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Abstract

This paper presents a comparative analysis of algorithmic strategies for fitting tessellation mod-
els to 3D image data of materials such as polycrystals and foams. In this steadily advancing
field, we review and assess optimization-based methods—–including linear and nonlinear program-
ming, stochastic optimization via the cross-entropy method, and gradient descent–—for generating
Voronoi, Laguerre, and generalized balanced power diagrams (GBPDs) that approximate voxel-
based grain structures. The quality of fit is evaluated on real-world datasets using discrepancy
measures that quantify differences in grain volume, surface area, and topology. Our results high-
light trade-offs between model complexity, the complexity of the optimization routines involved,
and the quality of approximation, providing guidance for selecting appropriate methods based on
data characteristics and application needs.
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1 Introduction

The past two decades have witnessed the emergence and rapid growth of 3D materials science, driven
by progress in both experimental instrumentation and computational modeling; see, e.g., [1, 2, 3]. For
polycrystalline materials, a central aim is to correlate experimentally measured 3D grain maps with
three-dimensional simulations, particularly in the study of phase transformations, plasticity, and grain
growth. These developments have enabled unprecedented insights into the microstructural evolution of
polycrystalline materials (see, e.g., [4, 5, 6, 7, 8]) and have catalyzed the creation of modeling frameworks
that balance geometric fidelity and computational cost (see, e.g., [9, 10, 11, 12, 13]).

Similarly to the grains in polycrystalline materials, the cells in foams also form a space-filling system
of almost polyhedral cells. Therefore, both material classes can be described with similar mathematical
models. The cell structure of foams can be imaged in 3D using micro-computed tomography (µCT).
Stochastic models fitted to the image data then allow for a systematic investigation of properties such
as elasticity, permeability, or heat conduction [14, 15, 16].

In this paper, we consider 3D image data from polycrystalline materials as well as from three distinct
types of foams, with tessellation models analyzed for both material classes. To keep the wording concise,
we will use the term grain both for the grains in polycrystalline materials and the cells in a foam. The
term cell will refer to the tessellation cells in the fitted models.

1.1 Tessellation models

Tessellation models play a central role in 3D materials science. By representing the grain structure
as a spatial partitioning of the domain into cells, often convex, but potentially non-convex, these
models can offer a compact and analytically tractable approximation of the grain network. A sparse
representation, depending on a small number of parameters, is especially advantageous for simulations:
grain boundary geometries can be stored efficiently, and their analytic descriptions allow for fast and
accurate computation of geometric and topological quantities in downstream tasks. Moreover, fitting
tessellations can suppress high-frequency noise in experimental data, enabling more robust geometrical
and statistical analyses. They also facilitate the study of morphological features such as grain size
distributions, anisotropy, and neighborhood statistics, which are critical to understanding material
behavior under mechanical and thermal loads.

Among the various tessellation models, power diagrams—also known as Laguerre orVoronoi-Laguerre
diagrams [17, 18]—and their generalizations, generalized balanced power diagrams (also known as
anisotropic power diagrams) [11, 19] have emerged as particularly versatile tools. These structures
have found diverse applications, extending beyond microstructure modeling and grain growth simula-
tions [20, 21, 22] to include imaging [23], spatial statistics [24, 25], mesh generation [26, 27], and machine
learning [28]. For detailed reviews of these applications, see, for example, [29, 30, 31, 32] and the review
articles [18, 33, 34].

In this paper, we investigate several algorithmic approaches for fitting tessellation models, namely
Voronoi, Laguerre, and generalized balanced power diagrams (GBPDs) to volumetric image data of
materials such as polycrystals and foams. We explore a range of optimization techniques, from linear
programming methods to stochastic and gradient-based algorithms, evaluating their effectiveness in
capturing complex microstructural geometries. Through comparative experiments on real datasets, we
highlight the trade-offs between the complexity of the optimization methods and the accuracy of the
resulting tessellation approximations, aiming to guide the selection of suitable approaches for various
application scenarios.

1.2 Fitting or approximation

Modeling the 3D morphology of polycrystals or foams requires finding suitable model classes which can
accurately represent the grain systems observed in data. This task can be interpreted in several ways.

Fitting or approximation, the focus of this paper, refers to the task of finding a set of generators in
a given model class, e.g., a Laguerre tessellation, such that the tessellation induced by the generators
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gives a good fit to the observed grain system. The goodness of fit is measured by suitable discrepancy
measures. We do not make the restrictive assumption that the material must fit exactly within one of
the model classes, i.e., that the approximation error must be zero. When this assumption is enforced,
the task is referred to as inversion in the literature [35, 36, 37]. The goal of both fitting and inversion is
to generate highly accurate representations that can be directly used in downstream applications, such
as automated analysis, simulation, or visualization.

Fitting and inversion approaches have been suggested for several types of data, i.e., for different
representations of grain systems. The grain systems/tessellations might be represented as a collection
of subsets of the Euclidean space, or analytic boundary descriptions might be given. Examples of ap-
proaches that work directly with such data are given in [35, 37, 38]. The problem of approximating an
arbitrary input tessellation with a Voronoi tessellation is addressed in [35], and extended in [38] to the
more general case of Laguerre tessellations. The central objective is to minimize the total mismatch vol-
ume between the grains/cells of the observed grain systems and the approximating tessellations, which
is achieved via a gradient descent-based optimization method. The problem of inverting a Laguerre
tessellation was solved in [37].

1.3 Optimization methods

If the grain system to be modeled is observed as voxel data, typically, modeling approaches voxelize
tessellation cells as well. In [11], the authors present a fitting technique by solving a linear program.
It uses the relation of tessellations and optimal clusterings and formulates the problem of fitting the
tessellations as a weight-balanced least-squares assignment problem. In [39], a non-linear optimization
method is introduced that minimizes the distances between the observed grain system and the tes-
sellation. As an alternative, stochastic optimization methods such as simulated annealing [40] and a
cross-entropy method [41, 42] were proposed. In these approaches, the generators of the tessellation are
iteratively modified. Then, updated generators are accepted with a probability based on the quality of
the current fit.

Some experimental techniques, such as X-ray diffraction microscopy [2], do not directly measure
all grain parameters; instead, some or all of them are indirectly inferred from the measurements. For
example, only volumes and centers of mass are reported in [10, 11, 43]. In this case, Lyckegard et al. [10]
propose a simple heuristic to choose the generators of an approximating Laguerre tessellation. This
heuristic is often chosen as initial configuration for optimization methods which then further improve
the fit to real data. The approach of [11] can also deal with such indirect data; additionally, volume
limits can be incorporated into the fit.

