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ABSTRACT

We consider the stochastic subscriber line model as a spatial stochastic model for telecommunication networks
and we are interested in the evaluation of the required capacities at different locations of the network in order
to provide, in fine, an estimation of the cable system which has to be installed. In particular, we consider
hierarchical telecommunication networks with higher–level components (HLC) and lower–level components
(LLC) located on the road system underlying the network. The cable paths are modeled by shortest paths along
the edge set of a stationary random tessellation, whereas both HLC and LLC are modeled by Cox processes
concentrated on the edges of this tessellation. We then introduce the notion of capacity which depends on
the length of some subtree on the edge set of the underlying tessellation. Moreover, we investigate estimators
for the density and distribution function of the typical length of this subtree which can be computed based on
Monte Carlo simulations of the typical serving zone. In a numerical study, the density of the typical subtree
length is determined for different specific models.

Keywords: Stochastic Geometry, Random Tessellations, Point Processes, Telecommunication Systems.

INTRODUCTION

A statistical method based on spatial stochastic
modeling is proposed in order to analyze required
capacities in hierarchical telecommunication
networks. The networks considered in this paper
possess higher–level components (HLC) and lower–
level components (LLC) located on the cable system
of the network. With each HLC a domain is associated
which is called the serving zone of this HLC. All
LLC within a serving zone are then connected
to its HLC on the shortest path along the road
system. Recently, such telecommunication networks
have been studied in the context of the stochastic
subscriber line model (SSLM), where a method
has been developed to estimate the mean typical
shortest path length and the mean typical subscriber
line length from LLC to HLC (Gloaguen et al.,
2009a). Note that the SSLM is particularly suitable
in the analysis of telecommunication access networks.
Further methods for the analysis and optimization
of telecommunication networks based on spatial
stochastic models have been developed e.g. in Baccelli
and Błaszczyszyn (2001); Baccelli and Zuyev (1996);
Baccelli et al. (2000).

We investigate a network characteristic which
is related to the typical shortest path length in
the SSLM. In particular, we are interested in
the distribution of capacities required at different
locations of the network. The required capacity is an
important characteristic in the strategic planning of
telecommunication networks. On the one hand, it is

too expensive to install cables with large capacities
at all locations of the network. On the other hand,
it is important that the cable system of the network
provides the capacities demanded by the subscribers.
However, once the network is built, it is difficult
to change the installed cables of the network. So
it is essential to know the required capacities at
given network locations in advance. Based on our
stochastic model, the approach developed in the
present paper provides a method to design capacities
of new networks or analyze existing cable systems.

The paper is organized as follows. First we briefly
mention how the density of the typical shortest path
length can be estimated, which will be used later
on in the paper. Then, we introduce the notion of
capacity at given network locations and show how its
distribution depends on the lengths of some subtrees of
the network. The considered locations are modeled by
point processes, where we concentrate on two special
cases. We analyze the capacity required at locations
with a given shortest path length to the closest
HLC and at network locations chosen at random,
respectively. In both cases we derive representation
formulae for distributional characteristics of the
typical subtree length, which are suitable to construct
estimators for these network characteristics based on
samples of the typical serving zone. Finally, we present
the results of a numerical study, where the density of
the typical subtree length is determined for different
specific models.
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(a) PLT (b) PVT

Figure 1. HLC with their serving zones (blue) and LLC (green) with shortest paths along the edge set (red)

