P 0(dC) =

∫

P0
d

(
IEνk−1(X

(d−1)
0 ∩ C(k))

)2
P 0(dC) ,

which completes the proof of Lemma 5.1. 2

Under Condition F we may decompose the normalized cumulative functionals given in (5.1)
in analogy to (4.3) as

Z
(d)
k (W̺) − η

(d)
k |W̺|

|W̺|1/2
= U (k)

̺ + m
(d)
k µ

(d)
k V (k)

̺ , (5.5)

where

U (k)
̺ =

Z
(d)
k (W̺) − IEX(Z

(d)
k (W̺))

|W̺|1/2
and V (k)

̺ =
νk(X

(k) ∩ W̺) − λ
(k,d)
0 |W̺|

|W̺|1/2
.

Notice the fact that, for k = 1, . . . , d− 1 and any fixed ̺ > 0 , the random variables U
(k)
̺ and

V
(k)
̺ are uncorrelated. Obviously, V

(k)
̺ is a (measurable) function of X and IEX(U

(k)
̺ ) = 0

(IP-a.s) so that

IE(U (k)
̺ V (k)

̺ ) = IE(IEX(U (k)
̺ V (k)

̺ )) = IE(IEX(U (k)
̺ )V (k)

̺ ) = 0 .

The following Theorem 5.1 states that, for any k = 1, . . . , d − 1, the two-dimensional vector

(U
(k)
̺ , V

(k)
̺ )⊤ converges in distributuion to a mean zero Gaussian vector with independent

components as ̺ → ∞ . This in turn implies the desired asymptotic normality of (5.1).

Theorem 5.1 Consider an X/X0–nesting in IRd observed through the increasing family of
windows W̺ with motion-invariant component tessellation X0 and stationary ergodic initial
tessellation X = {Ξn}n≥1 satisfying IEDd(Ξ∗) < ∞ as well as (3.5) and both Condition F and
Condition G. Then,

(
U

(k)
̺

V
(k)
̺

)
d−→

̺→∞
N
((

0
0

)
,

(
(τ

(k,d)
0 )2 0
0 τ2

k,d

))
for k = 1, . . . , d − 1 . (5.6)



CLTs for Functionals on Facets of Random Tessellations 15

In particular this implies that

Z
(d)
k (W̺) − η

(d)
k |W̺|

|W̺|1/2

d−→
̺→∞

N
(
0, τ̃2

k,d

)
for k = 1, . . . , d − 1 , (5.7)

where
η

(d)
k = λ

(k,d)
0 m

(d)
k µ

(d)
k and τ̃2

k,d = (τ
(k,d)
0 )2 +

(
λ

(k,d)
0 m

(d)
k

)2
τ2
k,d .

Proof We employ the method of characteristic functions, cf. e.g. [17] for details. Hence,

we have to show that the characteristic function f̺(s, t) of the random vector (U
(k)
̺ , V

(k)
̺ )⊤

defined by

f̺(s, t) = IE exp
{

i s U (k)
̺ + i t V (k)

̺

}
,

converges to the characteristic function of the Gaussian random vector that occurs as limit in
(5.6), i.e.,

f̺(s, t) −→
̺→∞

exp
{
−s2

2
(τ

(k,d)
0 )2 − t2

2
τ2
k,d

}
for all s, t ∈ IR1 .

For this we introduce the decomposition f̺(s, t) =
∑3

i=1 f
(i)
̺ (s, t) , where

f (1)
̺ (s, t) = IE

[
IEX

(
exp
{

is U (k)
̺

}
− exp

{
− s2

2 |W̺|
VarX(Z

(d)
k (W̺))

})
exp
{

it V (k)
̺

}]
,

f (2)
̺ (s, t) = IE

[(
exp
{
− s2

2 |W̺|
VarX(Z

(d)
k (W̺))

}
− exp

{
−s2

2
(τ

(k,d)
0 )2

})
exp
{

itV (k)
̺

}]
,

f (3)
̺ (s, t) = exp

{
−s2

2
(τ

(k,d)
0 )2

}
IE exp

{
itV (k)

̺

}
.

