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Abstract. Predicting the macroscopic properties of thin fiber-based porous materials from

their microscopic morphology remains challenging because of the structural heterogeneity of

these materials. In this study, computational fluid dynamics simulations were performed to

compute volume air flow based on tomographic image data of uncompressed and compressed

paper sheets. To reduce computational demands, a pore network model was employed, allowing

volume air flow to be approximated with less computational effort. To improve prediction

accuracy, geometric descriptors of the pore space, such as porosity, surface area, median pore

radius, and geodesic tortuosity, were combined with predictions of the pore network model. This

integrated approach significantly improves the predictive power of the pore network model and

indicates which aspects of the pore space morphology are not accurately represented within the

pore network model. In particular, we illustrate that a high correlation among descriptors does

not necessarily imply redundancy in a combined prediction.
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Article highlights

• Air flow through paper sheets has been determined by computational fluid dynamics

and pore network model simulations

• Geometric descriptors of pore space are used in regression models to improve the pre-

diction of pore network model simulations

• Structure-property-relationships indicate descriptors complementary to pore network

modeling for different paper grades

1. Introduction

Predicting the macroscopic flow of gasses through a heterogeneous porous material requires

knowledge of the size, shape, and connectivity of the pores involved, regardless of whether the

flow is diffusive, laminar, or turbulent. Although methods for transport simulations exist that

use 3D image data to take the geometry of the pore space into account [1], it remains difficult

to establish relationships between morphology and transport for flow through thin, sheet-like

structures. Prominent examples of such structures are fibrous membranes encountered in paper,

gas diffusion layers, or filters. In such sheets, the pore structure often exhibits strong local

heterogeneities. To understand the flow through the total sheet area, it is necessary to capture

the local flow variations across many different realizations of the pore space. This requires an

enormous amount of simulations, which, in turn, requires transport simulation methods that

are accurate and, simultaneously, can be performed with reasonable computational effort.

The choice of the simulation method depends on whether diffusive, laminar, or turbulent

transport is considered. In the case of laminar flow, there a several possible methods that, by

and large, have in common that they represent different routes to predict the flow originating

from the Navier-Stokes equation, reducing the transport problem to the simpler Stokes equa-

tion [2]. Computational fluid dynamics (CFD) and lattice Boltzmann simulations are suitable

and well-established methods to determine local flows from the actual pore space [3, 4]. In

CFD simulations, the pore phase, as supplied by tomographic image data, is represented by

a surface mesh on which the Stokes equation is solved. This simulation method allows for

readily considering specific situations such as stationary or incompressible flows. Lattice Boltz-

mann simulations track the motion by monitoring the velocity components along a given set

of directions in a cubic grid. With increasing complexity of the pore space morphology, more

velocity components and smaller time steps are required to accurately solve the Boltzmann

equation that is equivalent to the stationary Navier-Stokes equation. Each of these methods is

computationally demanding [5]. On the other hand, ready-trained deep learning methods do

not offer a route to evade the computational costs yet, as they exclusively act on the material

classes they were trained for and cannot be universally applied to all types of materials, at

least not without supplying costly simulations for retraining [6]. However, the modeling of pore

networks is a promising and computationally cheaper alternative [7]. In partitioning the pore

space into distinct components, pore network modeling (PNM) preserves the transport-relevant

local connections and bottlenecks between the pores. Transport is considered locally by solving

the transport equation through neighboring pores assuming a simplified geometry of involved
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pores. In order to estimate the total flow through the entire pore space, the local transport

processes are consistently connected with each other by enforcing mass conservation.

It is highly desirable to interpret or even predict the fluxes using geometric descriptors asso-

ciated with the pore space, as these can be reliably determined from tomographic image data

without the need of performing physical transport simulations. Using methods from spatial

statistics and mathematical morphology, it is possible to quantitatively characterize the com-

plex morphology of the pore space [8, 9, 10]. In particular, to quantify local heterogeneities

in paper-based materials, methods have been developed to quantify the variance and correla-

tion of multiple local geometric descriptors computed from tomographic image data [11]. This

methodology has recently been applied to quantify local heterogeneities in polymer-based bat-

teries [12, 13, 14].

Predicting effective properties, such as permeability, based on such sets of descriptors is

fundamental in many studies. The selected geometric descriptors of the pore space are usually

inspired by the properties used to interpret the permeability of the material, for laminar flow

in the framework of Darcy’s law [15]. Prominent transport-relevant descriptors are the volume

fraction of the pore space (porosity), the local thickness of the material, the internal surface area

per unit volume, and the mean geodesic tortuosity to quantify the winding of transportation

paths. However, determining how many and which descriptors are truly relevant for a given

porous material is not straightforward. Particularly problematic is the commonly encountered

situation that these descriptors depend on each other, i.e., varying the value of one descriptor

immediately affects the values of all other descriptors. The specific consequences of correlations

between descriptors depend on the material, since the actual degree of correlation between

descriptors can vary strongly from material to material [11].

In the present study, we investigate the problem of modeling laminar flow using the example of

two paper samples with different morphologies. These paper sheets originate from the same pa-

per grade whose structure is considered before and after compression in thickness direction. For

both samples, the air fluxes have been determined experimentally and the microstructures have

been acquired by means of µ-CT measurements [16]. Local variations in the microstructures

are quantified via transport-relevant descriptors of pore space that were computed based on the

tomographic image data. Furthermore, the correlation structure between transport-relevant

descriptors has already been quantified in previous works by means of R-vine copulas [11, 16].

For each paper sample, we relate the fluxes obtained from CFD simulations to the fluxes

determined by PNM simulations and various geometric descriptors, using several power-law

models. It must be emphasized that such fits do not suggest physically motivated expressions,

i.e., the fitted exponents of the geometric descriptors cannot guarantee trends that reveal the

underlying transport physics. However, by means of these models, we can study microstructure-

property relationships between geometric descriptors of pore space and the volumetric flux

as determined by CFD simulations. Furthermore, we can evaluate the quality of the PNM

simulations and monitor which descriptors improve the prediction of effective properties and

thus hint towards details in pore space morphology that are not captured in PNM simulations.

In order to improve the agreement between the results of CFD and PNM simulations, we

use combinations of various geometric descriptors of pore space, such as the mean geodesic
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tortuosity, the surface area per unit volume or scalar quantities derived from the continuous

pore size distribution.

2. Materials, tomographic imaging and transport regime

First, in Section 2.1, we give a short overview of the materials investigated in this study

and the tomographic image data measured for these materials. In Section 2.2, we introduce

the transport regime considered in the present study that will be solved by means of CFD and

PNM simulations, as will be explained later in Section 3.

2.1. Materials and their tomographic imaging. Our study is based on two data sets of to-

mographic image data for two different paper sheets. One sample type represents a paper sheet

compressed in thickness direction and one represents a sheet of the paper grade before com-

pression [16]. The latter, uncompressed sample is commercial, unbleached paper with a specific

basis weight of 100 g/m2. Compressed samples are obtained via hard-nip, steel-steel calendering

of the uncompressed paper sheets with a line load of 90Nm−1. The 3D microstructures of both

samples are resolved by µ-CT image data with a voxel size of 1.3 µm as described in [16]. For

determining the boundary of the paper sheets, which particurlarly allows for computing the

thickness, a rolling ball approach [17] is used as already performed in [12, 18]. Exemplary slices

of the segmented tomographic image data are shown in Figure 1.

(a) (b)

Figure 1. Slices of µ-CT data for uncompressed (a) and compressed (b) paper

sheets (from cutouts 500 µm×500 µm×height). The solid and pore phase are

depicted in black and gray, respectively.

Since both types of (CFD and PNM) simulations performed in this study require spatially

resolved 3D information of the pore phase, our common starting point is to predefine cutouts

of the 3D stack of tomographic image data, where each cutout has a cross sectional area of

Aseg = 500× 500 µm2 (1)

and contains all voxels in thickness direction. For each of the uncompressed and compressed

paper sheets we selected twelve cutouts to cover a large range of variations in the pore-space

morphology. In both cases, the cutouts were chosen such that eight of them have a local porosity

close to the mean (global) porosity obtained for the entire microstructure data of the sample.

