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Abstract As a straightforward generalization of the well-known Mooo con-
struction, Laguerre tessellations have long found apfdinain the modelling,
analysis and simulation of polycrystalline microstruesirThe application of La-
guerre tessellations to real (as opposed to computed) stiociures—such as
those obtained by modern 3D characterization technigkesiray microtomog-
raphy or focused-ion-beam serial sectioning—is hindengdhle mathematical
difficulty of determining the correct seed location and waiigg factor for each of
the grains in the measured volume. In this paper, we proposéternative to the
Laguerre approach, representing grain ensembles witregarells parametrized
by orthogonal regression with respect to 3D image data. yipglour algorithm
to artificial microstructures and to microtomographic dsgts of an Al-5 wt% Cu
alloy, we demonstrate that the new approach representstistatfeatures of the
underlying data—like distributions of grain sizes and cdoation numbers—as
well as or better than a recently introduced approximati@thod based on the
Laguerre tessellation; furthermore, our method reprositice local arrangement
of grains {.e., grain shapes and connectivities) much more accurateby.atidi-
tional computational cost associated with orthogonalasgjon is marginal.
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1 Introduction

Inspired by experience gained from working with metals, kiagh has long em-
ployed various processing steps—such as mechanical dafiomor heat treatment—
to improve the properties of crystalline solids. It wasnitilthe past 100 years,
however, that materials scientists were able to place thigrcal knowledge on a
firm scientific footing, attributing processing-induceoperty changes to the gen-
eration and annihilation of lattice defects (grain bouregrdislocations, point
defects,etc) constituting the microstructure of crystalline matesiadnd only
during the past decade has a determination of the true threensional arrange-
ment of various microstructural elements—such as the rm&tebgrain bound-
aries spanning a polycrystalline specimen—become rdytfeasible, thanks to
powerful characterization techniques like x-ray microtmraphy [19, 1], focused-
ion-beam-based serial sectioning [7,25] and diffracthiased x-ray microscopy
[21,17].

The increasing utilization of these new methods to map oltcpgstalline
microstructures in 3D has spurred newfound interest inldpiugg mathematical
models for space-filling grain ensemblese tessellations of space—with em-
phasis placed on matching not only the statistically avedlagzain morphology in
real microstructures, but also their grain connectivitied local environments. A
popular starting point for such modelling efforts is the bage tessellation (see
[15] or Appendix A of the present paper), which is a genegdion of the Voronoi
construction, with weighting factors assigned to “seea{mlioffering rather flex-
ible control of the resulting cell sizes. As with the convenal Voronoi diagram,
the Laguerre tessellation consists of a set of non-oveirgppnvex cells that fill
space.

Because Laguerre tessellations are simple to define antfecnsathemati-
cally, they are attractive for the modelling of grain enséaland their dynamics.
For example, static polycrystalline structures have begpresented by Laguerre
tessellations based on close-packed spheres with randasilgned radii [3], and
the coarsening of grains has been modelled and simulatad @8 and 3D La-
guerre tessellations [24,22,23,28]. Furthermore, Laguessellations have been
applied to the modelling of other materials, like open arabet-cell foams [11,
10]. Interestingly, it can be proven that every normal tkagen in 3D that con-
sists entirely of convex cells is a Laguerre tessellatignA9normal tessellation
is one in which adjacent cells are juxtaposed face-to-fsttaing not only a face,
but also its edges and vertices; furthermore, each placarigacontained in ex-
actly two cells, each edge borders exactly three cells, aohl eertex is shared by
exactly four cells. These conditions are typically satisfiy real polycrystalline
microstructures, as well, despite the fact that most graiasslightly non-convex
thanks to the presence of curved boundaries. If we apprdgitha latter by pla-
nar surfaces bounded by lines connecting the correspomplaig vertices, then
we can map any such real microstructure to a convex tedselland, therefore,
to a Laguerre tessellation.

Although it is straightforward to compare the statisticagerties of cell sizes,
shapes and environments in a given Laguerre tessellatithreteame properties
evaluated for the grains of a real polycrystalline speciniteis no easy task to
determine the Laguerre tessellation that corresponds chastly to a particular



grain mapping. This would entail finding the set of seed ygoamd weighting fac-
tors that, when inserted into the Laguerre constructiaddeo a network of grain
boundaries best matching the one measured experimeatliyn a Laguerre tes-
sellation, there is no guarantee that the seed point for engbell actually lies
within that cell, as the seed point location depends stsoaglthe positions and
weighting factors of all nearby seed points, which are alsknown. To solve
this optimization problem, one could, for example, devisgrategy for identi-
fying and iteratively varying the seed point locations arelghting factors until
a predetermined convergence criterion is fulfilled. We rédethe output of such
an approach as laaguerre approximatiorio the experimental microstructure. A
prescription for constructing a Laguerre approximatiors icemulated recently
by Lyckegaardet al.[12], who proposed starting from the centroids and volume-
equivalent radii of individual grains and then applying @digional optimization
step. The resulting representation faithfully reproduites statistical properties
of the experimental microstructure, but, according to ththars of [12], their
Laguerre approximation is not always able to capture locaihgconfigurations
precisely. While this method aims primarily at reconstingtthe full morphol-
ogy when only grain centres and grain volumes are known gitsig applicable to
voxelated data.