In view of Condition G, the continuity theorem for (one-dimensional) characteristic functions

yields that

lim
̺→∞

f (3)
̺ (s, t) = exp

{
−s2

2
(τ

(k,d)
0 )2

}
lim

̺→∞
IE exp

{
itV (k)

̺

}
= exp

{
−s2

2
(τ

(k,d)
0 )2 − t2

2
τ2
k,d

}

for all s, t ∈ IR1 . Hence, it remains to prove f
(i)
̺ (s, t) −→

̺→∞
0 for i = 1, 2 . For this we subse-

quently show that

VarX(Z
(d)
k (W̺))

|W̺|
=

1

|W̺|
∑

n≥1

VarX

(
νk−1(X

(d−1)
0 ∩ Ξ(k)

n ∩ W̺)
) a.s.−→

̺→∞
(τ

(k,d)
0 )2 , (5.8)

where the first equality follows from (3.9) and the almost sure convergence of the averaged
sum in (5.8) can be reasoned by some modified ergodic theorem for random tessellations, cf.
Theorem 4.1 in [14], which states that

1

|W̺|
∑

n≥1

1I{Ξn∩W̺ 6=∅}g(Ξn ∩ W̺)
a.s.−→

̺→∞
γ IEg(Ξ∗) (5.9)

for any B(F ′
d)-measurable, translation-invariant set function g(·) defined on sets of the form

C ∩ W , where C is a d-polytope and W ∈ C′
d , and satisfying the monotonicity property
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g(C∩W ) ≤ g(C∩W ′) for W ⊆ W ′ . It is easily verified by checking the proof of Theorem 4.1 in
Heinrich et al. (2005) that these restrictions imposed on g(·) together with IEDd(Ξ∗) < ∞ and

IEg(Ξ∗) < ∞ suffice for (5.9) to hold. Applying (5.9) to g1(C∩W ) = IEν2
k−1(X

(d−1)
0 ∩C(k)∩W )

and g2(C ∩ W ) = (λ
(k,d)
0 )2 ν2

k(C(k) ∩ W ) , where C(k) denotes the union of k-faces of the d-
polytope C , we see that (5.9) also holds for g = g1 − g2. Thus, (5.8) is proved. From (5.8)
and Lebesgue’s dominated convergence theorem we conclude that

| f (2)
̺ (s, t) | ≤ IE

∣∣∣∣ exp
{
− s2

2 |W̺|
VarX(Z

(d)
k (W̺))

}
− exp

{
−s2

2
(τ0)

(k,d))2
} ∣∣∣∣ −→̺→∞

0 . (5.10)

To show that f
(1)
̺ (s, t) becomes arbitrarily small as W̺ grows large, we start with the obvious

estimate

|f (1)
̺ (s, t)| ≤ IE

∣∣∣∣ IEX exp
{

is U (k)
̺

}
− exp

{
− s2

2 |W̺|
VarX(Z

(d)
k (W̺))

} ∣∣∣∣ (5.11)

for k = 1, ..., d − 1 . Next, we express U
(k)
̺ in terms of the centered measures θ

(k)
n (·) =

νk−1(X
(d−1)
n ∩Ξ

(k)
n ∩ (·) )−λ

(k,d)
0 νk(Ξ

(k)
n ∩ (·) ) , which are conditionally independent given the

initial tessellation X = {Ξn}n≥1 . We have that

U (k)
̺ =

1

|W̺|1/2

∑

n≥1

1I{W̺∩Ξn 6=∅} θ(k)
n (W̺)

and introduce, for fixed δ ≥ 0 , the conditional Lindeberg function

L(k)
̺ (δ) =

1

|W̺|
∑

n≥1

1I{W̺∩Ξn 6=∅} IEX(θ(k)
n (W̺))

2 1I
{|θ

(k)
n (W̺)|≥δ |W̺|1/2}

. (5.12)

Further, for any ε > 0 and δ > 0 , we define the events

G̺(ε, δ) = {L(k)
̺ (δ) ≤ ε} and H̺(ε) = {|L(k)

̺ (0) − (τ
(k,d)
0 )2| ≤ ε} .