Two cutouts represent realizations of particularly dense sheets (smaller porosity) and two further

particularly open sheets (higher porosity). To facilitate a later interpretation of the simulation

results, all cutouts have been chosen such that their mean thicknesses are approximately equal.

Note that one of these cutouts from the compressed sample has not been used in the following
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analysis, because the CFD-determined porosity of this cutout was implausibly large and possibly

indicates an artifact in the mesh generated from the microstructure, see Section 3.1 below.

2.2. Transport regime. We turn to air flow in thickness direction through porous paper

sheets under excess pressure. In this transport regime, we expect that chemical interactions

of the molecules in air with the solid matrix are negligible. To get laminar flow rather than

turbulent flow, the pressure difference between both sides of the sheet must be small enough.

The pressure difference required for the standardized, experimental characterization of volume

flows through paper sheets (Gurley test [19]) is small enough to warrant laminar flow. Hence,

we will use the pressure difference from the Gurley test in our flow simulations. This gives us the

opportunity to check whether the simulations are in line with the experimentally obtained air

fluxes [20]. Considering air transport rather than liquid further eases the comparison, because

typical liquid-relevant complications such as capillary uptake, wetting in angular pores [21, 22]

and associated slip-stick motion [23, 24] do not appear.

2.2.1. Navier-Stokes equation. We briefly show how the formulation of the Navier-Stokes equa-

tion of laminar transport of gases such as air can be simplified for the use of CFD transport

simulations. Recall hat the Navier-Stokes equation determines the time-dependent velocity

field u : Ω × [0,∞) → R3 on a given domain Ω ⊂ R3 under the influence of a given pressure

field p : Ω× [0,∞) → [0,∞) and negligible gravitational forces for each time t ≥ 0 and position

x = (x1, x2, x3) ∈ Ω, where the domain Ω contains the (connected) space of pores. It is common

to add to Ω additional void volumes above and below the sample, i.e., an inlet and outlet region,

such that boundary conditions can be assumed on planar surfaces. As the considered pressure

difference in our problem is high enough to assume incompressible flow [25], the Navier-Stokes

equation reads

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ η∆u in Ω× (0,∞), (2)

where η > 0 is the dynamic viscosity and ρ > 0 is the mass density [26]. At the boundary

between the pore and the solid phase, no-slip boundary conditions ensure that the velocity of

the gas is equal to that of the rigid solid phase at the wall, which is 0. This also ensures that

the flow through the pores cannot penetrate the solid matrix. As flows through porous media

usually have very small Reynolds numbers, the so-called inertial contribution on the left-hand

side of Eq. (2) is neglected. Thus, we assume that(
∂

∂t
+ (u · ∇)

)
u = 0 in Ω× (0,∞), (3)

such that the steady-state Stokes equation

−∇p+ η∆u = 0 (4)

remains. Then, CFD simulations are performed to determine a solution of Eq. (4) together with

the continuity equation

∇ · u = 0 (5)

for a given pressure difference at the boundaries to obtain the velocity field u and the local

pressure, see Section 3.1 below. The volume flow rate ∂V/∂t through a plane A ⊂ R3 that



6

intersects the pore space Ω is then given by

∂V

∂t
=

∫
A∩Ω

⟨nA, u⟩dH2, (6)

where nA is the surface normal vector of A pointing in the direction of the flow, ⟨·, ·⟩ denotes the
scalar product between two vectors, and H2 is the two-dimensional Hausdorff measure. Note

that we consider the steady state, in which the flow rate ∂V/∂t does not depend on the time t.

In the case of the total flow rate through a paper sheet in thickness direction, the volume flow

rate is typically determined at a plane that is oriented normally to the pressure difference and

is placed in the outlet region.

2.2.2. Hagen-Poiseuille equation. Within the pore network model, the pore space is represented

by a graph, in which connections between neighboring pores are geometrically modeled by a

cylinder. The volume flow rate of every such connection is determined individually by assuming

steady-state, laminar flow through a long, narrow pipe [27, 28, 29]. In this setting, the flow rate

can be modeled using the Hagen-Poiseuille equation [30]. This yields that

∂V

∂t
=

πR4

8ηL
∆p, (7)

where ∆p denotes the pressure difference between the two ends of the pipe, η > 0 is the dynamic

viscosity, L > 0 is the length of the pipe and R > 0 is the pipe radius. Note that the volume

flow rate ∂V/∂t of a given segment is directly proportional to the difference in pressure between

the beginning and the end of the segment. Finally, the flow through the entire network must

obey a mass balance equation at every vertex. For more details on how the graph is constructed

in the pore network model and how the linear factors in Eq. (7) are determined, see Section 3.2.

3. Methods to simulate transport

We now provide more detailed information on the two approaches used to simulate volume

air flow through paper sheets. In Section 3.1, we describe the CFD simulation procedure, and

compare the resulting values to experimental data. In Section 3.2, the pore network model

is described in multiple steps. First, Section 3.2.1 describes the construction of the graph

representing the pore space morphology. Then, in Section 3.2.2, we show how the graph is used

for volume air flow simulations. Section 3.2.3 discusses the impact of the chosen conduit shape

used to approximate the volume between two neighboring pores within the pore network model.

3.1. CFD simulations. The ANSYS code was used to numerically solve the Stokes equation

(see Eq. (4)) in the pore space of the paper sheets as described in Section 2.2, where the

simulations were prepared as follows [20]. The microstructure of each cutout was provided as

a stack of 2D binary images containing voxels corresponding either to the pore or to the solid

phase. This volume data was triangulated to obtain the surface mesh of the pore space, since

this surface mesh encloses the pore volume in which the Stokes equation will be solved. To arrive

at a good compromise between high resolution and uniform coverage of surface triangles, we

stretched the volume data in thickness direction by a factor of five, loaded this stretched volume

data as images in Fiji [31] to perform the triangulation, and stretched the resulting surface mesh

by a factor of 0.2 in thickness direction. This is done in order to compensate for the difference
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in lengths between thickness and lateral direction, and arrive at a surface triangulation whose

typical side lengths are more proportional to the difference between thickness and lateral size.

As ANSYS relies on a finite volume approach, the pore volume enclosed by the surface mesh

was discretized using Numeca Hexpress Hybride. More details can be found in [32]. The surface

meshing closes all pores that are not connected to the exterior, i.e., either to an inlet or outlet.

Air permeance was obtained for boundary conditions that correspond to the standardized test

to assess the porosity of paper [19]. The pressure at the top surface was pinlet = 1.22 kPa, and

poutlet = 0 at the bottom surface. At the remaining side walls, symmetry boundary conditions

are used. Also the external conditions were chosen to match the standardized conditions. The

temperature was T = 298K, so that the density of air was ρair = 1.184 gm−3, the specific heat

capacity was Cp = 1006.43 J kg−1K−1, and the dynamic viscosity was η = 1.838 · 10−5 Pas. For

each cutout, the CFD simulations yield the spatially resolved air pressure and air velocity, and

at the outlet side the volume flow rate ∂V/∂t (via Eq. (6)) and the volume flux per unit area

vCFD, which is given by

vCFD =
1

Aseg

∂V

∂t
, (8)

where Aseg is defined as in Eq. (1).

uncompressed

compressed

sample 
Leitl et al.

v C
F

D
/ m

s-1

v e
xp

/ m
s-1

Figure 2. Violin plots to compare the fluxes obtained experimentally by the

Gurley method (purple, left axis) and the fluxes obtained from CFD simulations

(gray, right axis) for a paper sample from [20], uncompressed, and compressed

paper. To ease the comparison, plots of corresponding fluxes are superimposed

at the common symmetry axis of the violin plot and a half of each violin plot

is hidden. In each plot, the short horizontal bars represent the median and the

quartiles, and the long horizontal bar the mean.

Figure 2 compares the volume fluxes per unit area computed in this way with the fluxes vexp

obtained from experiments for uncompressed (center) and compressed paper (right). In the

experiment, a standard volume of 100mL air is pressed through a paper sheet of a standardized

area of 645.2mm2 at different positions in the sheet and from top to bottom and from bottom-

to-top direction. As the measured area of this experiment largely exceeds the area of the cutouts

in the CFD simulations, the variations seen in the experiment are much smaller than in the

simulations. The fluxes vexp and vCFD differ by a scaling factor between four and five, which

is consistent with a previous comparison for a paper made from the same pulp and a porosity
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comparable to the uncompressed sample [20], whose simulated and experimentally obtained

fluxes are shown for comparison in the left part of Figure 2. However, the trends seen in the

experiments are captured by the simulations for both samples, in terms of mean values and

variations. Hence, in the context of the present study, we consider the CFD-calculated fluxes

as the ground truth. They will serve as a reference for the pore network simulations.