SHORTEST PATH LENGTHS

To begin with we briefly introduce our network
model which is based on (marked) point processes,
random tessellations and Palm theory. For details on
these basic notions from stochastic geometry, see e.g.
Stoyan et al. (1995); Schneider and Weil (2008). The
cable system is modeled by the edge set T (1) of a
stationary and isotropic random tessellation T with
intensity γ = Eν1(T (1) ∩ [0,1)2), where ν1 denotes
the 1-dimensional Hausdorff measure. For example, T
can be a Poisson line tessellation (PLT), a Poisson–
Voronoi tessellation (PVT), or a Poisson–Delaunay
tessellation (PDT). The HLC and LLC are modeled
as (conditionally independent) Cox processes XH and
XL with linear intensities λ` and λ ′` on T (1), where the
random driving measure Λ of XH and XL is given by
Λ(B) = λ̃ ν1(B∩ T (1)),B ∈ B(R2) with λ̃ = λ` and
λ̃ = λ ′`, respectively. Each point XL,n of XL is then
connected to its nearest neighbor of XH with respect
to the Euclidean distance. Thus XL,n is connected to
a point XH, j of XH if and only if XL,n is located
in the Voronoi cell ΞH, j of XH, j induced by XH .
Furthermore, we assume that the physical connection
between XL,n and its nearest neighbor of XH is obtained
on the shortest path along the edge set T (1). However,
the connection path may lie partly outside ΞH, j. Let
s(XL,n) denote the length of this path and consider the
stationary marked point process X s

L = {(XL,n,s(XL,n))}.
The typical mark of X s

L is called the typical shortest
path length. It is denoted by S∗ and can formally
be defined by the Palm mark distribution of X s

L. In

the ergodic case, the empirical distribution of the
marks s(XL,n) belonging to a sampling window W
converges to the distribution of S∗ if W unboundedly
increases. Thus, S∗ can be interpreted as the shortest
path length of a location chosen at random among all
LLC. Realizations of X s

L are displayed in Figure 1. Let
TH = {ΞH,n} denote the Voronoi tessellation of XH
and consider the marked point process {(XH,n,Lo

H,n)},
where Lo

H,n = (T (1) ∩ΞH,n)−XH,n, i.e., the points of
XH are labelled with the (centered) segment systems
of T (1) inside the Voronoi cells of TH . The segment
system L∗H inside the typical cell of TH is then defined
as the typical mark of {(XH,n,Lo

H,n)}. Note that L∗H can
be split into segments Si, i = 1, . . . ,M with endpoints
Ai,Bi such that s(Ai) < s(Bi) = s(Ai) + ν1(Si), where
s(x) denotes the length of the shortest path from x∈ L∗H
to the origin, see Figure 2.

Figure 2. Splitting of L∗H into segments S1, . . . ,SM

Using Neveu’s exchange formula for stationary
marked point processes, the following representation

2



Image Anal Stereol ?? (Please use \volume):1-9

formula can be derived, see Gloaguen et al. (2009b);
Voss et al. (2009c).

Lemma 1 The density fS∗ of S∗ is given by

fS∗(x) =

 λ` E
[

M
∑

i=1
1I[s(Ai),s(Bi))(x)

]
if x≥ 0 ,

0 otherwise,

where 1I[s(Ai),s(Bi))(x) equals 1 if x ∈ [s(Ai),s(Bi)) and
0 otherwise.

Note that the density fS∗ of S∗ does not depend on the
intensity λ ′` of LLC. Furthermore, the representation
formula given in Lemma 1 leads to the (plug–in)
estimator

f̂S∗(x;n) = λ`
1
n

n

∑
j=1

M j

∑
i=1

1I[s(Ai, j),s(Bi, j)))(x) (1)

for fS∗(x) which can be computed based on the
simulation of n i.i.d. copies L∗H,1, . . . ,L

∗
H,n of L∗H . For

T being a PLT, PVT, and PDT, respectively, simulation
algorithms for L∗H are given in Fleischer et al. (2009);
Gloaguen et al. (2005); Voss et al. (2009a). Note
that the estimator f̂S∗( · ;n) given in (1) has good
statistical properties. For example, it can be shown that
P( lim

n→∞
supx∈R | f̂S∗(x;n)− fS∗(x)| = 0) = 1, see Voss

et al. (2009c).

MODELING OF CAPACITIES

The main topic of this paper is the modeling and
analysis of capacities required at various locations
in telecommunication networks. They are important
performance characteristics and should be investigated
before the networks are built physically, because it
should be guaranteed as a rule that the capacity
at a given location is higher than the demand
at this location. Otherwise, the demand of some
LLC cannot be served. Thus, for strategic planning
of telecommunication networks, the analysis of
capacities required at given locations of the network
is an important task.