Since L
(k)
̺ (0) = VarX(Z

(d)
k (W̺))/|W̺| , it follows from (5.8) that IP(Hc

̺(ε)) −→
̺→∞

0 . Below we

also need that IP(Gc
̺(ε, δ)) −→

̺→∞
0 following from the stronger result L̺(δ)

a.s.−→
̺→∞

0 which we can

show in the following way. Replacing θ
(k)
n (W̺) in (5.12) by ξ

(k)
n (Ξ

(k)
n ∩ W̺) = νk−1(X

(d−1)
n ∩

Ξ
(k)
n ∩ W̺ ) + λ

(k,d)
0 νk(Ξ

(k)
n ∩ W̺ ) leads to the inequality

L(k)
̺ (a |W̺|−1/2) ≤ 1

|W̺|
∑

n≥1

1I{W̺∩Ξn 6=∅} IEX(ξ
(k)
0 (Ξ(k)

n ∩ W̺))
2 1I

{ξ
(k)
0 (Ξ

(k)
n ∩W̺)≥a}

for any a > 0 . The set function g(C ∩ W ) = IEX(ξ
(k)
0 (C(k) ∩ W ))2 1I

{ξ
(k)
0 (C(k)∩W )≥a}

is

translation-invariant (due to the stationarity of X0) and increases whenever W expands.
Hence, g(·) fulfills the conditions needed to establish the almost sure convergence in (5.9).
This implies

IP
(
lim sup

̺→∞
L̺(a |W̺|−1/2) ≤ γ

∫

P0
d

IEX(ξ
(k)
0 (C(k)))2 1I

{ξ
(k)
0 (C(k))≥a}

P 0(dC)
)

= 1 .

Consequently, by (3.5), IP
(
lim sup

̺→∞
L

(k)
̺ (δ) ≤ ε

)
= 1 for any ε > 0 , i.e., L

(k)
̺ (δ)

a.s.−→
̺→∞

0 .

A suitable upper bound of the right–hand side of (5.11) can be obtained when both events
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G̺(ε, δ) and H̺(ε) take place. From (5.11) it is easily seen that | f (1)
̺ (s, t) | does not exceed

the sum

IE1I{G̺(ε,δ)∩H̺(ε)}

∣∣∣ IEX exp
{

isU (k)
̺

}
− exp

{
−s2

2
L̺(0)

} ∣∣∣+ 2 IP(Gc
̺(ε, δ) ∪ Hc

̺(ε) ) . (5.13)

We proceed with the factorization of the conditional characteristic function of U
(k)
̺ given X ,

using the conditional independence of the random variables θ
(k)
n (W̺) ,

IEX exp
{

is U (k)
̺

}
=
∏

n≥1

IEX exp
{

is|W̺|−1/2 θ(k)
n (W̺)

}
.

Expressing the first equality in (5.8) by the centered measures θ
(k)
n (·),

exp
{
− s2

2 |W̺|
VarX(Z

(d)
k (W̺))

}
=
∏

n≥1

exp
{
− s2

2 |W̺|
IEX

(
θ(k)
n (W̺)

)2 }
.

By means of the elementary inequality |x1 · · ·xn − y1 · · · yn| ≤ |x1 − y1| + · · · + |xn − yn| for
complex numbers xi, yi lying on the unit disk, we arrive at the estimate

∣∣∣∣ IEX exp
{

isU (k)
̺

}
− exp

{
− s2

2 |W̺|
VarX(Z

(d)
k (W̺))

} ∣∣∣∣

≤
∑

n≥1

1I{Ξn∩W̺ 6=∅}

∣∣∣∣ IEX exp
{

is
θ
(k)
n (W̺)√
|W̺|

}
− exp

{
− s2

2 |W̺|
IEX

(
θ(k)
n (W̺)

)2 }
∣∣∣∣ .

