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Details of image segmentation

For image segmentation, i.e., for classifying the voxels as pores or solid, the following fea-

tures are used: Gaussian smoothing, Laplacian of Gaussian, Gaussian gradient magnitude,

difference of Gaussians, structure tensor eigenvalues, and Hessian of Gaussian eigenvalues,

each one for σ ∈ {0.3, 0.7, 1.0, 1.6, 3.5, 5.0, 10.0}. The output of the trained random forests

is a probability map, indicating the probability whether a voxel belongs to the pore space or

to the solid phase. Each voxel that belongs to the solid phase with probability greater than

0.4 is assigned to solid phase and otherwise to background, leads to a segmentation into the
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solid phase and its complement. Note that this threshold has been manually determined

based on visual inspection, where we used the open-source software Fiji.

Computation of morphological descriptors

In the following, we describe the computation of morphological descriptors considered for

structure characterization by statistical image analysis. For a given sampling window, the

thickness of the electrode δ is computed as follows. For each line of voxels, which is orthog-

onal to the aluminum foil, the corresponding thickness is defined as the maximum distance

between two voxels on this line belonging to the solid phase of the electrode. The average

of these distances over all lines contained in the sampling window is considered to be the

thickness of the electrode in this sampling window. The porosity ε is determined by the

point-count method,S1 i.e., the porosity is the ratio of pore voxels over all voxels of the

electrode within the sampling window. The surface area per unit volume S is computed as

the surface area between solid and pores in the considered sampling window divided by the

volume of the sampling window. For the computation of surface areas from voxelized image

data, we use the algorithm proposed in Ohser and Schladitz.S2 Finally, we consider the mean

geodesic tortuosity which is a purely geometrical descriptor quantifying the windedness of

shortest transportation paths through a given phase. To compute the mean geodesic tortu-

osity of a phase in a given sampling window, the shortest pathways through this phase are

determined by applying the Dijkstra algorithmS3 on the voxel grid. When computing mean

geodesic tortuosity on local cutouts as sampling windows, the starting points of the paths

are located within these local cutouts, while the paths themselves are allowed to leave the

sampling window in order to avoid a strong influence of edge effects.

Univariate probability density functions

The probability density functions f : R → [0,∞) of the parametric distributions used for

modeling the univariate distributions of local morphological descriptors are provided in the
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following.

1. Mixture of two Beta distributions Beta(α1, α2, β1, β2, pB)

f (x) = pB
Γ (α1 + β1)x
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,

for each x ∈ [0, 1], where α1, α2, β1, β2 > 0 and 0 ≤ pB ≤ 1.

2. Mixture of two Gaussian distributions N(µ1, µ2, σ1, σ2, pN)

f (x) = pN
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for each x ∈ R, where µ1, µ2 ∈ R, σ1, σ2 > 0 and 0 < pN < 1.

3. Maxwell-Boltzmann distribution MB(µM , σM)

f (x) =

√
2
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exp
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2σ2
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)
,

for each x > µM , where µM ∈ R and σM > 0.

4. Shifted Gamma distribution Γ(aΓ, σΓ, µΓ)

f (x) =
1

Γ (aΓ)

(
x− µΓ

σΓ

)aΓ−1

exp

(
−x− µΓ
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)
,

for each x > µΓ, where aΓ, σΓ > 0 and µΓ ∈ R.

5. Rayleigh distribution R(µR, σR)

f (x) =
x− µR

σR

exp

(
−(x− µR)

2

2σ2
R

)
,

for each x > µR, where µR ∈ R and σR > 0.
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Brief introduction to copulas

We briefly recall the concept of copulas. Let (U, V ) be a two-dimeensional random vector

taking values in the unit square [0, 1]2, where U and V are uniformly distributed on the unit

interval [0, 1]. Then, the joint probability distribution function C : [0, 1]2 → [0, 1] of (U, V )

is called a two-dimensional copula, where C(u, v) = P (U ≤ u, V ≤ v) with P (U ≤ u) = u

and P (V ≤ v) = v for any u, v ∈ [0, 1]. From Sklar’s representation formulaS4 we get that

for any two-dimensional random vector (X, Y ), its joint probability distribution function

H : R2 → [0, 1] with H(x, y) = P (X ≤ x, Y ≤ y) can be written in the form

H(x, y) = C (F (x) , G (y))

for all x, y ∈ R, where F : R → [0, 1] with F (x) = P (X ≤ x) for each x ∈ R and G : R →

[0, 1] with G (y) = P (Y ≤ y) for each y ∈ R are the univariate distribution functions of X

and Y , respectively, and C : [0, 1]2 → [0, 1] is a certain copula. Moreover, if the functions

F,G and C are differentiable, then the joint probability density h : R2 → [0,∞) of (X, Y )

can be written as

h(x, y) = f(x)g(y)

(
∂2

∂x∂y
C

)
(F (x), G(y))

for all x, y ∈ R, where f : R → [0,∞) and g : R → [0,∞) are the univariate probability

densities of X and Y , respectively. From the joint probability density, we directly obtain the

conditional probability density hY=y : R → [0,∞) of X given Y = y for each y ∈ R fulfilling

g(y) > 0. It reads as

hY=y(x) = f(x)

(
∂2

∂x∂y
C

)
(F (x), G(y))

for each x ∈ R.
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