More formally, the capacity required at a given
point x ∈ T (1) of the edge set T (1) is understood as
the sum of demands which are requested by all those
LLC located in the same serving zone as x and whose
shortest paths cross x. In connection with this, we
consider a sequence of independent and identically
distributed random variables C1,C2, . . . which describe
the demand of the LLC at the locations XL,1,XL,2, . . .,

respectively. Moreover, let X = {Xn} be a further
stationary point process of random locations Xn on
the edge set T (1) which is conditionally independent
of XL given T (1). The points of X are used to model
the locations at which we want to analyze the required
capacities. The (planar) intensity of {Xn} is denoted
by λ . For each n ≥ 1, we define the capacity C(Xn)
required at Xn in the following way. If Xn ∈ LH, j =
Lo

H, j +XH, j for some j ≥ 1, then we put

C(Xn) =
∞

∑
i=1

1ITsub(Xn)(XL,i)Ci , (2)

where Tsub(Xn) = {y ∈ LH, j : Xn ∈ P(y,XH, j)} is the
subset of those points y on LH, j whose shortest path
P(y,XH, j) from y to XH, j crosses Xn, see Figure 3. Note
that we call Tsub(Xn) the subtree rooted at Xn.

Figure 3. Tsub(x) (black) at given location x (black)
with LLC (grey) on subtree.

Since Xn is conditionally independent of XL given
T (1), formula (2) implies that C(Xn)

d= ∑
Kn
i=1 Ci, where

Kn ∼ Poi(λ ′`ν1(Tsub(Xn))) given ν1(Tsub(Xn)). Here
Poi(µ) denotes the Poisson distribution with mean µ .
Thus, the distribution of C(Xn) is fully characterized
by λ ′` and the distribution of C1 and the subtree
length ν1(Tsub(Xn)), respectively. Moreover, a similar
representation formula can be derived for the typical
capacity C∗ (at the typical point of {Xn}), where
the nonnegative random variable C∗ is distributed
according to the Palm mark distribution of the
stationary marked point process {(Xn,C(Xn))}.

Theorem 1 It holds that

C∗ =
K∗

∑
i=1

Ci , (3)

where K∗ ∼ Poi(λ ′`ν1(T ∗sub)) given ν1(T ∗sub) and
the random variable ν1(T ∗sub) is distributed
according to the Palm mark distribution of XT =
{(Xn,ν1(Tsub(Xn)))}.
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Proof Using (2), the definition of the (Palm mark)
distribution of C∗ gives that for each h : R→ [0,∞)

Eh(C∗) =
1
λ

E
(

∑
Xi∈[0,1]2

h
(

∑
XL, j∈Tsub(Xi)

C j

))
=

1
λ

E
[
E
(

∑
Xi∈[0,1]2

h
(

∑
XL, j∈Tsub(Xi)

C j

)
| T (1),XH

)]
,

where

E
(
∑i h

(
∑ j C j

)
| T (1),XH

)
= E

[
E
(
∑i h

(
∑ j C j

)
| X
)
| T (1),XH

]
= E

[
∑i E

(
h
(
∑ j C j

)
| X
)
| T (1),XH

]
and

E
(

h
(
∑ j C j

)
| X
)

= E
(

h
( Ki

∑
j=1

C j

)
| ν1(Tsub(Xi)

)
with Ki ∼ Poi(λ ′`ν1(Tsub(Xi))) given ν1(Tsub(Xi)).
Thus, the statement of the theorem follows from
the definition of the Palm mark distribution
of the stationary marked point process XT =
{(Xn,ν1(Tsub(Xn)))}.

In view of formula (3), it suffices to investigate
the distribution of the typical subtree length ν1(T ∗sub),
assuming that λ ′` and the distribution of C1 are known.
Similar to the statement of Lemma 1, we can express
the distribution of ν1(T ∗sub) in terms of the typical
segment system L∗H , using again Neveu’s exchange
formula. Let λH denote the (planar) intensity of XH
and let X̃T be the Palm version of XT which is obtained
under the Palm probability measure of {(XH,n,Lo

H,n)},
see e.g. Fleischer et al. (2009) for details. Then, the
following is true.