(5.14)

Further, using the well-known inequality |eix −∑n−1
k=0

(ix)k

k! | ≤ |x|n

n! (with x ∈ IR1) for n = 2
and n = 3 , we find that, for any δ > 0,

∣∣∣∣IEX

(
exp
{

is
θ
(k)
n (W̺)√
|W̺|

}
− 1 − is

θ
(k)
n (W̺)√
|W̺|

+
s2

2 |W̺|
IEX

(
θ(k)
n (W̺)

)2)
∣∣∣∣

≤ s2

|W̺|
IEX

(
θ(k)
n (W̺)

)2
1I
{|θ

(k)
n (W̺)|≥δ

√
|W̺|}

+
|s|3

6 |W̺|3/2
IEX

∣∣θ(k)
n (W̺)

∣∣31I
{|θ

(k)
n (W̺)|≤δ

√
|W̺|}

.

Analogously, applying the inequality |e−x − 1 + x| ≤ x2/2 for x ≥ 0 gives
∣∣∣∣ exp

{
− s2

2 |W̺|
IEX

(
θ(k)
n (W̺)

)2 }− 1 +
s2

2 |W̺|
IEX

(
θ(k)
n (W̺)

)2
∣∣∣∣

≤ s4

4 |W̺|2
(
IEX

(
θ(k)
n (W̺)

)2)2
≤ s4

4 |W̺|
IEX

(
θ(k)
n (W̺)

)2 (
δ2 + L(k)

̺ (δ)
)

,

(5.15)

where we have used in addition that, for any n ≥ 1 and δ > 0 ,

IEX

(
θ(k)
n (W̺)

)2 ≤ δ2 |W̺| + IEX

(
θ(k)
n (W̺)

)2
1I
{|θ

(k)
n (W̺)|≥δ

√
|W̺|}

≤ |W̺|
(
δ2 + L(k)

̺ (δ)
)

.

Finally, combining the above estimates (5.14), (5.15), and (5.15), and taking into account both

the abbreviation (5.12) and the fact that IEXθ
(k)
n (W̺) = 0 , we find that

∣∣∣∣ IEX exp
{

is U (k)
̺

}
−exp

{
−s2

2
L(k)

̺ (0)
} ∣∣∣∣ ≤ s2 L(k)

̺ (δ)+
|s|3 δ

6
L(k)

̺ (0)+
s4

2
L(k)

̺ (0)
(
δ2+L(k)

̺ (δ)
)
.
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Regarding the latter inequality on the event {G̺(ε, δ) ∩ H̺(ε)}, we obtain from (5.13) that

lim sup
̺→∞

| f (1)
̺ (s, t) | ≤ s2 ε +

( |s|3 δ

6
+

s4

2

(
δ2 + ε

))(
ε + (τ

(k,d)
0 )2

)

for arbitrary ε , δ > 0 . Thus, lim̺→∞ f
(1)
̺ (s, t) = 0 which completes the proof of (5.6). The

proof of Theorem 5.1 ends with an applicaton of (5.6) and the continuous mapping theorem,
cf. [17], to the linear combination (5.5) which proves (5.7). 2

6 Examples of weakly dependent random tessellations

There are only a few papers, e.g. [3], [10], concerning weak dependence properties of stationary
random tessellations apart from ergodicity. In fact, the assumption of ergodicity turns out to be
the weakest form of asymptotic independence of distant parts of a stationary tessellation X =
{Ξ}n≥1 . Due to the individual spatial ergodic theorem, cf. [6], ergodicity guarantees strong
consistency for a number of intensity estimators based on a single observation in an expanding
sampling window. To establish asymptotic normality of these estimators the distribution of X
must satisfy certain mixing conditions expressed in terms of corresponding mixing coefficients.