Approaches can also vary in terms of the tessellation types they generate. Voronoi and Laguerre
tessellations as generated by [35] and [10, 37, 38], respectively, assume that the observed structure is
isotropic. However, this assumption does not always hold and individual grains can indeed exhibit strong
anisotropy [19]. In such cases, tessellations with elliptical generators such as GBPDs are superior to
Laguerre tessellations [44], but require higher computational effort when fitting them to data. Some of
the optimization techniques discussed above, e.g., the linear programming approaches [11, 45], simulated
annealing [40] or gradient descent-based methods [43], can also be applied to GBPDs. In the present
paper, we review various algorithms for approximating the data with tessellation models of increasing
complexity. Therefore, we deploy different combinations of fitting algorithms and tessellation models to
several voxelized datasets, followed by an extensive quantitative comparison. Table 1 summarizes the
algorithms considered along with their respective inputs and outputs. The diagram types underlying
these algorithms are introduced in Section 2, while the fitting algorithms are detailed in Section 3.

1.4 Stochastic reconstruction methods

In contrast to the approximation methods considered here, parametric and nonparametric stochastic
reconstruction methods are designed to generate microstructures that match statistical features rather
than exact geometry, making them effective for synthetic data generation [15, 16]. In parametric stochas-
tic modeling, the parameters of a specific model, e.g. of a homogeneous Poisson-Voronoi tessellation,
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have to be determined such that the model realizations exhibit cells that reproduce statistics of the
observed grains, e.g., the grain size distribution, see [46, 47]. In stochastic reconstruction, a stochas-
tic, nonparametric optimization approach is used to construct a random tessellation fitting certain
predefined statistics, see [39, 48].

Input Data Output Diagram
voxelized indirect Voronoi Laguerre d-GBPD GBPD

H0 ✓ ✓ ✓ ✓ ✓ ✓
Hq ✓ ✓ – ✓ ✓ ✓
LP ✓ ✓ – ✓ ✓ ✓
CE ✓ – – ✓ – –
GD I ✓ – ✓ ✓ ✓ ✓
GD II (Neper) ✓ ✓ ✓ ✓ – –

Table 1: Comparison of the fitting methods based on direct input data (discretized grains) and indirect
input data (grain volumes and barycenters), as well as with respect to their output data. The symbol ‘✓’
in the output columns indicates that the respective diagram type can be specified and guaranteed as
output.

2 Tessellation models

Tessellations can generally be defined in an arbitrary dimension d ≥ 1. We restrict our attention to the
case d = 3. Let ϕ ⊆ R3 be a non-empty locally finite set of sites in R3, where locally finite means that
any bounded subset of R3 only contains a finite number of elements of ϕ. The points x ∈ ϕ are called
generators. For our application, it is sufficient to consider finite sets of generator points such that the
sites are contained in a bounded observation window V ⊂ R3.

The Voronoi tessellation of ϕ is the collection of all cells of the form

C(x, ϕ) = {y ∈ R3 : ||y − x|| ≤ ||y − x′|| for all x′ ∈ ϕ}, (1)

for each x ∈ ϕ, with || · || denoting the Euclidean norm in R3.
Generalizations of the Voronoi tessellation are obtained by assigning real-valued weights w to the

generators x which are then incorporated into the distance measure. Let now ϕ ⊆ R3 × R be a locally
finite set of weighted generators. Then, the Laguerre tessellation of ϕ is the collection of all non-empty
cells of the form

C((x,w), ϕ) = {y ∈ R3 : ||y − x||2 − w ≤ ||y − x′||2 − w′ for all (x′, w′) ∈ ϕ}, (2)

for each (x,w) ∈ ϕ. If all weights are equal, the special case of a Voronoi tessellation is obtained.
Laguerre tessellations are also known as power diagrams or additively weighted Voronoi diagrams.

The ‘distance’ pow((x,w), y) = ||y − x||2 − w is called the power of y with respect to (x,w). In
addition, the definition pow((x,w), y) = ||y−x||2 −w2 can also be found in the literature. In this case,
a generator (x,w) can be interpreted as a ball with center x ∈ R3 and radius r = |w| ≥ 0. For points
y outside this ball, the power distance pow((x,w), y) measures the squared length of the tangent line
from y to the ball.

A further generalization can be obtained by assigning to each generator a symmetric positive definite
matrix. We again retain the notation ϕ for this extended set of generators, with elements denoted by
(x,M,w), where M is a symmetric positive definite 3 × 3 matrix. Given such an extended set ϕ of
generators, the cells of the generalized balanced power diagram (GBPD) are defined as

C(x, ϕ) = {y ∈ R3 : (y − x)⊤M(y − x)− w ≤ (y − x′)⊤M ′(y − x′)− w′ for all (x′,M ′, w′) ∈ ϕ}, (3)
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for each x = (x,M,w) ∈ ϕ. Special cases of GBPDs are obtained, for example, by only considering
diagonal positive definite matrices (d-GBPD) or by setting all weights w to 0. In the literature, GBPDs
are also referred to as anisotropic power diagrams.

Examples of planar tessellation models (d = 2) and their generators are shown in Figure 1, where the
generator sets are drawn from a homogeneous Poisson point process in the unit square [0, 1]2, without
marks and with appropriately chosen (independently sampled) marks. More information on tessellation
models can be found, e.g. in [29, 30, 49].

Figure 1: Examples of planar tessellations drawn from a Poisson point process of intensity λPoi = 100
in the unit square: A Voronoi tessellation (left), a Laguerre tessellation (middle) with independently
sampled weights w (visualized by the radii of the corresponding discs) uniformly distributed on the
interval [0.025,0.075], and a GBPD with independently sampled 2 × 2 matrices M representing el-
lipses with semi-major axes lengths uniformly distributed on [0.024,0.042], semi-minor axes lengths on
[0.006,0.024] and uniform rotations on [0,π].

3 Algorithms

The input for all algorithms is a discretized grain structure given on a grid of voxel coordinates W =
V ∩ Z3 for some set V ⊂ R3, where Z = {. . . ,−1, 0, 1, . . .}. Throughout this paper, we will denote
the number of elements in W by m ∈ N = {1, 2, . . .}. In particular, a discretized structure on W
comprising n ∈ N grains is represented by a mapping

GT : W → {0, . . . , n}, (4)

which is also referred to as grain scan or grain map. The ith grain of GT is then defined by CGT
i =

{x ∈ W : GT(x) = i}. We assume that the cardinality |CGT
i | of CGT

i fulfills |CGT
i | > 1 for each

i ∈ {1, . . . , n}. Typically, {x ∈ W : GT(x) = 0} is not a grain, but is either the empty set or the set of
voxels that separate neighboring grains.