Theorem 2 For any measurable h : [0,∞)→ [0,∞),

Eh(ν1(T ∗sub)) =
λH

λ
E
∫

L∗H×[0,∞)
h(y) X̃T (d(x,y)) . (4)

Proof Consider the two jointly stationary marked
point processes XH = {(XH,n,Lo

H,n)} and XT . We can
regard (XT ,XH) as a random element of the space
N[0,∞),L of locally finite point sets with marks in [0,∞)
or L , where L denotes the family of all locally
finite segment systems containing the origin. Using the
function f : R2× [0,∞)×L ×N[0,∞),L → [0,∞) given
by

f (x,s,ζ ,ψ) =
{

h(s) if x ∈ ζ ,

0 otherwise ,
(5)

we can apply Neveu’s exchange formula (Neveu,
1976; Maier et al., 2004) for stationary marked point
processes which yields formula (4).

In the rest of this paper we focus on two special
cases for the point process {Xn} of locations at which
the required capacities are considered.

FIXED DISTANCE TO HLC

For some s > 0, let X = {Xn} be the point process
which consists of all points of {x ∈ T (1) : s(x) = s},
where s(x) denotes the shortest path length from x to
XH, j if x ∈ LH, j, i.e., X is the point process of those
points on T (1) with a fixed shortest path length to
their HLC which is equal to s. Then, the statement of
Theorem 2 can be specified in the following way.

Theorem 3 For any measurable h : [0,∞)→ [0,∞),

Eh(ν1(T ∗sub)) =
λ`

fS∗(s)
E

K̃

∑
i=1

h(ν1(Tsub(X̃i))) , (6)

where (X̃1,Tsub(X̃1)), . . . ,(X̃K̃ ,Tsub(X̃K̃)) denote the
marked points of X̃T on L∗H and K̃ is (random) total
number of these points. In particular, the distribution
function F : R→ [0,1] of ν1(T ∗sub) is given by

F(x) =
λ`

fS∗(s)
E

K̃

∑
i=1

1I[0,x](ν1(Tsub(X̃i))) , x≥ 0 . (7)

Proof Using formula (4) we only have to show
that λH/λ = λ`/ fS∗(s). Moreover, since λH = γλ`, it
suffices to show that λ = γ fS∗(s). We have that

λ = E#{n : Xn ∈ [0,1)2}

= E
∞

∑
i=1

#{n : Xn ∈ LH,i∩ [0,1)2}

= λH

∫
R2

E#{n : X̃n ∈ L∗H ∩ ([0,1)2− x)}dx ,

where the latter equality follows from the refined
Campbell theorem for stationary marked point
processes. Note that each point X̃i, i = 1, . . . , K̃ is
contained almost surely in exactly one segment of L∗H
and each segment contains 0 or 1 points of X̃T , so
K̃ ≤ M. We can assume without loss of generality
that X̃i ∈ Si for i = 1, . . . , K̃ and that the segments
Si, i = K̃ +1, . . . ,M do not contain a point with shortest
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path length s. This yields

λ = λH

∫
R2

E#{n : X̃n ∈ L∗H ∩ ([0,1)2− x)}dx

= γλ`E
K̃

∑
j=1

1I[s(A j),s(B j))(s)
∫

R2
1I[0,1)2−X̃ j

(x)dx

= γλ`E
K̃

∑
j=1

1I[s(A j),s(B j))(s) = γ fS∗(s) ,

where the latter equality follows from Lemma 1. This
completes the proof.

Note that fS∗(s) is not known analytically, but it
can be estimated consistently by the estimator f̂S∗(x;n)
given in (1). Thus, Theorem 3 leads to a natural
estimator for F(x) which is given by

F̂(x;n) =
λ`

f̂S∗(x;n)

1
n

n

∑
j=1

K̃( j)

∑
i=1

1I[0,x](ν1(T
( j)

sub (X̃ ( j)
i ))) ,

(8)
where K̃( j) and T ( j)

sub (X̃ ( j)
i ), j = 1, . . . ,n are i.i.d. copies

of K̃ and ν1(Tsub(X̃i)), respectively. It is easy to see
that F̂(x;n) is ratio–unbiased and strongly consistent
for F(x). Moreover, since F is continuous, it can be
easily shown that

P( lim
n→∞

sup
x∈R
|F̂(x;n)−F(x)|= 0) = 1 .