3.2. PNM simulations. The PNM approach seeks to predict transport in a geometrically

simplified, graph-like representation of the pore space. The pore network representation of a

pore space contains the positions and sizes of distinguishable pore regions, and the positions

and sizes of the cross-sectional contact areas between neighboring regions.

In the network, each vertex represents the center of a pore region. Vertices corresponding

to centers of connected pore regions receive an edge in the graph. A pore space analysis step,

described in detail in Section S2 of the Supplementary Information, determines and labels the

pore regions and augments the vertices in the graph with information such as the position

(center of gravity) and volume of the original pore, and the diameter of the largest sphere

that can be inscribed into the pore. Each edge is marked with information related to the

“bottleneck” between two connected pores, i.e., the position and extension of the contact area

between neighboring pore regions.

The transport between two vertices that are connected by an edge is modeled by solving a

transport problem on an approximating conduit shape that is constructed based on the geo-

metric information of each vertex and edge mentioned above. Correspondingly, the transport

simulation is approximated in two steps: (i) determine a pore network representation of the pore

space and (ii) perform simulation of Stokes flow on neighboring pores by use of approximating

conduit shapes. These steps are explained in Sections 3.2.1 and 3.2.2, respectively. Section 3.2.3

discusses the impact of the conduit shape on the fluxes predicted by PNM.

3.2.1. Constructing the pore network graph. The pore network of each cutout was determined

with the SNOW algorithm as implemented in the python package PoreSpy [33]. First, the SNOW

algorithm divides the pore space of the segmented 3D image into non-overlapping regions, see

Figures 3a–3c. Subsequently, an undirected geometric graph G = (V, E) is constructed, where

each vertex µ ∈ V ⊂ R3 corresponds to the centroid of a region in the segmented image, see

Figure 3b. Then, edges e = {µ, ν} ∈ E are added between vertices µ und ν corresponding to

neighboring regions, i.e., between those that share a common boundary.

These vertices and edges receive geometric information deduced from the tomographic image

data of the pore regions. The volume of a pore region is the total volume of all voxels in a

region. The associated pore radius is the maximum value of the Euclidean distance map [34, 35]

within each pore region, i.e., it corresponds to the radius of the largest possible sphere that is

fully contained in the pore region. The pore surface area is given by the number of solid-pore

interface voxels of the region multiplied by the area of a single voxel face. Each edge receives

a diameter that corresponds to the largest Euclidean distance found in the cross-sectional area

of two adjacent pore regions and a length, that corresponds to the Euclidean distance between

the two connected pore centroids [36], see Figure 3c. A more detailed description of how the

pore network graph was determined is given in Section S.3 of the Supplementary Information.
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d1d1
d2

dth

a)
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vertex 1

vertex 2

edge 1,2

d)
d1 d2

dth

Figure 3. Pore space before (a) and after (b) partitioning in distinct pore

regions, where each pore region is represented by a vertex, and edges mark

adjacent, connected pore regions. Analysis of the pore regions provides the

positions of the pores, the diameters d1 and d2 of inscribed spheres of maximum

diameter, the positions in which the pore regions touch and the largest Euclidean

distance dth therein (c). Example for a straight pore-throat-pore conduit between

two connected vertices in the pore network (d), where the conduit consists of the

pores simplified as truncated cones, whose inlet and outlet diameters are given

by d1 and d2, respectively, and a central cylinder with diameter dth.

3.2.2. Flow simulation on the network. Based on the pore network graphs stated above, the

openPNM [37] package was used to determine the stationary air flow for the same excess pressure

and external conditions as used for the CFD simulations [19]. The flux through the network

has to obey the mass balance equation at every vertex µ ∈ V in the graph [38], i.e., for the net

flow rate (∂V/∂t)µ through vertex µ it holds that(
∂V

∂t

)
µ

=
∑
ν∈Nµ

(
∂V

∂t

)
µν

= 0, (9)

where Nµ = {ν ∈ V : {µ, ν} ∈ E} is the set of neighbors of vertex µ and (∂V/∂t)µν is the flow

rate between adjacent vertices µ and ν, which is positive when the flow is directed towards the

vertex µ, and negative when the flow leaves the vertex µ.

We assume here that the gas behaves like an incompressible liquid with a constant mass

density. The disregard of compressibility has been shown to have little impact provided that

the excess pressure driving the flow is high enough [25]. Hence, conserving mass is equivalent

to conserving volume.

The flow between adjacent vertices µ, ν ∈ V is driven by the difference in pressures pµ − pν

within the pore regions and adopts a form inspired by the Hagen-Poiseuille equation for laminar

flow in pipes [27, 28, 29] given by (
∂V

∂t

)
µν

= gµν(pµ − pν), (10)

where gµν > 0 is the local conductivity of the conduit between the adjacent vertices µ and ν.

Note that the local conductivity depends on the size and the geometric shape of the conduit.

More precisely, the local conductivity (denoted by g in this paragraph) quantifies the ease with

which a gas or fluid can pass through a conduit. For the hydraulic conductance considered
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here, g is fully determined by the shape of the conduit and the dynamic viscosity η. Figure 4

illustrates a general, axial-symmetric conduit with a flow along the z-axis. We assume that the

conduit is placed within the positive quadrant of the coordinate system, with one of its sides

aligned with the x-y-plane, so that its extension along the z-axis is from 0 to L for some length

L > 0. For each z ∈ [0, L], let C(z) ⊂ R3 be the circular conduit cross-section perpendicular to

the flow axis, and H2(C(z)) the area of C(z), given by means of the two-dimensional Hausdorff

measure H2. Then, it holds that

1

g
= 16π2η

∫ L

0

I∗p (z)

H2(C(z))2
dz, (11)

where I∗p (z) is the specific polar moment of inertia, defined as integral over the cross-section

C(z) by

I∗p (z) =
1

H2(C(z))

∫
C(z)

∥x∥2 dH2(x), (12)

where ∥x∥ denotes the Euclidean norm of x = (x1, x2) ∈ R2. In Eq. (11), both H2(C(z)) and I∗p
essentially depend on the geometry of the conduit. Thus, analytical descriptions of the shape of

the cross sections along the flow axis often allow to derive analytical expressions for the conduit

flow [39, 40]. More details on this are given in Section S.4 of the Supplementary Information.

dp dth

L

C(z)

p1 p2

z

r(z)

Figure 4. Axial-symmetric conduit with varying radius r(z) and cross-section

C(z) along the z-axis. The inlet is at pressure p1 and the outlet at p2, respec-

tively. The diameter of the inlet and the outlet corresponds to the diameter dp

of the inlet and outlet pore, respectively. The smallest diameter is given by the

extension of the bottleneck dth between inlet and outlet pore.

In this study, we assume that the conduit shape is the same throughout the network, where

we choose the shape shown in Figure 3d, i.e., a cone-cylinder-cone conduit consisting of three

segments. The inlet segment starts from the pore center with opening diameter d1 and narrows

in a conical fashion until the smallest diameter dth is reached (pore). A second (straight)

segment of cylinder shape with diameter dth (throat) follows and connects to a conical-shaped

outlet segment with smallest diameter dth and final diameter d2. Note that conduit shapes can

be selected from a wide range of shapes as long as local conductivity through the conduit can

be provided to satisfy Eq. (10), see [29, 39, 40, 41] for examples. A more detailed discussion of

the choice of conduit shape will be given in Section 3.2.3 below.

For a conduit between connected pores (represented by the vertices µ, ν ∈ V) consisting of

multiple elements, such as the one shown in Figure 3d, the local conductivity gµν is obtained

from the conductivities of the individual conduit elements [42], i.e.,

1

gµν
=

1

gP,µ
+

1

gth,µν
+

1

gP,ν
, (13)
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with gP,µ and gP,ν being the conductivities associated to the pore volumes (half-cones in Fig-

ure 3d), and gth,µν is the conductivity of the throat, where all three conductivities gP,µ, gP,ν and

gth,µν are determined by Eq. (11).