In the context of random tessellations X = {Ξ}n≥1 in IRd the α- and β-mixing condition have
proved meaningful with mixing coefficients defined by

α(AX(F1),AX(F2)) = sup
A1∈AX(F1),A2∈AX(F2)

∣∣IP(A1 ∩ A2) − IP(A1) IP(A2)
∣∣

β(AX(F1),AX(F2)) = IE sup
A2∈AX(F2)

∣∣ IP(A2|AX(F1)) − IP(A2)
∣∣ ,

(6.1)

where F1, F2 are disjoint closed subsets of IRd and AX(F ) denotes the σ-algebra generated by
the random closed set

(⋃
n≥1 ∂Ξn

)
∩ F in the sense of Matheron; cf. [20] and also [10]. It

is easily verified that α(AX(F1),AX(F2)) ≤ β(AX(F1),AX(F2)) . However the behaviour of
both mixing coefficients is nearly the same for most of the models in stochastic geometry when
the distance of F1 and F2 becomes large; cf. [12]. To verify Condition G we are faced with two
problems. First, to find sharp bounds of the above mixing coefficients for F1 = F (a) := [−a, a]d

and F2 := G(b) = IRd \ (−b, b)d for b > a from the model assumptions and, second, to prove a
suitable CLT (or to use a known CLT) for weakly dependent random fields whose assumptions
follow from the derived estimates. For more details on CLTs of random fields and mixing
conditions including the influence of the dimension, the reader is referred to [23].

In [10] the β-mixing coefficient β(AX(F (a)),AX(G(a + r))) could be estimated for Voronoi
tessellations in terms of the β-mixing coefficient and certain void probabilities of the generating
stationary point process of nuclei. In the special case of Voronoi tessellations generated by
Poisson cluster processes with cluster radius R0 satisfying IE exp{hR0} < ∞ for some h > 0 ,
the general bound decays exponentially in r. More precisely, it can be shown that

β(AX(F (a)),AX(G(a + r))) ≤ c1

((r

a

)d−1
+
(a

r

)d−1 )
exp{−c2 r} (6.2)

for any r ≥ 1 and a ≥ 1/2 , where the positive constants c1, c2 depend only on the dimension d ,
h > 0 , and the intensity of the Poisson process of cluster centres. An estimate similar to (6.2)
holds for Poisson soft–core processes, cf. [29], provided the soft–core radius R0 possesses an
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exponential moment. Furthermore, Condition G could be verified in [10] for stationary random

tessellations X = {Ξ}n≥1 in IRd satisfying IE
(
νk(X

(k) ∩ [0, 1)d)
)2+δ

< ∞ for 1 ≤ k ≤ d − 1
and some δ > 0, and

β(AX(F (a)),AX(G(a + r))) ≤ ad−1 β1(r) 1I[1 , c a](r) + β2(r) 1I(c a ,∞)(r)

for any a ≥ 1/2 and r ≥ 1 , where c ≥ 2 is a constant independent of both a and r . Further-
more, β1(·) , β2(·) are non-increasing functions on [1,∞) such that

r2d−1 β1(r) −→
r→∞

0 and
∑

r≥1

rd−1
(
β2(r)

)δ/(2+δ)
< ∞ .

Hence, from (6.2) we obtain for a Voronoi tessellation X = {Ξ}n≥1 in IRd, generated by a
stationary Poisson process with intensity γ > 0 that

|W̺|−1/2
(
νk(X

(k) ∩ W̺) − µ
(d)
k (ν) γ(d−k)/d |W̺|

) d−→
̺→∞

N (0, τ 2
k,d(ν) γ(d−2 k)/d) (6.3)

for k = 1, ..., d − 1 , where the mean value µ
(d)
k (ν) = IE(νk(X

(k) ∩ [0, 1)d) and the asymptotic
variance τ 2

k,d(ν) refer to a PVT with intensity γ = 1 . The scaling rates in (6.3) are easily

seen from the scaling property of the stationary Poisson process in IRd giving νk(X
(k)∩W̺) =

γ−k/d νk(X
(k)∩W̺ γ1/d) , where X

(k)
denotes the union of k-facets of a PVT with unit intensity.