To fit a Voronoi (or Laguerre) tessellation to a mapping GT as given in (4), we consider the set of
all Voronoi (or Laguerre) tessellations of V that are induced by n generators. In the Laguerre case, each
element of this set can be represented by a (not necessarily unique) set ϕ = {(x1, w1), . . . , (xn, wn)} ⊆
R3 × R of n generators. For each i ∈ {1, . . . , n}, it defines a cell Ci(ϕ) = C((xi, wi), ϕ) as given by
Eq. (2). The Voronoi case is then obtained by setting wi = 0 for each i ∈ {1, . . . , n}. For GBPDs, we use
an analogous procedure where the generator sets are of the form ϕ = {(x1,M1, w1), . . . , (xn,Mn, wn)}
and C((xi,Mi, wi), ϕ) is given by Eq. (3), for each i ∈ {1, . . . , n}. For Voronoi and Laguerre tessellations
as well as GBPDs, the set of all tessellations in V generated by exactly n generators will be denoted
by Φn. Note that in the case of Laguerre tessellations and GBPDs, the tessellations in Φn can have
fewer than n cells.
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3.1 Heuristics

Two heuristics have been introduced in the literature that avoid optimization routines, as the generators
for Voronoi and Laguerre tessellations and GBPDs are directly estimated from the data. The heuristics,
henceforth referred to as H0 [19] and Hq [10, 50], differ in their setting of the weights wi, 1 ≤ i ≤ n.
In H0, all weights wi are set to zero which leads to a Voronoi tessellation. In contrast, under Hq, the
weights are defined as

wi =

(
3|CGT

i |
4π
√
det(Bi)

)2/3
, i ∈ {1, . . . , n},

where the matrices B1, . . . , Bn depend on the specific model. In the Laguerre case, B1, . . . , Bn are taken
to be the identity matrix, as in [10]. In the GBPD case [50], Bi is set to the sample covariance matrix
of the region CGT

i , given by

Bi = Σ(CGT
i ) =

1

|CGT
i | − 1

∑
y∈CGT

i

(y − c(CGT
i ))(y − c(CGT

i ))⊤, i ∈ {1, . . . , n}, (5)

where c(CGT
i ) denotes the barycenter of CGT

i .
Both heuristics, H0 and Hq, have in common that the sites xi are set as xi = c(CGT

i ), and, in the case
of GBPDs, the matrices Mi are derived from a principal component analysis (PCA), where the sample
points are all y ∈ CGT

i , for each i ∈ {1, . . . , n}. To be precise, Mi is given as Mi = UiΛ
−1
i U⊤

i with Ui

denoting the 3 × 3 matrix whose jth column is the jth principal component of CGT
i , for j ∈ {1, 2, 3}.

The corresponding eigenvalues λi1, λi2, λi3 are collected in the diagonal matrix Λi = diag(λi1, λi2, λi3)
for each i ∈ {1, . . . , n}, see [50].

An interpretation of the heuristics within the framework of Bayesian classifiers has been given in [22].

3.2 Linear programming based approaches [LP]

The linear programming approach introduced in [11], henceforth called LP, computes a GBPD or La-
guerre diagram fitting to an observed grain structure, with each of the cells’ volumes lying within
prescribed bounds κ−

1 , . . . , κ
−
n and κ+

1 , . . . , κ
+
n . The bounds can either be user-defined and strictly en-

forced, or uniformly relaxed by assigning κ−
i = 0 and κ+

i = ∞ for all i = 1, . . . , n. GBPDs or Laguerre
diagrams are generated, depending on the specification or computation of the matrices defining the
ellipsoidal norms. Moreover, the approach is flexible in its input requirements, accommodating both
indirect data (grain volumes and barycenters), as well as direct input CGT

i , 1 ≤ i ≤ n. Here, we only
consider the latter case.

The sites x1, . . . , xn ∈ R3 are chosen as the barycenters of the cells. The symmetric positive definite
matrices M1, . . . ,Mn ∈ R3×3 are computed via a principal component analysis; more precisely, Mi is
set to equal the inverse of the spatial covariance matrix of the set of voxels for grain CGT

i , 1 ≤ i ≤ n;
see also Section 3.1 above. The weights w1, . . . , wn ∈ R defining the GBPD are finally obtained from
the solution of the dual of the linear optimization problem

(LP) min
∑n

i=1

∑m
j=1 γi,jξi,j

subject to
∑n

i=1 ξi,j = 1 (1 ≤ j ≤ m),
κ−
i ≤

∑m
j=1 ξi,j ≤ κ+

i (1 ≤ i ≤ n),

ξi,j ≥ 0 (1 ≤ i ≤ n; 1 ≤ j ≤ m),

where γi,j = (yj − xi)
⊤Mi(yj − xi) and yj denotes the position of voxel j for all i ∈ {1, . . . , n}, j ∈

{1, . . . ,m}. The ξi,j are the variables; they specify the fraction of voxels yj that are assigned to site xi.
In the optimum, it can be ensured that these fractions are, in fact, binary due to the special structure
of the linear program.

For the results presented in this paper we used the common choice of setting the volume bounds to
κ−
i = κi − ε and κ+

i = κi + ε with ε = 2 and κi denoting the volume of grain CGT
i . No initial solution

is required.
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The above LP approach, through its dual formulation, optimizes only the weights w1, . . . , wn. In
contrast, the following method from [45], framed within a support vector machine context, optimizes all
parameters—that is, x1, . . . , xn, M1, . . . ,Mn, and w1, . . . , wn—by solving a linear program. (As before,
the weights can be obtained via the dual formulation.) However, this approach does not incorporate
volume bounds. Using the notation

yj =

 (yj)1
(yj)2
(yj)3

 , Mi =

 (Mi)1,1 (Mi)1,2 (Mi)1,3
(Mi)1,2 (Mi)2,2 (Mi)2,3
(Mi)1,3 (Mi)2,3 (Mi)3,3

 ,

and setting ai = −2Mixi and αi = x⊤
i Mixi+wi, all parameters are encoded in the extended parameter

vector Mi =
(
αi, a

⊤
i , (Mi)1,1, 2(Mi)1,2, 2(Mi)1,3, (Mi)2,2, 2(Mi)2,3, (Mi)3,3

)⊤ ∈ R10 which yields the
variables of the linear program. Setting

Yj =
(
1, (yj)1, (yj)2, (yj)3, (yj)

2
1, (yj)1(yj)2, (yj)1(yj)3, (yj)

2
2, (yj)2(yj)3, (yj)

2
3

)⊤
,

the linear program is then given by

min
(ζj)

n∑
j=1

ζj

M⊤
i Yj −M⊤

ℓ Yj + 1 ≤ 0
(
j ∈ [m], i, ℓ ∈ [n], ℓ ̸= i, yj ∈ intδi(Ci)

)
,

M⊤
i Yj −M⊤

ℓ Yj − ζj ≤ 0
(
j ∈ [m], i, ℓ ∈ [n], ℓ ̸= i, yj ∈ Ci \ intδi(Ci)

)
,

ζj ≥ 0
(
j ∈ [m], yj ∈ Ci \ intδi(Ci)

)
,

where intδi(Ci) = {x ∈ Ci : ||x − x′|| ≥ δi for all x
′ ̸∈ Ci} is the δi-interior of Ci for user-specified

parameters δi, 1 ≤ i ≤ n.
To accelerate computations and reduce memory usage, the calculations for both approaches may

be restricted to voxel subsets forming a so-called coreset, as described in [45]. Following the procedure
in [45], we sample every 10th voxel along the x-, y-, and z-directions within each input cell, excluding
the δi-interior regions of the cells, with δ1 = · · · = δn = 20.