With the local conductivities gµν in hand, Eq. (9) defines a system of linear equations that

is solved for the pressure pµ in each pore with the boundary conditions pinlet = 1.22 kPa at all

inlet pores and poutlet = 0 at all outlet pores. Once the pressures pµ are determined, Eq. (9)

provides the flow rates through each conduit. Then, the total flow rate through the network is

the sum over all local volume flow rates entering the network at the inlet pores, i.e.(
∂V

∂t

)
inlet

=
∑

µ∈Vinlet

(
∂V

∂t

)
µ

=
∑

µ∈Vinlet

∑
ν∈Nµ

gµν(pν − pµ), (14)

where Vinlet ⊂ V is the set of all inlet vertices, which are determined as described in Section S.3

of the Supplementary Information. In analogy to Eq. (8), the volume flux per unit area vPNM

is given by

vPNM =
1

Aseg

(
∂V

∂t

)
inlet

. (15)

3.2.3. Impact of conduit shape. Since the true morphology of the pore space region that connects

two different pores is too complex, it must be approximated by using a simplified geometry in

PNM to simulate the flow between neighboring pores. As there are many options for doing so,

the values of local conductivities and, hence, of the overall flux vPNM, depend on the choice of

the conduit shape, see Figure 5.

x 2

x 1

x 2

x 1

a) b)

vcone-cyl / ms-1 vcone-cyl / ms-1

v 
/ m

s-1

Figure 5. Impact of the conduit shapes on the fluxes predicted by PNM for

the cutouts of uncompressed (blue diamonds) and compressed (orange circles)

paper. The fluxes obtained for half pore-throat-half pore conduits as shown in

Figure 3d (horizontal axis) are compared to predictions using mirror- and axis-

symmetric converging-diverging conduits with diameters dmax = d1 and dmin =

dth assuming a cone (a) and hyperbolic cosine (b) shape. To ease the comparison,

two additional lines corresponding to a direct correspondence v = vcone-cyl and a

doubling in value v = 2vcone-cyl are inserted.
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To assess the extent to which the predicted flows may vary, we consider the results of our

simulations using the conduit shape shown in Figure 3d as reference and compare the related

fluxes to pore network simulations using two other conduit shapes. The associated conduits

assume a converging-diverging shape that are chosen to be mirror-symmetric, i.e., the diameters

along the conduit fulfill dν,max = dµ,max = dP,ν and dmin = dth,µν . Using the notation v

instead of vPNM, Figure 5a shows the flux values of v obtained for conically shaped conduits for

uncompressed (blue diamonds) and compressed (orange circles) paper, and compares them to

the reference values (denoted by vcone-cyl) provided on the horizontal axis.

Although conically shaped conduits tend to show the largest deviations from cylindrical

conduits (cf. Figure 5a), the obtained values of v are practically proportional to the reference

values of vcone-cyl with a slope of two. The same qualitative behavior is obtained for hyperbolic

cosine shaped conduits, see Figure 5b. Also here, the values of v are proportional to the reference

values of vcone-cyl, but with a reduced slope of 1.5.

The flux through individual conduits of conical and hyperbolic cosine shapes is compared to

that of cylindrical conduits in Figure S3 of the Supporting Material.

3.3. Volume flow rates obtained by CFD and PNM simulations. In this section, we

compare the volume flow rates per unit area obtained from CFD and PNM simulations, see

Figure 6. The values of the volume flow rates vCFD and vPNM differ by more than an order of

magnitude. The actual difference in magnitude is determined, at least in part, by the choice of

the conduit geometry, as explained above. Nevertheless, the flows predicted by PNM resemble

the trends in the flows obtained by CFD. While the fluxes through the uncompressed sample

tend to exceed the fluxes in the compressed sample, there is a common pattern regardless of

which sample is considered: A higher porosity tends to give a larger flux. For comparable

porosities, CFD and PNM simulations predict a marked spread in the flow values, see Figure 6.

This spread in flow rates must originate from the details of the pathways realized in each of

the cutouts. Hence the question arises, whether other microstructure descriptors are capable of

explaining this spread because they inherently consider these pathway details.

v P
N

M
/ 1

0
-3

m
s-1

v C
F

D
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0
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m
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(b)
uncompressed
compressed

6
(a)

Figure 6. Volume flux per unit area obtained by CFD (a) and PNM (b) simula-

tions vs. local porosity of cutouts for uncompressed (diamonds) and compressed

(circles) paper.
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4. Geometric descriptors of pore space morphology

Based on the segmented µ-CT image data, we can quantitatively analyze the pore space

morphology within the measured paper sheets by means of various geometric microstructure

descriptors. In particular, in a previous study [11], we showed that the differences between

uncompressed and compressed paper are heavily reflected in an altered interdependence be-

tween pairs of geometric descriptors of the pore space morphology. As we now aim at linking

descriptors that characterize the pore space morphology to the volume flow determined by CFD

simulations, as described in Section 3.1, we select an appropriate set of these geometric descrip-

tors. Namely, we consider the porosity ε, the specific surface area S of pore space, the mean

value µ(τ) and standard deviation σ(τ) of geodesic tortuosity of paths through the pore space,

and the median radius rmax of the continuous pore size distribution. It is well known that each

of these descriptors is relevant for transport in porous media [43, 44, 45].

4.1. Computation of geometric descriptors. In the following we briefly explain each of the

geometric descriptors considered in the present study and give information on how they can be

computed from grid-based 3D image data.

Porosity. The most fundamental and widely used geometric descriptor of pore space is the

porosity ε ∈ [0, 1]. Formally, ε is defined as the volume fraction of the pore space, which

can be determined by computing the number of voxels associated with pores divided by the

total number of voxels that do not belong to the background. Thus, ε can be computed in a

straightforward manner, simply by counting voxels in the image data.

Specific surface area. Another fundamental descriptor is the surface area of pore space. In

particular, we consider the specific surface area S, i.e., the surface area of pore space per unit

volume. In order to compute the value of S from voxelized image data, an algorithm stated

in [46] is used, which is based on local weighted 2× 2× 2 configurations.

Geodesic tortuosity. The general notion of tortuosity aims to quantify the length of trans-

portation paths through a porous medium in relation to its thickness. Note that there are many

different definitions of tortuosity [47]. However, in the present study, we focus on the concept of

geodesic tortuosity. This requires the selection of starting and target planes of the image data,

for which the geodesic tortuosity shall be computed. As we are interested in flow that traverses

the paper sample vertically, we chose our starting and target planes as the pore space voxels that

belong to the upper- and lower-most layers of voxels in y-direction, respectively. In addition,

our goal is to quantify only the lengths of paths that use pores with a certain minimum local

volume, so that we ensure that the considered paths contribute to volume flow in a significant

way. We therefore first determine the pore space that can be filled by spheres of radius 1.5 µm.

Then, for every pore voxel of the starting plane, a shortest path to the target plane is computed

twice by the use of Dijkstra’s algorithm [48], where once the path is only allowed to traverse

the pore space, while the second time it is also allowed to pass through voxels that belong to

the solid phase. The geodesic tortuosity τ ≥ 1 is then defined as the ratio of the lengths of

these two shortest paths for every pore voxel of the starting plane. This yields a distribution of

values, of which we consider the sample mean µ(τ) and sample standard deviation σ(τ).

Continuous pore size distribution. In order to capture the distribution of pore widths across

the sample, we consider the continuous pore size distribution CPSD: [0,∞) → [0, 1], which is
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defined using morphological opening [34, 49]. More precisely, for each r ∈ [0,∞), the value of

CPSD(r) is given by the volume fraction of that part of the pore space that can be covered by

spheres of radius r which are completely contained in the pore space. To compute CPSD(r)

from voxelized image data, we consider the subset P ⊂ W of voxels associated with pores within

our sampling window W ⊂ Z3. Then, we put

CPSD(r) =

∣∣(P ⊖BZ3(o, r)
)
⊕BZ3(o, r)

∣∣
|P |

, (16)

for any r ≥ 0, where ⊖ and ⊕ denote the morphological operations of erosion and dilation [34,

49], respectively, BZ3(o, r) = B(o, r)∩Z3 is the discretized open ball of radius r centered at the

origin, and |B| denotes the number of elements of any set B ⊂ Z3. Note that the numerator on

the right-hand side of Eq. (16) can be efficiently computed by means of the Euclidean distance

transform [34, 35]. In particular, we are interested in the median rmax of CPSD, which is given

by rmax = max{r ≥ 0 : CPSD(r) ≥ 1/2}. This quantity is used in the definition of constrictivity,

which is a useful descriptor in quantifying the strength of bottleneck effects [50].