RANDOM LOCATIONS

In this section we assume that X = {Xn} is a
Cox process with linear intensity λ ′′` = λ/γ on T (1),
which is conditionally independent of XH and XL,
given T (1). Recall that L∗H can be split into segments
Si, i = 1, . . . ,M with endpoints Ai,Bi such that s(Ai) <
s(Bi) = s(Ai) + ν1(Si). This leads to the following
representation formula for the density f : R→ [0,∞)
of the typical subtree length ν1(T ∗sub), which is similar
to the formula stated in Lemma 1 for the density fS∗

of S∗.

Theorem 4 It holds that

f (x) =

 λ` E
[

M
∑

i=1
1I[l(Bi),l(Ai))(x)

]
if x≥ 0 ,

0 otherwise,

where l(Bi) denotes the subtree length at Bi ∈ L∗H and
l(Ai) = ν1(Si)+ l(Bi).

Note that Theorem 4 can be proven directly using
Theorem 2 and the assumption that {Xn} is a Cox
process on T (1). However, interestingly enough, there
is an alternative proof which uses the following
relationship between the distribution of the typical
subtree length ν1(T ∗sub) at the points of {Xn} and
the typical subtree length at the locations of the
point process {Xs,n} with fixed shortest path length s
considered in the preceding section.

Lemma 2 Let s ∈ [0,∞), then it holds that

P(ν1(T ∗sub)≤ x | S∗X = s) = Fs(x) , (9)

where S∗X denotes the shortest path length at the typical
point of X and Fs denotes the distribution function
introduced in eq. (7) for fixed shortest path length s.

Proof Let K̃s and X̃s,1, . . . , X̃s,K̃s
be the random

variables which have been introduced in Theorem 3
for fixed s ∈ [0,∞), i.e., s(X̃s,i) = s for i = 1, . . . , K̃s,
where K̃s is the number of points on L∗H with shortest
path length s to the origin. Moreover, let X̃ = {X̃n}
denote the Palm version of X with respect to the Palm
distribution of XH . Since the density fS∗(s) does not
depend on the intensity λ ′` of the underlying Cox
process {XL,n} of LLC, see Lemma 1, the equality
fS∗(s) = fS∗X

(s) holds almost everywhere. Thus we
have

P(ν1(T ∗sub)≤ x | S∗X = s)
= lim

ε↘0
P(ν1(T ∗sub)≤ x | S∗X ∈ [s,s+ ε))

= lim
ε↘0

E
(

1I[0,x](ν1(T ∗sub))
1I[s,s+ε)(S∗X)∫ s+ε

s fS∗X
(u)du

)
= lim

ε↘0

λ`

λ ′′`
E ∑

X̃n∈L∗H

1I[0,x](ν1(Tsub(X̃n)))
1I[s,s+ε)(s(X̃n))∫ s+ε

s fS∗(u)du

= λ` lim
ε↘0

E
∫

L∗H
1I[0,x](ν1(Tsub(y)))

1I[s,s+ε)(s(y))∫ s+ε

s fS∗(u)du
ν1(dy) ,

where the last but one equality is obtained by a
slight modification of Theorem 2 and the last equality
follows from the fact that the points {X̃n} form a Cox
process on L∗H with linear intensity λ ′′` , see Fleischer
et al. (2009). We can divide L∗H into the segments
S1, . . . ,SM as before and get

P(ν1(T ∗sub)≤ x | S∗X = s)

=λ` lim
ε↘0

E
M

∑
i=1

∫
Si

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(s(y))∫ s+ε

s fS∗(u)du
ν1(dy).
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Furthermore, fS∗ is right-continuous, thus we have
almost surely

lim
ε↘0

M

∑
i=1

∫
Si

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(s(y))∫ s+ε

s fS∗(u)du
ν1(dy)

=
1

fS∗(s)

K̃s

∑
i=1

1I[0,x](ν1(Tsub(X̃s,i))) .