It should be noted that, in contrast to the other fitting methods discussed in this paper, LP generates
a GBPD that adheres to user-specified volume constraints. Remarkably, however, it does not explicitly
minimize a discrepancy with respect to the ground truth structure GT within its objective function.
The fit appears to reflect the model’s capacity to approximate physical processes, for example, those
that govern the formation of polycrystalline structures.

3.3 Fitting with the cross-entropy method [CE]

In this section, we summarize the method introduced in [41] for fitting Laguerre tessellations to grain
structures {CGT

i : 1 ≤ i ≤ n} in polycrystalline materials by minimizing an interface-based discrepancy
measure, using the cross-entropy method [51], henceforth called CE. For this purpose, we assume that
V ⊂ R3 is connected. For any i, j ∈ {1, . . . , n} with i ̸= j, the discrete interface between two grains
CGT

i and CGT
j is defined by

NGT
i,j = {x ∈ W : N26(x) ∩ CGT

i ̸= ∅ and N26(x) ∩ CGT
j ̸= ∅},

where N26(x) denotes the 26-neighborhood of x in W, consisting of all voxels that share a face, edge, or
vertex with x; see Section 3.3 in [52]. Note that NGT

i,j = ∅ if and only if CGT
i and CGT

j are not adjacent.
This definition of adjacency means that two grains are also adjacent if they are separated by a line
that is one voxel thick. This is a reasonable definition for the original data in [41], where all grains
are separated by boundaries that have a thickness of one voxel. Even for data without such separating
voxels, the definition of NGT

i,j is unproblematic since grains that are only one voxel thick do usually not
appear in applications.
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Based on this notion of neighborhood voxels, we introduce the interface-based discrepancy measure
E : Φn → [0,∞) by

E(ϕ) =

n−1∑
i=1

n∑
j=i+1

∑
x∈NGT

i,j

min{||x− y||2 : y ∈ Ci(ϕ) ∩ Cj(ϕ)}. (6)

The discrepancy measure E given in Eq. (6) quantifies the distance between the discretized grain
boundaries of the input data and the cell boundaries of the tessellation of ϕ. Minimizing the value
of E(ϕ) constitutes a high-dimensional optimization problem, typically characterized by numerous local
minima, and the evaluation of the discrepancy measure E is computationally expensive. Thus, it is
proposed in [41] to use the cross-entropy method to minimize an approximation of E, where—instead
of considering all points x ∈ NGT

i,j —only a smaller set of test points x ∈ Ti,j ⊂ NGT
i,j is considered for

any i, j ∈ {1, . . . , n} with i < j, see Section 3.4 of [41].
Note that the cross-entropy method [53] is a stochastic optimization method that can be used for

parameter fitting. In our case, the parameter vector consists of all generators of the Laguerre tessellation.
For a predefined initial parameter vector, the discrepancy measure E is evaluated for a random sample
of 4,000 parameter vectors. Those are assumed to be normally distributed around the initial parameter
vector with some variance. Then, the elite set, that is, those 200 parameter vectors for which E takes
the smallest values, is selected. The parameter vector and variance are then updated to equal the mean
and variance, respectively, of the parameter vectors in the elite set. This procedure is iterated until the
cost function does not decrease significantly for a given number of steps. As an initial parameter vector
for the cross-entropy method, the generators obtained from the heuristic Hq are used; see Section 3.1.
The authors of [41] made the code for this fitting approach publicly available [54].

In principle, the interface-based discrepancy measure considered in [41] can also be used to fit
GBPDs. However, in this scenario, the computation of the minimum distance to the boundary Ci(ϕ)∩
Cj(ϕ) is significantly more challenging, rendering the method computationally demanding. Note that
in the case of Laguerre tessellations, Ci(ϕ) ∩ Cj(ϕ) is contained in an affine subspace, such that the
analytical determination of the minimum distance given in Eq. (6) can be carried out efficiently.

3.4 Gradient descent-based fitting I [GD]

We now consider an algorithm which is based on gradient descent methods, henceforth called GD. For
this, in [43], the goodness of fit between the discretized grain structure GT and a GPBD with generator
ϕ is measured using the volume-based measure E : Φn → R given by

E(ϕ) =
1

|W |
∑
x∈W

n∑
i=1

λ
(
1CGT

i
(x),1Ci(ϕ)(x)

)
, (7)

where λ(y, y′) ∈ R measures the similarity between pairs of values y, y′ ∈ [0, 1], and 1A denotes the
indicator of the set A ⊆ W , defined by 1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x ∈ W \A.

Note that even if λ is differentiable in the second argument, the function E given in (7) is not
differentiable with respect to the GBPD generators ϕ. Hence, maximization of E based on gradient
descent methods is not viable. This problem can be solved by approximating E with a differentiable
objective function. For this purpose, the so-called one-hot encoding was employed in [43].

First, let D : W × Φn → Rn be given by D(x, ϕ) =
(
(x− xi)

⊤Mi(x− xi)− wi

)n
i=1

, i.e., the i-th
component of the vector D(x, ϕ) is the ‘distance’ of x to the generator point xi = (xi,Mi, wi), for each
i ∈ {1, . . . , n}. Since x ∈ Ci(ϕ) holds whenever the ‘distance’ from x to xi is less than or equal to the
distance to any other generator point, the second argument of λ in (7) can alternatively be written as

1Ci(ϕ)(x) = argmin∗i (D(x, ϕ)), (8)

where argmin∗i denotes the i-th component of the function argmin∗ : Rn → {0, 1}n, which maps a vector
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z = (z1, . . . , zn) ∈ Rn to a binary vector indicating the locations of its minimal components. Specifically,

argmin∗i (z) =

{
1, if zi = min{z1, . . . , zn},
0, otherwise,

for each i ∈ {1, . . . , n}. That is, argmin∗i (z) is the one-hot (or multi-hot, in case of ties) encoding of the
set of indices at which the minimum of z is attained. Note that argmin∗i is not differentiable everywhere,
which transfers also to Eq. (8) and consequently to Eq. (7). To address this issue, in [43], a procedure
is proposed to approximate the vector-valued argmin function by the softmax function with negated
inputs, softmax∗ : Rn → [0, 1]n, whose i-th component is defined as

softmax∗i (z) =
exp(zi)∑n
j=1 exp(zj)

,

for any z = (z1, . . . , zn) ∈ Rn and i ∈ {1, . . . , n}. In other words, argmin∗(z) ≈ softmax∗(−z) for each

z = (z1, . . . , zn) ∈ Rn. Thus, a differentiable approximation Ẽ : Φn → R of the objective function E to
be maximized is given by

Ẽ(ϕ) =
1

|W |
∑
x∈W

n∑
i=1

λ
(
1CGT

i
(x), softmax∗i (−D(x, ϕ))

)
. (9)

In particular, in [43], the similarity measure λ : {0, 1} × [0, 1] → (−∞, 0] given by the negative binary
cross-entropy loss λ(y, y′) = y log y′ + (1 − y) log(1 − y′) is employed, where y ∈ {0, 1} and y′ ∈ [0, 1].