4.2. Correlations between pairs of geometric descriptors. Figure 7 shows scatter plots of

the results which we obtained for the geometric descriptors stated in Section 4.1, for the cutouts

of both uncompressed and compressed paper sheets. It also shows the Pearson correlation

coefficients for each pair of displayed descriptors, where we can see that some descriptor pairs

show a rather strong correlation. Namely, the pairs ε and µ(τ) (Figure 7b) as well as ε and

rmax (Figure 7d) are strongly correlated in both samples.
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Figure 7. Scatter plots visualizing the interdependence of geometric descrip-

tors for the cutouts of uncompressed (diamonds) and compressed (circles) paper

sheets. The color coding indicates the values of the volume flow obtained by

CFD simulations. Additionally, the corresponding values of the Pearson corre-

lation coefficient are displayed on each figure.
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In line with this, the associated fluxes, imposed by color in Figure 7, tend to be higher the

higher the porosity ε and the median radius rmax, and the lower the mean geodesic tortuosity

µ(τ), which can be seen best in Figures 7b and 7d. In contrast to this, ε and S only show a

significant correlation for the cutouts of the compressed sample, see Figure 7a, as also found in

our previous work [11].

Figure 7 also shows that at least half of the data points per sample share a practically identical

local porosity ε. Although our pick of cutouts with similar local porosity may adversely affect

the estimation of the Pearson correlation coefficient for the interrelations representing the whole

sample, it will boost the importance of the other geometric descriptors in explaining variations

in the flow. Note that the fact that the geometric descriptors considered in the present study are

correlated affects the variance and interpretability of the estimated coefficients in the regression

models that we will present in Section 5.1 below. However, the presence of correlation among

explanatory variables does not in general influence the ability to obtain a good fit [51], see also

Section 6.1.

5. Structure-property relationships

In this section, we present six empirically derived regression models that will be used to

predict the volume flow vCFD as determined by CFD simulations, from geometric descriptors

of pore space morphology introduced in Section 4, or from the volume flow prediction vPNM of

PNM simulations. In the following, the target variable of each regression will be denoted by

v(i) for i ∈ {1, . . . , 6}, which will be used to predict the value of vCFD.

5.1. Regression models for structure-property relationships. The regression models

that we consider are all of power-law type. Such models are easy to implement, and their pre-

dictions do not fundamentally differ from predictions using more complex relations [52]. The

accompanying disregard of a critical porosity, often needed to describe media of small poros-

ity [52, 53, 54] is justified, as measured and simulated fluxes never vanished and the considered

interval of porosity values is rather narrow, see Figures 7a and 7b.

5.1.1. Regression models using only geometric descriptors. The simplest and most well-known

relationship is given by

v(1)(ε) = c0ε
c1 , (17)

for some c0, c1 ∈ R, where only the porosity ε is considered as an explanatory variable. This

relation is widely used, as porosity is by far the most accessible geometric descriptor. With

the next regression model, we add further geometric descriptors to capture the pore space

morphology in more detail. It is given by

v(2)
(
ε, µ(τ), σ(τ), S

)
= c0ε

c1µ(τ)c2σ(τ)c3Sc4 , (18)

for some c0, c1, c2, c3, c4 ∈ R. We can expect that v(1)(ε) ̸= v(2)
(
ε, µ(τ), σ(τ), S

)
, since the

distribution of the lengths of transportation pathways through the material has a significant

impact on the resulting volume flow rate. We also remark that the specific surface area S is

not a dimensionless descriptor such as porosity or geodesic tortuosity. In order to analyze the
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improvement provided by the additional geometric descriptors considered in Eq. (18), it will be

useful to additionally investigate the two simplified models

v(2,1)
(
ε, µ(τ), σ(τ)

)
= c0ε

c1µ(τ)c2σ(τ)c3 , (19)

for some c0, c1, c2, c3 ∈ R and

v(2,2)(ε, S) = c0ε
c1Sc2 , (20)

for some c0, c1, c2 ∈ R.

5.1.2. Regression models including the results of PNM simulations. Power laws in the form

presented above are a helpful tool to test which descriptors indicate local intricacies of the

pore space geometry that may have been oversimplified in the PNM simulations described in

Section 3.2. On the other hand, we can assess the predictive power of the PNM itself with the

relation

v(3)(vPNM) = c0v
c1
PNM, (21)

for some c0, c1 ∈ R. This formulation allows for a comparison to vCFD beyond strictly linear

relations and automatically accounts for the difference in scale of the CFD and PNM predictions.

By extending the relation given in Eq. (21) with geometric descriptors as additional factors,

the improvement of the prediction depending on the considered descriptors indicates to which

extend the descriptors ”correct” the original PNM prediction. A combination of the models

stated in Eqs. (17) and (21) is given by

v(4)(ε, vPNM) = c0ε
c1vc2PNM, (22)

for some c0, c1, c2 ∈ R. Moreover, using the geometric descriptor rmax, we can further extend

the relationship given in Eq. (22) and obtain

v(5)(ε, rmax, vPNM) = c0ε
c1rc2maxv

c3
PNM, (23)

for some c0, c1, c2, c3 ∈ R. Note that the median radius rmax and the specific surface area S

have a physical unit, which introduces information on the typical length scale of the pore space.

Finally, we consider a combination of Eqs. (18) and (21), which leads to

v(6)
(
ε, µ(τ), σ(τ), S, vPNM

)
= c0ε

c1µ(τ)c2σ(τ)c3Sc4vc5PNM, (24)

for some c0, c1, c2, c3, c4, c5 ∈ R. The latter relationship contains five explanatory variables

and, therefore, will likely provide the best fit simply by having the largest degree of freedom.

Its purpose is primarily to serve as a reference when assessing the improvement of adding a

particular descriptor.

5.2. Fitting and validation of regression models. We briefly explain the fitting procedure

for the models proposed in Section 5.1 and the criteria that we use to assess the goodness of fit.

All models that we consider in the present study are power-type models of the general form

v = c0x
c1
1 . . . xcnn , (25)

for some n ∈ {1, . . . , 5}, where x1, . . . , xn ∈ R are explanatory variables, c0, . . . , cn ∈ R are

coefficients that need to be determined, and v ∈ R is the prediction of the volume flow deter-

mined by CFD simulations as described in Section 3.1. The explanatory variables x1, . . . , xn

are either geometric descriptors as presented in Section 4 or the volume flow determined by
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PNM simulations as described in Section 3.2. Applying the natural logarithm to both sides of

Eq. (25) yields

log(v) = log(c0) +
n∑

i=1

ci log(xi), (26)

which is a linear regression problem with explanatory variables log(x1), . . . , log(xn), response

variable log(v), and coefficients log(c0), c1, . . . , cn ∈ R. We determine the coefficients of this

linear regression problem by means of the function fitlm in Matlab [55], which uses least

square estimation. We then receive a prediction v of vCFD by applying the exponential function

to the prediction log(v) obtained byEq. (26).

In order to quantify the goodness of fit, we consider both the coefficient of determination

(denoted by R2) and the mean absolute percentage error (denoted by MAPE). If m ∈ N =

{1, 2, . . .} is the number of data points available for the considered regression, these quantities

are defined as

R2 = 1−
∑m

k=1

(
log(vCFD,k)− log(vk)

)2∑m
k=1

(
log(vCFD,k)− vCFD

)2 and MAPE =
100

m

m∑
k=1

∣∣∣∣ log(vCFD,k − log(vk)

log(vCFD,k)

∣∣∣∣ , (27)

where log(vCFD,1) . . . , log(vCFD,m) are the (logarithmic) ground truth values resulting from CFD

simulations as described in Section 3.1, log(v1), . . . , log(vm) are the corresponding predicted

(logarithmic) values of the linear regression given in Eq. (26), and vCFD is the sample mean of

log(vCFD,1) . . . , log(vCFD,m).