An explict formula for the intensity µ
(d)
k (ν) was first found by R. Miles to be

µ
(d)
k (ν) =

(2π)d−k+1 Γ
(
d − k + k

d

)

(d − k + 1)! d

κd(d−k)+k−2

κd(d−k)+k−1

κk−1(
κd

)k/d

(κd−1

κd

)d−k

and derived in a different way in [21], p. 64, whereas for τ 2
k,d(ν) no analytic expression is

known so far. In the planar case it is well-known that µ
(2)
1 (ν) = 2 and the approximate

value τ 2
1,2(ν) = 1.0445685 was found in [1] by numerical evaluation of rather involved multiple

integrals.

We are now in a position to establish the CLT in (5.7) in a more explict form for the case of
a planar X/X0-nesting with initial tessellation X being a PVT with cell intensity γ > 0 and
component tessellation X0 being either a PLT generated by a motion–invariant Poisson line
process with intensity λ > 0 or another PVT with cell intensity λ > 0 . In both cases we have

Z
(2)
1 (W̺) − η

(2)
1 |W̺|

|W̺|1/2

d−→
̺→∞

N
(
0, τ̃2

1,2

)
, (6.4)

where
η

(2)
1 = 4λ

(1,2)
0

√
λ and τ̃2

1,2 = (τ
(1,2)
0 )2 + 1.6934

(
λ

(1,2)
0

)2
.

From (3.2) we get λ
(1,2)
0 = c

(2)
1 λ

(2,2)
0 with c

(2)
1 = 2/π and λ

(2,2)
0 = 2

√
λ if X0 is a PVT, cf.

[24], p.314, and λ
(2,2)
0 = λ if X0 is a PLT, cf (2.8). To calculate

(τ
(1,2)
0 )2 = γ

∫

P0
d

Var
(
ν0(X

(1)
0 ∩ C(1))

)
P 0(dC) .

we consider first the case when X0 is a PLT with intensity λ . Then ν0(X
(1)
0 ∩ C(1)) equals

twice the number N(C) of Poisson lines hitting the polygon C. It is well-known that N(C) is
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Poisson distributed with mean (and variance) λ P (C)/π , where P (C) denotes the perimeter
of C. Hence, by IEP (Ξ∗) = 4 γ−1/2, cf. [24], p.314, we get that

(τ
(1,2)
0 )2 = γ

4 λ IEP (Ξ∗)

π
=

16

π

√
γ λ .

If X0 is a PVT with cell intensity λ we may exploit again the scaling properties of PVTs giving
that

(τ
(1,2)
0 )2 =

√
γ λ IEVarX

(
ν0(X

(1)
0 ∩ Ξ

∗,(1)
)
)

,

where X and X0 are independent planar PVTs both with unit cell intensity, and X
(1)
0 ∩Ξ

∗,(1)

stands for the finite set of points on the boundary of the typical cell of X induced by the

1-facets of X0 . A large-scale simulation study yields IEVarX

(
ν0(X

(1)
0 ∩ Ξ

∗,(1)
)
)

= 2.7023.

Summarizing the above results we obtain the following expressions for η
(2)
1 and τ̃2

1,2 in (6.4),
namely

η
(2)
1 =

8

π

√
γ λ and τ̃2

1,2 =
16

π

√
γ λ + 1.6934 λ2 (if X0 is a PLT with intensity λ) ,

η
(2)
1 =

16

π

√
γ λ and τ̃2

1,2 = 2.7023
√

γ λ + 6.7736 λ (if X0 is a PVT with intensity λ) .

To conclude, it should be mentioned that Condition G can also be verified for a large class of
Laguerre tessellations generated by Poisson-based point processes. The values for the variances
in the previous formulae for higher dimensions can only be obtained by extensive simulations
studies. Several generalizations of Theorems 4.1 and 5.1 are possible. For example, the

manifold process X
(d−1)
0 of (d − 1)-facets can be replaced by the union of k-facets of X0 for

1 ≤ k ≤ d − 2. In case of anisotropic component tessellations the rose of directions of X0 is

needed to express mean and variance of Z
(d)
k (W̺) .
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