Finally, to obtain the fitted GBPD model, the negative objective function −Ẽ is minimized using a
(GPU-accelerated) stochastic gradient descent algorithm and running it for up to 25 iterations.

3.5 Gradient descent-based fitting II [Neper]

In [39], fitting Laguerre tessellations to data is formulated as a non-linear optimization problem, where
the optimization variables are the coordinates and weights of the generators. For n generators, this leads
to a total of 4n variables. The approach, henceforth called Neper with reference to its implementation in
the Neper package [55], was developed to account for statistical reconstruction of cell sizes and shapes.
However, it can also be used for a grain-by-cell reconstruction based on microscopy measurements or
3D image data. Here, we use the latter.

The aim is to minimize the discrepancy between the measured grains and the cells of a Laguerre
tessellation. To this end, for each i ∈ {1, . . . , n}, let

∂CGT
i = {x ∈ CGT

i : min
y∈N6(x)

1CGT
i

(y) = 0}

denote the boundary voxels of cell CGT
i with N6(x) denoting the set of voxels sharing a face with x.

Again, it is useful to assume that V ⊂ R3 is connected. The discrepancy of a grain CGT
i and its

corresponding Laguerre cell Ci can be defined via

δi(ϕ) =

√ ∑
x∈∂CGT

i

inf{||x− y||2 : y ∈ Ci},

yielding the objective function O : Φn → [0,∞), where

O(ϕ) =
2

d̄
∑n

i=1 |∂CGT
i |

√√√√ n∑
i=1

δi(ϕ)2,

with d̄ denoting the mean grain diameter in the grain map GT.
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Minimizing O(ϕ) with respect to the variables x1, . . . , xn, w1, . . . , wn defines an unconstrained non-
linear optimization problem. The implementation in Neper employs the C++ NLopt library [56] to
solve the problem using derivative-free methods: Subplex [57], a variant inspired by the Nelder–Mead
simplex algorithm, and Praxis [58], which performs line minimization along principal axes. The initial
parameter values are selected according to the heuristic Hq (see Section 3.1).

The optimization can terminate based on several criteria; following [39], we adopt an absolute error
criterion, stopping when the improvement in the objective function over 40n iterations falls below 10−3.

3.6 Other algorithms from the literature

3.6.1 Gibbs-Laguerre tessellations

In [59], the reconstruction problem is addressed by generating a realization of an appropriate Gibbs
point process. The point process distribution is governed by an energy function designed to minimize
discrepancies between the Laguerre cells and the target distribution of grain characteristics. Various
methods to incorporate correlations among these characteristics have also been developed [60]. While
this approach has primarily been applied to stochastic reconstruction, it can be adapted to minimize
discrepancies on a grain-by-cell basis. However, as the method is designed to match the geometric
features of polyhedra, it does not readily apply to the reconstruction of voxel-based data.

3.6.2 Gradient descent-based polyhedra matching

A further gradient descent-based method is described in [38]. Similarly to the method mentioned in
Section 3.6.1, it relies on the polyhedral Laguerre cell representation. The objective is to minimize the
total mismatch volume between the cells of the approximating tessellation and the observed grains. The
total mismatch volume can be expressed in terms of a continuously differentiable function which needs
to be minimized. The variables correspond to the set of generators.

3.6.3 Optimal transport-based approaches

An optimal transport–based approach for generating Laguerre diagrams with prescribed cell volumes
has been introduced in [48]. This approach is based on the result that, for any given set of cell volumes,
a corresponding Laguerre tessellation exists, and finding such a tessellation reduces to solving a convex
optimization problem. Although the primary focus is not on fitting, the authors demonstrate that the
method can be adapted for this purpose by initializing the seed points at the centroids of the target
grains. The subsequent work [61] proposes a method for generating a Laguerre diagram or GBPD
with prescribed volumes whose centroids are close—in the least-squares sense—to a given set of target
centroids. The paper [62] presents a highly efficient, GPU-accelerated implementation of a semidiscrete
optimal transport method, accompanied by a Python library, for generating GBPDs with prescribed
statistical properties.

3.6.4 Simulated annealing approaches

The algorithm described in [40] and [44] is based on the simulated annealing optimization method, which
draws inspiration from the physical annealing process. Starting from an initial parameter configura-
tion, it iteratively perturbs a single parameter associated with a randomly selected generator, thereby
producing an updated discrepancy value. The lower the new discrepancy, the higher the probability
of the new parameter configuration being accepted. The speed of convergence can be controlled via a
cooling schedule that is included in the acceptance probabilities.

3.7 Some general considerations

All methods discussed above fit a given grain structure using a tessellation from a specified model
class. The quality of the fit is assessed—either directly or indirectly, as in the LP approach—using an
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appropriate discrepancy metric, which is subsequently minimized with respect to the set of generators.
For solving the optimization problem, iterative approaches such as the cross entropy method or gradient
descent as well as a direct linear program can be used. In the literature, both volume-based and interface-
based measures are considered, see the discussion in [41]. Volume-based measures aim at maximizing the
volume overlap between the observed grains and their counterparts in the tessellation approximation. In
contrast, interface-based measures only consider fitting the grain boundaries. Interface-based measures
are more efficient from a computational point of view since only boundary voxels need to be checked.
For Laguerre tessellations, the measures can additionally be evaluated analytically without discretizing
the tessellation. For GBPDs this is currently not possible in 3D as no explicit representation of the cell
boundaries is known, see [63] for the 2D case. To reduce the runtime further, the computation of the
discrepancy measure can be reduced to a subset of voxels. This approach is applied by the CE method
for the interface-based method and by LP when using the so-called coresets [45] in a volume-based
approach.

In general, designing a fitting method can be viewed as a modular task that involves selecting (a)
a class of tessellation models, (b) a data representation format, (c) a discrepancy measure, and (d) an
optimization scheme—typically with associated hyperparameters. The performance of the optimization
step can be further enhanced by specifying an appropriate initial configuration and, in many cases, a
stopping criterion.

4 Image data

We evaluate several 3D polycrystal and foam image data sets to assess the performance of the algorithms
stated in Section 3.

4.1 Polycrystals

4.1.1 Time-resolved microstructure of AlCu polycrystals

We consider time-resolved 3D image data representing the polycrystalline microstructure of an alu-
minum (Al) copper (Cu) alloy. 3D imaging of a 1.4 mm-diameter cylinder of Al-5 wt%Cu has been
performed by means of 3DXRD measurements as described in Section 3.2 of [64]. Image data has been
acquired for seven different time steps during grain coarsening by Ostwald ripening. Each 3D image has
a size of 531×321×321 voxels, where the cubic voxels have an edge length of 5 µm. In the present paper,
we focus on the data corresponding to the initial time step t = 0, as well as on data for t = 20, and
t = 60. At the initial time, the image comprises 938 grains. Off-grid representations of the grain system
by parametric tessellations such as Laguerre tessellations and GBPDs are discussed in [43], where the
method described in Section 3.4 has been used to fit tessellation models to image data. Slices and a
3D rendering of the AlCu polycrystal data are shown in Figure 2. We will refer to these data sets as
AlCuStep0, AlCuStep20, and AlCuStep60.