Note that the coefficient of determination R2 aims to quantify how much of the variance

in the data is explained by the model fit, where, to ensure the proper interpretability of this

quantity, it is crucial that the regression problem considered is linear [56]. Although we ba-

sically consider regressions of power type, the logarithmic transformation applied in Eq. (26)

yields a linear regression problem. Therefore, we always use logarithmic values to evaluate

both R2 and MAPE. That is, the ground truth values log(vCFD,1) . . . , log(vCFD,m) are given

by the logarithms of the simulated volume flows, computed as described in Section 3.1, and

the predictions log(v1), . . . , log(vm) are the predicted volume flows obtained from the linear

regression problem described by Eq. (26). In this way, we ensure that the resulting values allow

for an adequate comparison between the regression models stated in Section 5.1. However, due

to the limited amount of available data, we always use the same data to fit the coefficients

log(c0), c1, . . . , cn ∈ R in Eq. (26) as we do to evaluate the statistics R2 and MAPE defined in

Eq. (27).

6. Results and discussion

We now present the results we obtained for the fitted regression models stated in Section 5.1.

At first, all regression models are fitted separately to both datasets of uncompressed and com-

pressed paper sheets, yielding two separate sets of coefficients for each regression model. In this

way, we can analyze the predictive power of the involved descriptors in a sample-specific man-

ner, yielding insights into how the dependency structure between geometric descriptors and the

volume flow rates obtained by CFD and PNM simulations changes between different samples.
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In Section 6.1, we consider regression models that involve only purely geometric descriptors

of pore space. Afterwards, in Section 6.2, we show how incorporating the results of PNM simu-

lations can be used to improve the predictions of the volume flow rate. Finally, in Section 6.3,

we analyze how well the considered regression models generalize across uncompressed and com-

pressed paper sheets, by using only one set of coefficients for each regression model that has

been jointly determined from both data sets. The analysis of these regression models, and the

comparison to the separately fitted regression models discussed before, will provide insight into

how to formulate general relationships that apply to varying grades of paper sheets with differ-

ent morphologies. The values determined for each of the coefficients c0, . . . , cn of the regression

models considered are listed in Tables S1 – S3 of the Supplementary Material.

6.1. Regression models using only geometric descriptors. In this section, we only con-

sider the purely geometric regression models stated in Section 5.1.1. These will give insights into

predicting volume flow rates by CFD simulations based only on geometric information of the

pore space morphology. The results of the fits are visualized in Figure 8, where the predictions

of the corresponding regression models are plotted against the flow rates of CFD simulations.

Figure 8. Scatter plots of volume flow rates obtained by CFD simulations vs.

the values predicted by the respective regression models. Separate fits of regres-

sion models have been determined for the data points of the uncompressed (or-

ange diamonds) and compressed sample (blue circles). The coefficient of deter-

mination R2 and the mean absolute percentage MAPE are displayed for both

samples on each plot. As a guide to the eye, the black line highlights the diagonal

on which the results of CFD simulation and regression coincide.
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As mentioned above, for each of the regression models, two sets of coefficients c0, . . . , cn

have been determined separately for uncompressed and compressed paper sheets. Therefore,

Figure 8 also shows two values for the coefficient of determination R2 and the mean absolute

percentage error MAPE, displayed in orange and blue for the uncompressed and compressed

sample, respectively.

We start by considering the simplest model v(1) given in Eq.(17), which attempts to establish

a direct connection between porosity ε and volume flow rate vCFD obtained by CFD simulations,

see Figure 8a. While v(1) predicts the overall trend quite well, it cannot distinguish samples

with a similar porosity, which results in clusters of vertically arranged data points in Figure 8a.

This effect results in the low value of R2 = 0.62 in the uncompressed case, but is less detrimental

in the compressed sample, where we receive a value of R2 = 0.87.

The vertically clustered points in Figure 8a clearly indicate that there are factors influencing

the volume flow that cannot be explained by porosity alone. This is consistent with the situation

found in similar paper sheets [20]. Therefore, our next step is to consider three further descrip-

tors of pore space morphology, that are all incorporated in the model v(2) given in Eq (18).

The first two descriptors relate to the distribution of geodesic tortuosity τ , which enters v(2)

in the form of its mean value µ(τ) and standard deviation σ(τ), while the third is the specific

surface area S. The fit with respect to v(2) substantially improves the fit by v(1) regardless of

the sample, see Figure 8b. In particular, for the compressed sample a value of R2 = 0.98 and

for the uncompressed sample a value of R2 = 0.71 are achieved.

Obviously, it is not surprising that we achieve an improved fit in both cases when refining

the model through additional descriptors. However, individual descriptors improve the fit by

varying degrees in a sample-specific way. To make this clear, we consider the regression models

v(2,1) and v(2,2) given in Eqs. (19) and (20), which both use a subset of the descriptors considered

in v(2), see Figures 8c and 8d. For the uncompressed sample (orange diamonds in Figure 8),

the accuracy of v(2,1) is almost identical to that of v(2), with a coefficient of determination of

R2 = 0.70 for v(2,1), compared to R2 = 0.71 for v(2). Thus, for the data set of this sample, one

can argue that information on the specific surface area S is redundant to predict the volume

flow rate vCFD obtained by CFD simulations, while information on the geodesic tortuosity is

more relevant. On the other hand, for the compressed sample, the regression model v(2,2) yields

a value of R2 = 0.97 in comparison to a value of R2 = 0.98 for the more complex model v(2).

Thus, in this case, information on the specific surface area S provides an enormous improvement

compared to the regression model v(1), while the information on geodesic tortuosity seems

redundant.

Intuitively, one might assume that any new descriptor, which is highly correlated with al-

ready present descriptors, would not provide enough new information and therefore cannot

significantly improve the fit. However, as shown in Figure 7a, the porosity ε and the specific

surface area S are significantly correlated in the compressed case, with only a low correlation

coefficient in the uncompressed case. Nevertheless, the compressed case benefits more from

knowledge on the specific surface area S, while the uncompressed case sees more improvement

by incorporating information on the geodesic tortuosity.

This illustrates that a descriptor cannot be deemed as redundant or not, just based on its

correlations with other (already present) descriptors. Note that the presence of correlations
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among explanatory variables affects the variance and interpretability of the values of the esti-

mated coefficients c0, . . . , cn provided in Tables S1 – S3. In particular, we cannot formulate a

quantitative statement that a certain increase of an explanatory variable would have a certain

effect on the predictor variable, as it might not be possible to increase an explanatory variable

without affecting the others. However, these correlations do in general not influence the quality

of the obtained fit [51]. In turn, the absence of correlations among explanatory variables does

not generally guarantee an improved fit. In many machine learning approaches, feature selec-

tion is performed according to a so-called maximum-relevance-minimum-redundancy criterion,

which aims to weigh the correlation between a given feature and the target observation against

the correlation between the given feature and other, already present, features [57, 58]. However,

such a systematic approach requires an accurate estimation of the probability distributions of

involved features, which is not feasible in our case due to the small data base. Instead, we

follow the same idea by manually evaluating our metrics for the goodness of fit and analyzing

the correlation between the present descriptors.

6.2. Combining geometric information with PNM simulations. We now consider the

regression models v(3) to v(6) stated in Section 5.1.2, which all involve the volume flow rate vPNM

as determined by PNM simulations. The model v(3) uses only vPNM, while v(4), v(5) and v(6)

combine information from geometric descriptors and PNM simulations. The analysis of these

models provides insight about the accuracy of predicting the results of CFD simulations based

on those of PNM simulations, and whether it is possible to find geometric descriptors of pore

space morphology that mitigate the discrepancies between the two predictions. Similarly to the

previous section, all the models considered use two sets of coefficients c0, . . . , cn, which have

been estimated separately based on the data of uncompressed and compressed paper sheets,

respectively.

Figure 9a shows how well flow rates obtained from PNM simulations predict the CFD flow

values, using the regression model v(3). The overall fit is clearly better for the uncompressed

case than for the compressed case, with a higher R2-value and lower MAPE. However, the lack

of accuracy in the compressed case (R2 = 0.39) is mainly due to an outlier associated with a

CFD volume flow of vCFD = 0.05m/s, see Figure 9a.