Since∫
Si

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(s(y))∫ s+ε

s fS∗(u)du
ν1(dy)

≤
∫

Si

1I[s,s+ε)(s(y))
ε minx∈[s,s+1) fS∗(x)

ν1(dy)

≤ 1
minx∈[s,s+1) fS∗(x)

< ∞ ,

we can use the dominated convergence theorem in
order to get

P(ν1(T ∗sub)≤ x | S∗X = s)

=
λ`

fS∗(s)
E

K̃s

∑
i=1

1I[0,x](Tsub(X̃s,i)) = Fs(x) ,

which completes the proof.

Note that Lemma 2 states that the distribution
function Fs can be regarded as the conditional
distribution function of ν1(T ∗sub) given that S∗X = s. We
now use this relationship in order to prove Theorem 4.

Proof of Theorem 4 For each x≥ 0 Lemma 2 yields

F(x) = E(P(ν1(T ∗sub)≤ x | S∗X))

=
∫

∞

0
P(ν1(T ∗sub)≤ x | S∗X = s) fS∗X

(s)ds

=
∫

∞

0
Fs(x) fS∗X

(s)ds

=
∫

∞

0

λ`

fS∗(s)
E

K̃s

∑
i=1

1I[0,x](Tsub(X̃s,i)) fS∗X
(s)ds ,

where the latter equality follows from (7) and
K̃s, X̃s,1, . . . , X̃s,K̃s

are the random variables introduced
in the proof of Lemma 2. Since fS∗(s) = fS∗X

(s) for
almost all s ∈ [0,∞), we have

F(x) = λ`E
∫

∞

0

K̃s

∑
i=1

1I[0,x](Tsub(X̃s,i))ds

= λ`E
M

∑
i=1

∫ l(Ai)

l(Bi)
1I[0,x](s)ds

=
∫ x

0
λ`E

M

∑
i=1

1I[l(Bi),l(Ai))(s)ds ,

which proves the theorem.

For each x ≥ 0, Theorem 4 leads to the natural
estimator

f̂ (x;n) = λ`
1
n

n

∑
j=1

M( j)

∑
i=1

1I
[l(B( j)

i ),l(A( j)
i ))

(x) (10)

for f (x) which is based on n independent and
identically distributed copies of L∗H . Clearly, f̂ (x;n) is
unbiased and strongly consistent for f (x). For further
useful properties of f̂ (x;n), see Voss et al. (2009c).

NUMERICAL RESULTS

We now consider two specific examples assuming
that T is a PLT or PVT, respectively. Then, it is
not difficult to show that the distribution function
F of the typical subtree length ν1(T ∗sub), considered
in (7) for network locations with a fixed distance
to their HLC, has a density. To see this, suppose
that the typical segment system L∗H and the marked
points (X̃1,Tsub(X̃1)), . . . ,(X̃K̃ ,Tsub(X̃K̃)) as well as the
random tessellation T ∗ with respect to the Palm
distribution of XH are given. If we only condition on
T ∗, the distribution of ∑

K̃
i=1 1IB(ν1(Tsub(X̃i))) does not

change if each HLC is replaced by a new HLC which is
uniformly distributed on the same segment. Under this
transformation the points with shortest path length s on
T ∗ are not changed, but some new points may lie on L∗H
and some points may not lie on L∗H anymore. However,
the subtree lengths Tsub(X̃i), i = 1,2, . . . are changed in
a continuous and non-constant way with probability
one if HLC are shifted along the segments. Thus
∑

K̃
i=1 1IB(ν1(Tsub(X̃i))) = 0 almost surely if ν1(B) = 0

and hence the distribution of ν1(T ∗sub) is absolutely
continuous.