4.1.2 Time-resolved microstructure of 99.9% pure iron polycrystals

We also consider time-resolved 3D image data representing the polycrystalline microstructure of a
99.9% pure iron sample. The data set is discussed and analyzed in detail in [8, 65], where the complete
data processing workflow—from the initial experiment to the acquisition of grain scans—is thoroughly
described, particularly within the supplementary materials. The data set, obtained by a diffraction
contrast tomography (DCT) [66, 67] experiment at beamline ID11 at the European Synchrotron Radia-
tion Facility (ESRF), comprises 15 3D images, which were taken at different time steps of an annealing
process. The material was first cold-rolled and annealed for 30 minutes at 700°C to fully recrystallize
before it was first scanned. In the present paper, we focus on the data for the initial time step t = 0.
At this time step, the 280× 320× 256 voxel image, composed of cubic voxels each with an edge length
of 1.54 µm, contains a total of 1,327 grains. A 2D slice through this data is shown in Figure 3. We will
refer to the data set as PureFeStep0.
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(a) (b) (c) (d)

Figure 2: Image data representing grain growth in AlCu polycrystals, provided by C. E. Krill. A 3D
rendering at the initial time step (a), as well as 2D cross-sections after time steps 0, 20, and 60 (b,c,d)
are shown. The image size is 531× 321× 321 with a voxel edge length of 5µm.

Figure 3: 2D slice through the 3D dataset of 99.9% pure iron [22], provided by H. F. Poulsen. The
image size is 280× 320× 256 with a voxel edge length of 1.54 µm.

4.2 Foams

4.2.1 Ceramic foam

The first foam sample is a ceramic foam with a size of 2.1 cm×5 cm×5 cm. The pore size is 20 ppi (pores
per inch). The sample was scanned by µCT at the Fraunhofer ITWM in Kaiserslautern, Germany, with
a voxel edge length of 33.91 µm resulting in an image size of approximately 700× 1550× 1500 voxels.

The wall system of this partially closed foam was segmented and analyzed in [68]. Stochastic
models for the microstructure were presented in [69, 70]. A 2D slice of the ceramic foam image along
with its segmentation is shown in Figure 4. Here, we consider a cropped section of the image of size
400× 800× 800 voxels that contains 1,003 pores. We will refer to the data set as Ceramic.

4.2.2 Closed polymer foam

The second example is a Rohacell® polymethacrylimide (PMI) closed-cell foam (WIND-F RC100) that
was imaged by micro computed tomography with a voxel edge length of 2.72 µm. The image size is
1300 × 1100 × 1000 voxels. Analysis of the image and Laguerre tessellation-based models for the 3D
microstructure are presented in [47, 71]. A 2D slice of the polymer foam image and its segmentation
are shown in Figure 5. Here, we consider a cropped section of the image of size 600× 600× 600 voxels
that contains 380 pores. We will refer to the data set as WIND.
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Figure 4: 2D slice of the reconstructed CT image of a partially closed ceramic foam (top), cell recon-
struction by watershed (middle), and a volume rendering (bottom). The image size is 700×1550×1500
voxels with a voxel edge length of 33.91 µm.

4.2.3 Closed zinc foam

The closed zinc foam sample and its image are sourced from the project Genormte Charakterisierung
zellularer Werkstoffe mittels Computertomografie (NORMZELL, BMWi funding reference 01FS11003).
The image size is 975 × 1100 × 1350 voxels with a voxel edge length of 18.95 µm. A slice of the zinc
foam image along with its segmentation are shown in Figure 6. Here, we consider two cropped sections
of the image, each of size 400× 400× 400 voxels, which contain 879 and 1,903 pores, respectively. The
cropped cutouts are shown in Figure 7. We will refer to the data set as Zinc1 and Zinc2.
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Figure 5: 2D slice of the reconstructed CT image of a closed polymer foam (left), cell reconstruction by
watershed (middle), and a volume rendering (right). The image size is 1300× 1100× 1000 voxels with
a voxel edge length of 2.72 µm.

Figure 6: 2D slice of the reconstructed CT image of a closed zinc foam (left), cell reconstruction by
watershed (middle), and a volume rendering (right). The image size is 975× 1100× 1350 voxels with a
voxel edge length of 18.95 µm

Figure 7: Cropped cutouts of the cell reconstruction shown in Figure 6 (middle), both of size 400 ×
400× 400 voxels. Left: Zinc1, right: Zinc2

5 Measures for performance evaluation

To assess the goodness of fit between the discretized tessellation cells C1 = C1(ϕ) ∩ W, . . . , Cn =
Cn(ϕ) ∩W and the ground truth GT : W → {0, . . . , n}, representing n grains, we compute a range of
performance measures. First, we consider the fraction Fc of correctly assigned voxels given by

Fc =
1

|{x ∈ W : GT(x) > 0}

n∑
i=1

|CGT
i ∩ Ci|.
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Furthermore, we consider the relative frequency F0 = n−1|{i ∈ {1, . . . , n} : Ci = ∅}| of missing cells.
The values for Fc and F0 for the fitting algorithms considered are listed in Tables 2 and 3 of the
appendix, respectively.

In addition, we compute performance measures that quantify cell-wise discrepancies. From here
on, we will restrict the comparison to non-missing cells. Therefore, we define the index set I = {i ∈
{1, . . . , n} : Ci ̸= ∅}. To characterize the shape and size of a cell C ⊆ W , we consider the volume-
equivalent diameter φd(C) of C, which is given by

φd(C) =
3

√
6|C|
π

,

as well as the surface area φA(C), the elongation factor φelo(C) (ratio of second longest to longest half
axes lengths of best fitting ellipsoid), and the flatness factor φflat(C) (ratio of shortest to second longest
half axes lengths of best fitting ellipsoid) [72]. Then, for each descriptor φ ∈ {φd, φA, φelo, φflat} we
quantify the mean normalized error of the fit by

Fφ =
1

|I |φ
∑
i∈I

|φ(CGT
i )− φ(Ci)|,

where φ = 1
n

∑n
i=1 φ(G

GT
i ). The values of the performance measures Fφd

, FφA
, Fφelo

, Fφflat
for the

considered fitting algorithms are given in Tables 4, 5, 6, and 7 of the appendix, respectively.
Furthermore, we define a performance measure to assess the accuracy with which the cells C1, . . . , Cn

of the fitted tessellation reflect the topology of GT. Therefore, for each i ∈ I , let NGT(i), NT (i) ⊆
{1, . . . , n} denote the sets of indices of grains/cells adjacent to CGT

i and Ci within the ground truth GT
and the fitted tessellation, respectively, where the notion of adjacency is based on the N26 neighborhood,
as in Section 3.3. We then quantify the agreement between the neighborhood of CGT

i and that of Ci

using the intersection over union IoU(i) defined as

IoU(i) =
|NGT(i) ∩NT (i)|
|NGT(i) ∪NT (i)|

.