The regression model v(4) considers porosity as an additional descriptor that can correct flow

rates determined by PNM simulations. With the additional descriptor, the model can correct

for the above mentioned outlier, increasing the coefficient of determination from R2 = 0.39 to

R2 = 0.89 in the compressed case, see Figure 9b. Furthermore, a comparison between the fits

of v(4) and v(1) also shows that incorporating PNM simulations already significantly improves

the classical approach of predicting volume flow rates only by means of porosity.

The regression models v(5) and v(6) reveal, in analogy to the transition from v(1) to v(2),

which geometric descriptors in addition to ε significantly correct the PNM-predicted flow rates

and whether a strong correlation of a descriptor with porosity (or the absence thereof) controls

the extent of improvement. Recall that v(5) considers the porosity ε and the median pore

radius rmax, obtained from the continuous pore size distribution. Here we observe a similar

phenomenon as in the previous section. The median pore radius rmax is strongly correlated

with porosity ε for both samples, see Figure 7d. Despite this strong correlation, the model
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provided by v(5) fits the data of the CFD volume flows significantly better than v(4) for both

samples, see Figure 9c. Finally, v(6) considers all geometric descriptors, that were already used

in v(2) as explanatory variables, in addition to the PNM-predicted flow rate. In comparison

to v(2), the additional information of vPNM still leads to an improvement of an already highly

accurate prediction, i.e., from an R2-value of 0.98 to 0.99, see Figure 9d. Most notably, the

models v(5) and v(6) yield nearly identical precisions in the uncompressed case, although v(6)

uses the three descriptors µ(τ), σ(τ), and S to replace only the one descriptor rmax in v(5). Yet

again, this is in contradiction to our expectations, given that the porosity ε and the median

pore radius rmax have a high correlation coefficient of ρ = 0.89 in the uncompressed case.

Figure 9. Scatter plots of volume flow rates obtained by CFD simulations vs.

the values predicted by regression models v(3) to v(6) (panels 9a to 9d) aiming at

correcting the flow rate predictions obtained by PNM simulations. Separate fits

of the regression model to the uncompressed (orange diamonds) and compressed

sample (blue circles). The coefficient of determination R2 and the mean absolute

percentage MAPE are displayed for both samples on each plot. As a guide to the

eye, the black line highlights the diagonal on which the results of CFD simulation

and regression coincide.

6.3. Generalizing relationships across different paper grades. With the regression mod-

els at hand, the question arises whether the models would also satisfactorily predict the CFD

volume flow rates for a wider range of microstructures. To test this, we now determine a single

set of coefficients for each of the regression models stated in Section 5.1, which is jointly deter-

mined from all data points of both the combined uncompressed and compressed samples. As we
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want to compare the performance of these jointly fitted models to the separately fitted models

of the previous sections, we also require the metric for the goodness of fit to be comparable.

Therefore, we again determine the values of the coefficient of determination R2 and the mean

absolute percentage error MAPE for each regression. More precisely, we evaluate these metrics

once only on the data points of the uncompressed sample and once only on the compressed

sample. In this way, we obtain a value of R2 and MAPE for each sample and each of the jointly

fitted models that are directly comparable to the R2- and MAPE-values of the separately fitted

models.

Figure 10 collects the MAPE-values for all jointly fitted and separately fitted models, eval-

uated for both data sets of the uncompressed and the compressed sample. Bars with a light

shading indicate the MAPE-values of the jointly fitted model, while the narrow bars with darker

shading show the MAPE-values from the previous sections, in which separate sets of coefficients

c0, . . . , cn were used for each sample. Corresponding scatter plots for these regression models

are shown in Figure S1 of the Supplementary Information.

 separately fitted coefficients

 jointly fitted coefficients

MAPE / % MAPE / %
2 4 6 8 2 4 6

uncompressed compressed

Figure 10. Mean average percentage error (MAPE) between CFD-predicted

volume flow rates and predictions of the regression models v(1), . . . , v(6), each

fitted to the combined data points of uncompressed and compressed paper (wide

bars), or separately to uncompressed paper and compressed paper, respectively

(narrow bars).

The models v(1), . . . , v(6) considered in Figure 10 are ordered with increasing complexity (from

top to bottom): Regression models v(1), v(2) exclusively contain geometric descriptors of the pore

space, while regression models v(3), . . . , v(6) are associated with comparison and corrections

of the predictions by means of PNM simulations. Obviously, with increasing complexity of

the models, the values of MAPE are decreasing. However, we can see that in some cases

the added complexity leads only to an improved model if it can specialize to certain types of

microstructures. For example, this is the case for v(6) in the compressed case, see Figure 10. In

general, the more complex the model, the greater the discrepancy between the separately fitted

models and the jointly fitted model. In particular, we see that for both samples, the jointly
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fitted models v(4), . . . , v(6) all show very similar performance, indicating that the additional

complexity of v(5) and v(6) can only be capitalized on when fitting to specific data sets, but not

when generalizing across different grades of paper. However, the decrease in MAPE between

v(1) and v(4) is consistent between both samples, indicating that combining the results of the

PNM simulations with geometric descriptors yields an improvement regardless of the specific

paper grade considered.

In general, using porosity ε as a correction factor in model v(4) for the prediction obtained

by PNM simulations helps to better explain the flow rates in the compressed sample, i.e., the

denser sample. The descriptor rmax also has a significant impact for the compressed sample.

However, it remains unclear whether this is due to sample-specific details of the pore network

model. To decide this, the structures harboring local flows need to be resolved in more detail.

In such a local analysis, the structure of the pore network model could also play a role, as PNM

simulations on conduits of the same shape tend to neglect too many details of the actual shape

of the interface formed between connected pores [29].

7. Summary and Conclusion

In this study, the volume fluxes of air through various cutouts of two different samples of

porous paper sheets were determined by using CFD and PNM simulations. The fluxes from

CFD simulations serve as ground truth in our study, while PNM simulations provide a simplified

and computationally much less demanding alternative. In addition to volume fluxes, various

geometric descriptors of the pore space have been determined for each of the cutouts based on

the tomographic µ-CT image data. In particular, we focused on analyzing the performance of

the PNM simulations in comparison to CFD simulations and investigating whether additional

information on the pore-space morphology through geometric descriptors can be used to im-

prove the fluxes predicted by PNM simulations. We also directly analyzed structure-property

relationships between geometric descriptors and volume fluxes of CFD simulations. This was

done by fitting six different regression models of power-law type to the data obtained for the

cutouts of both samples. These regression models were fitted separately to the two data sets

of compressed and uncompressed paper samples to analyze the performance of the models in

a sample-dependent way. Subsequently, we also fitted the models to the joint data set of both

samples to see how well the individual models generalize across both samples.

Our analysis showed that, while volume fluxes determined by PNM simulations qualitatively

resemble the fluxes determined by CFD simulations, involving additional geometric descriptors

significantly improves the accuracy of the predictions. From the sample-specific analysis, we

see that the ideal choice of geometric descriptors depends on the chosen sample, which is in line

with previous results showing altered correlation structures of geometric descriptors in paper

sheets after compression [11]. However, even simply including porosity in the regression model

already yields an improvement for both samples. In particular, the regression model using only

porosity and PNM fluxes in some cases outperforms more complex relationships that directly

model the CFD fluxes by multiple geometric descriptors of pore space, which underlines the

potential of PNM as a more cost-efficient simulation tool.
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Supplementary Information

S.1. Fitted regression coefficients. We provide the values of the coefficients of each descrip-

tor determined for the regression models v(1), . . . , v(6) discussed in the main text. Tables S1

and S2 show the coefficients of the fits based on the two separate data sets of uncompressed

and compressed paper sheets, respectively, as discussed in Section 6.1. Table S3 shows the

coefficients of the fits based on the joint data base of both uncompressed and compressed paper

sheets as discussed in Section 6.3.

Regression model ̂log(c0) ε µ(τ) σ(τ) S rmax vPNM

v(1) 1.1095 4.4086

v(2) -1.4714 0.71764 -6.6531 0.9563 -2.0561

v(3) 6.7027 1.7004

v(4) 8.8068 -2.6707 2.5019

v(5) 8.3394 -2.8884 0.22851 2.5101

v(6) 7.7435 -1.5178 2.9228 -0.17009 -0.99981 2.7525

Table S1. Coefficients of each descriptor determined for the regression models

v(1), . . . , v(6) for the fit to the data of uncompressed paper.