Moreover, a scaling invariance can be observed if
the scaling factor κ = γ/λ` is fixed, i.e., the structure of
the network model is fixed, but on different scales, see
e.g. Gloaguen et al. (2009b); Voss et al. (2009a). We
thus used the estimators introduced in the preceding
sections to determine the density f (x) of the typical
subtree length ν1(T ∗sub) for different values of κ based
on i.i.d. samples of L∗H which were generated using
simulation algorithms introduced in Gloaguen et al.
(2005); Fleischer et al. (2009). For each realization of
L∗H first the shortest path from o to all nodes of L∗H
were computed using Dijkstra’s algorithm (Dijkstra,
1959). In a second step, segments with distance peak
were split and in this way L∗H was transformed into
a tree structure, the shortest path tree. Note that the
distance peaks are the leaves of the tree. Based on this

6
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tree we computed the subtree length l(Bi) and l(Ai)
at the segment endpoints Ai,Bi, i = 1, . . . ,M. These
results were then directly used for the computation of
the estimator f̂ (x;n) in eq. (10). In order to compute
the estimator F̂s(x;n) in eq. (8) we first chose the
segments Si, i = 1, . . . , K̃ with s(Ai) ≤ s < s(Bi), i.e.,
the segments which contain the points X̃1, . . . , X̃K̃ , and
computed ν1(Tsub(X̃i)) = l(Bi)+ s(Bi)− s.

In Figure 4 the numerical results are displayed
for T being a PLT or PVT, respectively, and for Cox
processes {Xn} with different values of κ , where we
used the estimator introduced in (10). Furthermore,
in Figure 5 the results are shown which we obtained
for network locations with a fixed distance s to their
HLC. For different values of s and κ , we computed
the density of the typical subtree length ν1(T ∗sub)
using difference quotients of the empirical distribution
function F̂(x;n) given in (8).

It can be seen that the shapes of all the densities
presented in Figures 4 and 5 are quite similar to each
other. Furthermore, Figure 5 shows that the density
f (x) of the typical subtree length ν1(T ∗sub) does not
depend too much on the particular choice of the (fixed)
distance s to the nearest HLC. On the other hand, the
values of f (x) change rather drastically if the model
type of T (PLT vs. PVT) or the scaling factor κ is
changed, see Figures 4 and 5.

We also remark that knowing the density f (x)
of the typical subtree length ν1(T ∗sub) and using the
representation formula (3) for the typical capacity
C∗, we can compute e.g. the expectation Eh(C∗) for
various functionals h : [0,∞)→ [0,∞) of C∗, where

Eh(C∗) = Eh(
K∗

∑
i=1

Ci)

=
∞

∑
k=0

1
k!

Eh(
k

∑
i=1

Ci)
∫

∞

0
e−λ ′` x(λ ′` x)k f (x)dx ,

which is a consequence of Theorem 1.

DISCUSSION

In this paper, the notion of capacity in the
SSLM has been introduced. Furthermore, it has been
shown how distributional characteristics of the typical
capacity can be computed for two different types of
network locations, where the algorithm is based on
Monte Carlo simulation of the typical serving zone.
Note that these results can be generalized in different
ways, e.g. to typical capacities for further types of
network locations. Possible examples are the nodes

of the underlying tessellation or subfamilies of these
nodes conditioning on the number of nodes passed
on the shortest path to HLC. Another topic for future
research could be the investigation of limit theorems
regarding the distribution of typical capacity as κ→∞.
Note that in Voss et al. (2009b) scaling limits of this
type have been derived for the typical shortest path
length S∗. It would be of great practical interest if
such limit theorems can also be derived for the typical
subtree length and the typical capacity, respectively.
Furthermore, besides computing the densities of S∗ and
ν1(T ∗sub) separately, it is possible to determine the joint
density of S∗ and ν1(T ∗sub), seen from the perspective of
the typical point of a Cox process on T (1), see Figure 6.
From this two-dimensional density it is then possible
to compute the density of ν1(T ∗sub) conditioning on
S∗ = s. Summarizing, the ideas which have been
developed in the present paper can be combined with
the fitting techniques for optimal network models
introduced in Gloaguen et al. (2006) in order to
provide an efficient tool for capacity analysis in real
(planned or existing) telecommunication networks.
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