Finally, we quantify the goodness-of-fit with respect to the topology by the performance measure FIoU

which is given by

FIoU =
1

|I |
∑
i∈I

IoU(i).

The values of FIoU for the fitting algorithms considered are listed in Table 8 of the appendix.

6 Results

The values for the volume-based accuracy measure Fc listed in Table 2 indicate that many differences
between the fitting algorithms considered in the present paper could be attributed to the choice of the
tessellation model, rather than the fitting method. Overall, methods that fit GBPD-type tessellations
generally achieve higher accuracies than those that fit Voronoi and Laguerre tessellations. This holds
particularly for datasets that exhibit more complex cell morphologies (e.g., Zinc1, PureFeStep0).
This is mostly to be expected because of the higher flexibility of GBPDs. However, for datasets that
exhibit ‘simpler’ cell morphologies (e.g., convex cells), such as the Ceramic and WIND datasets,
the algorithms that fit Laguerre tessellations already perform quite well. This could be attributed
to the fact that Laguerre tessellations inherently enforce the constraint of planar cell facets. Among
the algorithms that fit Laguerre tessellations, Neper yields the best accuracy values for the considered
datasets. Notably, for the two datasets Ceramic and WIND, the fit achieved by the even simpler
Voronoi tessellation yields results comparable to those of Laguerre tessellations fitted with Neper (see
Table 2). As expected, for datasets that exhibit more complex grain architectures, the more general
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Laguerre tessellation outperforms the Voronoi tessellation due to its greater flexibility in controlling cell
sizes through an additional parameter per cell.

In total, GBPD tessellations fitted by the GD method, which fits all parameters, yield the best
performance with respect to Fc for most of our datasets. In fact, across our datasets, the accuracy
of the evaluated GBPD algorithms varies by no more than 5 percentage points. Interestingly, the Hq
algorithm achieves the lowest mean normalized errors Fφd

in volume-equivalent diameters across the
evaluated data sets. This suggests that its underlying heuristic tends to generate tessellations whose
cell volumes closely match those observed in the data. A similar trend was noted in [22], although that
study also identified grain configurations for which Hq fails to produce satisfactory fits. In contrast, the
LP method ensures that the generated GBPDs adhere to specified volume bounds, which were set to
±2 voxels per grain in our experiments. When these bounds are reduced to zero, LP—unlike the other
methods listed in Table 4—yields a volume-equivalent diameter error of Fφd

= 0 by construction.
The surface area errors FφA

in Table 5 show a similar trend as in Table 2. In particular, Laguerre
tessellations have a limited capacity to reproduce the curved facets of the more complex data sets.
Again, Laguerre tessellations fitted by Neper show a good (even the best) performance for the two foam
data sets Ceramic and WIND.

The better ability of GBPDs to fit cell shapes is also evident from the errors Fφelo
and Fφflat

of the
shape characteristics elongation and flatness, see Tables 6 and 7.

For almost all the considered datasets, Hq has the smallest frequency of missing cells, see Table 3.
This can be explained by the fact that systems of non- or only mildly overlapping objects do not generate
empty cells. Hence, the construction used in the heuristics—sites corresponding to the barycenters of
the grains—is not prone to produce sets of generators with empty cells. The choice of update scheme
in the iterative algorithms determines to which extent empty cells can arise in subsequent iterations.

With respect to topology, GBPDs outperform Laguerre tessellations again, see Table 8. The latter
cannot reproduce neighborhood relations that require curved boundaries, see Figure 8.

(a) (b) (c)

Figure 8: Fitting of the data set described in Section 4.1.2 using the method described in Section 3.4.
Results are visualized by comparing image data (a), the fit with a Laguerre tessellation (b), and the fit
of a GPBD (c) at the example of one 2D slice.

Cross sections of the data sets considered in this paper, together with a fitted Voronoi tessellation
using GD, fitted Laguerre tessellations using Hq, Neper, CE and GD, a fitted diagonal GBPD using
GD, and fitted GBPDs using GD, LP, H0 and Hq, are shown in Figures 9 to 16 of the appendix. A
rough estimate of hardware-specific runtimes can be found, for example, in [43].

7 Summary

We reviewed various algorithms for fitting Voronoi tessellations, Laguerre tessellations and GBPDs to
grain structures observed in polycrystalline materials and foams. The effectiveness of these algorithms
varied depending on the specific data sets, the tessellation models employed, and the evaluation criteria
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used. The heuristic Hq achieved good performance on our data sets while incurring small computa-
tional cost. However, this is not always the case—as illustrated in [62], where the relative error in the
resulting areas reaches 380%, and in [22], which highlights substantial differences between Hq and H0.
Nevertheless, due to its very low computational cost, Hq seems a useful choice for generating initial con-
figurations for further optimization. Each of the presented algorithms exhibits distinct characteristics,
and in practical applications, one must determine which of these are most suitable for the specific use
case. The modular structure of the proposed fitting approaches enables targeted improvements, such as
enhancing the accuracy of surface area or volume representations. The established discrepancy metrics
primarily account for mismatches in cell volumes and boundaries. Additionally, metrics related to cell
shape and topology—used here for model validation—can also be incorporated directly into the fitting
process. This flexibility allows for the development of application-specific fitting strategies tailored to
the structural features of interest.
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Appendix

Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.80 0.88 0.93 0.86 0.85 0.93 0.95 0.90 0.93 0.93
AlCuStep20 0.82 0.89 0.94 0.88 0.86 0.94 0.95 0.93 0.94 0.94
AlCuStep60 0.82 0.89 0.93 0.90 0.85 0.94 0.96 0.93 0.94 0.94
PureFeStep0 0.68 0.69 0.73 0.62 0.71 0.80 0.90 0.85 0.85 0.86
Ceramic 0.91 0.89 0.92 0.91 0.91 0.93 0.90 0.93 0.92 0.92
WIND 0.90 0.88 0.94 0.93 0.92 0.96 0.94 0.93 0.93 0.93
Zinc1 0.74 0.74 0.80 0.74 0.77 0.86 0.92 0.90 0.89 0.90
Zinc2 0.76 0.80 0.83 0.79 0.80 0.89 0.91 0.91 0.90 0.90

Table 2: Values of Fc achieved by deploying the considered fitting methods to the different data sets.
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Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.01 0.00 0.00 0.00 0.02 0.09 0.00 0.12 0.00 0.00
AlCuStep20 0.00 0.00 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.00
AlCuStep60 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.05 0.00 0.00
PureFeStep0 0.01 0.02 0.04 0.03 0.02 0.08 0.00 0.00 0.00 0.00
Ceramic 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00
WIND 0.04 0.01 0.00 0.00 0.07 0.00 0.02 0.00 0.00 0.00
Zinc1 0.01 0.01 0.02 0.02 0.02 0.19 0.00 0.07 0.00 0.00
Zinc2 0.01 0.00 0.01 0.00 0.01 0.12 0.00 0.05 0.00 0.00

Table 3: Values of F0 achieved by deploying the considered fitting methods to the different data sets.

Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.104 0.069 0.015 0.036 0.067 0.032 0.017 0.068 0.012 0.011
AlCuStep20 0.093 0.065 0.017 0.033 0.062 0.024 0.015 0.013 0.012 0.011
AlCuStep60 0.094 0.071 0.021 0.039 0.071 0.023 0.014 0.048 0.012 0.011
PureFeStep0 0.153 0.128 0.082 0.149 0.115 0.051 0.025 0.059 0.029 0.022
Ceramic 0.016 0.046 0.008 0.010 0.010 0.014 0.030 0.014 0.014 0.009
WIND 0.053 0.079 0.014 0.040 0.025 0.020 0.024 0.016 0.016 0.012
Zinc1 0.141 0.127 0.044 0.101 0.098 0.055 0.025 0.037 0.025 0.019
Zinc2 0.113 0.090 0.037 0.071 0.081 0.046 0.029 0.041 0.021 0.016

Table 4: Values of Fφd
achieved by deploying the considered fitting methods to the different data sets.

Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.238 0.122 0.065 0.074 0.171 0.066 0.042 0.142 0.034 0.040
AlCuStep20 0.215 0.115 0.066 0.068 0.158 0.057 0.037 0.035 0.035 0.039
AlCuStep60 0.234 0.188 0.140 0.138 0.194 0.103 0.107 0.127 0.111 0.111
PureFeStep0 0.347 0.235 0.164 0.239 0.289 0.137 0.066 0.100 0.058 0.053
Ceramic 0.077 0.105 0.073 0.077 0.074 0.076 0.086 0.075 0.077 0.079
WIND 0.095 0.091 0.028 0.048 0.062 0.038 0.053 0.037 0.037 0.039
Zinc1 0.288 0.232 0.128 0.190 0.225 0.115 0.072 0.091 0.111 0.110
Zinc2 0.268 0.196 0.132 0.170 0.212 0.104 0.084 0.100 0.107 0.103

Table 5: Values of FφA
achieved by deploying the considered fitting methods to the different data sets.
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Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.176 0.112 0.106 0.109 0.153 0.072 0.043 0.059 0.029 0.030
AlCuStep20 0.174 0.102 0.106 0.098 0.160 0.057 0.040 0.034 0.030 0.030
AlCuStep60 0.174 0.119 0.118 0.111 0.155 0.056 0.036 0.045 0.033 0.032
PureFeStep0 0.245 0.229 0.230 0.235 0.227 0.131 0.059 0.072 0.068 0.066
Ceramic 0.071 0.165 0.068 0.085 0.073 0.049 0.073 0.037 0.040 0.038
WIND 0.110 0.190 0.092 0.096 0.085 0.056 0.059 0.059 0.063 0.060
Zinc1 0.220 0.207 0.212 0.202 0.209 0.109 0.060 0.054 0.059 0.058
Zinc2 0.198 0.179 0.165 0.177 0.176 0.085 0.068 0.054 0.056 0.055

Table 6: Values of Fφelo
achieved by deploying the considered fitting methods to the different data sets.

Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.159 0.113 0.087 0.097 0.143 0.071 0.044 0.056 0.031 0.032
AlCuStep20 0.147 0.116 0.094 0.103 0.140 0.060 0.043 0.032 0.029 0.030
AlCuStep60 0.156 0.122 0.099 0.101 0.139 0.058 0.044 0.042 0.030 0.030
PureFeStep0 0.257 0.264 0.227 0.254 0.247 0.159 0.066 0.071 0.068 0.066
Ceramic 0.098 0.137 0.088 0.103 0.098 0.060 0.087 0.048 0.048 0.049
WIND 0.106 0.148 0.096 0.090 0.089 0.068 0.080 0.061 0.062 0.062
Zinc1 0.251 0.249 0.239 0.251 0.247 0.141 0.078 0.059 0.058 0.058
Zinc2 0.189 0.161 0.161 0.177 0.171 0.089 0.076 0.053 0.051 0.051

Table 7: Values of Fφflat
achieved by deploying the considered fitting methods to the different data sets.

Voronoi Laguerre d-GBPD GBPD

GD Hq Neper CE GD GD GD LP H0 Hq

AlCuStep0 0.750 0.862 0.903 0.879 0.824 0.854 0.945 0.820 0.945 0.938
AlCuStep20 0.798 0.875 0.911 0.890 0.843 0.874 0.959 0.946 0.948 0.946
AlCuStep60 0.806 0.874 0.913 0.886 0.855 0.871 0.949 0.866 0.939 0.938
PureFeStep0 0.660 0.689 0.714 0.519 0.718 0.754 0.880 0.838 0.879 0.881
Ceramic 0.935 0.882 0.944 0.919 0.936 0.954 0.928 0.950 0.955 0.949
WIND 0.874 0.843 0.910 0.880 0.920 0.928 0.903 0.912 0.916 0.902
Zinc1 0.698 0.733 0.789 0.689 0.761 0.738 0.900 0.865 0.905 0.901
Zinc2 0.722 0.787 0.833 0.757 0.787 0.810 0.903 0.885 0.917 0.912

Table 8: Values of FIoU achieved by deploying the considered fitting methods to the different data sets.
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 9: Cross sections of the AlCuStep0 data set (a), a fitted Voronoi tessellation using GD (b),
fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using
GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 10: Cross sections of the AlCuStep20 data set (a), a fitted Voronoi tessellation using GD (b),
fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using
GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 11: Cross sections of the AlCuStep60 data set (a), a fitted Voronoi tessellation using GD (b),
fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using
GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 12: Cross sections of the PureFeStep0 data set (a), a fitted Voronoi tessellation using GD (b),
fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using
GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 13: Cross sections of the Vesuvius data set (a), a fitted Voronoi tessellation using GD (b),
fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using
GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 14: Cross sections of the WIND data set (a), a fitted Voronoi tessellation using GD (b), fitted
Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using GD
(g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 15: Cross sections of the grillo063-879 data set (a), a fitted Voronoi tessellation using GD (b),
fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD using
GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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(a) data (b) Voronoi GD (c) Laguerre Hq

(d) Laguerre Neper (e) Laguerre CE (f) Laguerre GD

(g) GBPD diagonal GD (h) GBPD GD (i) GBPD LP

(j) GBPD H0 (k) GBPD Hq

Figure 16: Cross sections of the grillo063-1903 data set (a), a fitted Voronoi tessellation using GD
(b), fitted Laguerre tessellations using Hq (c), Neper (d), CE (e) and GD (f), a fitted diagonal GBPD
using GD (g), and fitted GBPDs using GD (h), LP (i), H0 (j) and Hq (k).
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