Regression model ̂log(c0) ε µ(τ) σ(τ) S rmax vPNM

v(1) 2.225 5.2544

v(2) -8.3291 6.0792 -0.97848 0.18181 -6.7495

v(3) 12.191 2.6676

v(4) 7.1945 3.7481 1.1189

v(5) -0.59186 2.0003 2.0024 0.52999

v(6) -3.6529 5.0916 -0.62714 0.12062 -5.7452 0.70949

Table S2. Coefficients of each descriptor determined for the regression models

v(1), . . . , v(6) for the fit to the data of compressed paper.

Regression model ̂log(c0) ε µ(τ) σ(τ) S rmax vPNM

v(1) 0.75602 3.9832

v(2) -1.4725 3.313 -3.3552 0.54879 -2.1554

v(3) 9.4227 2.1938

v(4) 5.9854 1.8556 1.2756

v(5) 2.9935 0.49562 1.302 1.2824

v(6) 4.8173 1.9791 -0.93914 0.24517 -0.60351 1.1089

Table S3. Coefficients of each descriptor determined for the models

v(1), . . . , v(6), fitted to the joint data set of uncompressed and compressed paper.
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S.2. Fitting of the regression model to the combined data set. Analogously to Figures 8

and 9 in the main text, Figure S1 shows scatter plots depicting the volume flow rates obtained

by CFD simulations vs the corresponding values predicted by regression models based on the

fit to the combined data of uncompressed and compressed paper.

Figure S1. Scatter plots of volume flow rates obtained by CFD simulations vs

the correspnding values predicted by the respective regression models based on

the combined dataset. The coefficient of determination and the mean absolute

percentage are displayed for both samples on each plot. Here, the regression

models are fitted to the entire data set of uncompressed (orange diamonds) and

compressed (blue circles) paper combined. Additionally, the mean absolute per-

centage errors evaluated on the subset of uncompressed and compressed data

points are shown along with their corresponding symbol (diamond for uncom-

pressed paper, circle for compressed paper).

S.3. Details of the determination of the pore network. The SNOW algorithm [36] deter-

mines the positions of pore centers and pore volumes from 3D images as follows. For each 3D

image, the Euclidean distance map [34] is acquired and the local maxima therein are recorded.

This distance map is a gray-scale image in which every voxel of the pore space is assigned a

value equal to the distance to the nearest voxel of the solid phase within the porous material. In

order to eliminate superfluous local maxima in the distance map, we applied a Gaussian filter

to the distance map prior to passing it to the SNOW algorithm. The number of maxima regis-

tered by SNOW depends on the radius R of the spherical structuring element in the watershed

segmentation, and the standard deviation σ of the Gaussian filter applied to the distance map.

To make the pore networks of the cutouts as comparable as possible, the values of R = 3 and

σ = 0.35 were determined in an iterative process. Starting from the distance transform, we

systematically tested different values of σ in the range from 0 to 0.5, for R = 3 and R = 4,

respectively, and multiple values for R for σ = 0.35 to determine the values beyond which the



30

amount of local maxima remained stable. To find the boundaries between regions, the final set

of local maxima are transformed into a set of markers. The marker-based watershed algorithm

then determines distinct regions starting from the location of each marker [36]. Each marker

corresponds to exactly one region in the final segmented image. Subsequently, the centroid of

each region serves as the coordinates of a pore.

The SNOW algorithm was applied for the combined internal and exterior pore space as

described above, so that not only the internal pore space, but also the exterior pore space is

split into regions through the segmentation procedure. All exterior regions that border the

regions related to the internal pore space are assigned as inlet and outlet regions and will serve

as inlets and outlet vertices in the transport simulation. We ensured that none of the inlet or

outlet vertices are directly connected to each other to prevent artificial pathways bypassing the

inner pores in the network.

S.4. Conductance through conduits. Under the condition of slip-free incompressible lami-

nar axis-symmetric flows, it is possible to provide analytical and semi-analytical expressions for

the flow based on the Navier-Stokes equation.

We assume that we are given an axial-symmetric conduit as in Figure S2, which is placed

within the positive quadrant of the coordinate system with one of its sides aligned with the x-

y-plane, so that its extension along the z-axis is from 0 to L. For each z ∈ [0, L], let C(z) ⊂ R3

be the circular conduit cross-section perpendicular to the flow axis, and H2(C(z)) the area of

C(z), given by means of the two-dimensional Hausdorff measure H2, see Figure S2. In steady

state, the flux Q = ∂V/∂t through a rigid conduit with the area H2(C(z)) of the cross-section

C(z) is given by

dp

dz
= −16π2ηQ

I∗p (z)

H2(C(z))2
+ 2ρQ2 1

H2(C(z))3
dH2(C(z))

dz
, (S1)

where ρ is the mass density and η the dynamic viscosity of the flowing medium [40]. The area

H2(C(z)) of the cross section C(z) may vary along the conduit axis, see Figure S2. The factor

I∗p (z) is specific polar moment of inertia, defined as an integral across the cross-section C(z):

I∗p (z) =
1

H2(C(z))

∫
C(z)

∥x∥2 dH2(x), (S2)

The two terms in Eq. (S1) are referred to as friction term and inertia term, respectively. The

total pressure drop ∆p after the conduit at position z = L/2 is obtained by integrating Eq. (S1)

along the extension of the conduit along the flow axis:

∆p = −
∫ L

0
16π2ηQ

I∗p
H2(C(z))2

dz +

∫ L

0
2ρQ2 1

H2(C(z))3
∂H2(C(z))

∂z
dz (S3)

= −
∫ L

0
16π2ηQ

I∗p
H2(C(z))2

dz + ρQ2

[
1

H2(C(z))2

]z=0

z=−L

(S4)

For conduits that exhibit a mirror-symmetry in addition to their axial-symmetry (as in Fig-

ure S2) the second, i.e., the inertia term vanishes exactly. Even without symmetry, the inertia

term is typically much smaller compared to the friction term, so that only the friction term is

considered further. With that, the flux Q determines the pressure difference p1 − p2 across the
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conduit as

p1 − p2 =

∫ L

0
16π2ηQ

I∗p
H2(C(z))2

dz. (S5)

Rearranging Eq. (S5), the flux Q can be conveniently expressed as

Q = g12(p1 − p2) (S6)

with a so-called hydraulic conductance g12 given by

1

g12
= 16π2η

∫ L

0

I∗p
H2(C(z))2

dz. (S7)

dp dth

L

C(z)

p1 p2

z

r(z)

Figure S2. Axial-symmetric conduit shape with variable cross-sectional area

along the flow direction z from left to right with a total pressure drop ∆p =

p2 − p1. Illustrated here is a conduit shape with additional mirror-symmetry in

its converging-diverging shape.

The factor g12 can be considered as a shape factor that is purely related to the geometry of

the conduit. The integration in g12 has to be performed depending on the chosen shape of the

conduit. Hence, shapes whose radial contour are defined by an analytical expression promise to

yield a well defined conductance g12. The above derivation is specifically for axially-symmetric

conduit shapes. However, also for non-axially symmetric shapes, g12 can be defined, see [40] for

more information.

S.5. Impact of conduit shape on pore-to-pore flux. The flow through a conduit strongly

depends on the geometric shape of the conduit. Using the analytic formulas provided in [39], we

demonstrate in Figure S3 that the flow rates increase the larger the discrepancy between the inlet

diameter and the smallest diameter get. The way in which the largest cross-section evolves into

the smallest cross-section also influences the flow through the conduit. Going from a hyperbolic

cosine shape (purple in Figure S3) to a linear shape corresponding to a truncated cone (orange

in Figure S3) with length, minimum and maximum diameters held constant increases the flow

rate by up to a factor of five.
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Figure S3. Dependence of the volume flow rates on the shape of the con-

duit between two connected pores. For all shapes, the same length is assumed.

The basis converging-diverging shapes include cylinder (blue), hyperbolic cosine

(purple), hyperbolic (green) and double cone (orange). For each basis shape,

the ratio between the minimum diameter, dmin and the inlet diameter dmax is

shown. Due to the symmetry of the assumed shapes, the inlet diameter equals

the outlet diameter. The volume flow rates are given in relation to the volume

flow rate through a cylinder of the same minimal diameter dmin.