Lacking a satisfactory solution to this complex optimipatproblem, we pro-
pose an alternative route to the extraction of a set of copeéshedra that closely
matches the grain mapping of any given real polycrystal. @pproach offers
most of the advantages of the Laguerre tessellation wittheuburden of having
to find seed points and weighting factors for the individuglsc In our method,
grains are described parametrically, with the individaaks obtained by orthogo-
nal regression of planes; subsequently, the cells arercmbst by an appropriate
combination of the planar faces. Just like the Laguerrestiedion, our parametric
representation of the grains affords significant data réolicwhile facilitating
the estimation of structural characteristics for indiatigrains. The proposed al-
gorithm is explained in Section 2. We test the algorithm bylwpg it to artificial
3D image data and to a real microtomography data set obtdinedan Al-5
wt% Cu alloy, comparing the algorithm’s performance to ttaglerre approxi-
mation devised by Lyckegaaset al.[12] (Section 3). We observe that both our
approach and the Laguerre approximation successfullypdejge statistical fea-
tures of the real ensemble of grains, such as the distrimitodd grain sizes and
coordination numbers, but our algorithm delivers a sigaiiity closer match to
local grain properties, such as the grain size, shape amgghlmairhoods, at the
cost of a slightly more complex parametrization.

2 Representation of grains by parametric cells

In this section, we describe a new algorithm for extractiogvex cells directly
from 3D image data. It is assumed that the voxels belongirgatd grain are la-
belled with a unique number—that is, the processed iméggiven by{l (x,y,z) €
{1,...,N}: (x,y,2) € W}, whereN > 1 denotes the number of grains and- N3
is the (convex) grid of voxel coordinate®; = {0,1,...}. Furthermore, we as-
sume that all voxels belonging to a given grain with label {1,...,N}—i.e,
R ={(x,y,2) € W :I(x,y,z) = i}—form a connected region.



A convex cell can be described by an intersection of halt:epain which the
boundary of each half-space is aligned along a single pltacarof the cell. By
looking at the individual faces of a given grain—that is, tlexels bordering a
grain and one of its neighbours—we can fit a plane to thoselsasing orthog-
onal regression and then define a closed cell from the set pfagles delimiting
the given grain. A 2D illustration of this idea is shown in &ig 1(a).
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Fig. 1 Schematic illustration of the cell extraction algorithm2b: (a) orthogonal regression is
used to fit lines to pixels at each boundary between two gréaken together, the set of lines
surrounding the grain defines the extracted cell. (b) Implatation of this idea in 2D using

half-planes: orthogonal regression is used to fit lines xelpi(shown here only for two grain

boundaries), the corresponding half-planes are compgteg)( and the intersection of all half-
spaces (dark grey) is taken to define the cell. The filledeideinotes the grain’s centroid, which
must be located within the half-planes.

A prerequisite for this approach to succeed is that the grairder consider-
ation be at least nearly convex. For convex grains havingapléaces, the algo-
rithm works perfectly, in the sense that the precision istkchonly by the voxel
resolution. Non-planar faces between grains are appragtizay planar faces; the
presence of non-convex grains can introduce artefactssassded in Section 3.3.

We now describe the extraction of planes for individual graices and the
construction of cells from sets of planar faces.

2.1 Extraction of a plane for an individual grain face

In a typical polycrystalline microstructure, the voxelsimultaneous contact with
two grains andj are located approximately along a plane in 3D. We wish toadete
this plane using orthogonal regression. The plgne C R® parametrized with a

(unit-length) normal vecton = (n, np, nN3) € R® and signed distanaé < R from
the origin is given by

Prd = {(X%,Y,2) € R®: nix+ngy+ngz+d = 0}.
The set of voxels adjacent to two grains with labedsd j is

NIJ = {(X?y? Z) ceW: f/V26(X7y7 Z) n Ri 7é 0 andf/V26(X7y7 Z) N RJ 7é 0}7



where _426(X,Y,2) denotes the set of 26 voxels that share a face, edge or corner
with the voxel at(x,y, z) (i.e., the voxel neighbourhood defined by a distance less
than or equal to/3 from (x,y,z)). Note thatN; ; = N;j, which ensures that the
detected planes do not depend on the order of processing.

The idea of orthogonal regression is to minimize the (sql)adistance of
points (in our case the voxel coordinatesNn;) from the plane that is to be
detected. Formally, we want to find the (global) minimum oé flanction f :

R3 x R+ [0,00) denoted by

f(nd)= % (MX+ Noy + N3z +d)?
(XY,2)€N j

for a normal vecton = (ng,ny,n3) € R® with length|n| = 1 and signed distance
d € R from the origin. Orthogonal regression is therefore a lsasiares problem,
which can be solved by singular value decomposition [4].dse&ce, for a given
set of boundary voxels, it can be shown that the cent@idR® of the voxels lies
on the plane to be extracted, and a normal vesterR? to the plane is given by
the right-singular vector corresponding to the smallegjuiar value of a matrix
containing all voxel coordinates shifted byc [4].

2.2 Determination of grains sharing a common face

We first consider the issue of deciding which pairs of grddsindR; share a
common face, since this determines whether a plane betweegrains should
be extracted or not. Note that the riNe; # 0 does not suffice for this purpose,
because there may be voxels touching two grains that shira common vertex
or edge. Fitting a plane to these voxels has no physicaffigetion and would
likely generate odd and unpredictable cell shapes. To dkdituation, we apply
athreshold criterion, with the value of the threshold deiaed from an inspection
of the data in question. For the sample data sets discusSedtfion 3, we interpret
the square root of the number of voxelshh; as an “effective face diameter,”
under the provisional assumption that the voxelNip arise primarily from a
shared grain face. We then calculate the ratio between thetiek face diameter
and the mean volume-equivalent diameter of the two grainsgbevaluated. If
this ratio is larger than the threshold value—typicallytie tange of 0.2 to 0.25—
then we accept the voxels M ; as belonging to a grain face, and we apply the
algorithm of Section 2.1 to extract the corresponding fiegtane.

2.3 Cell representation by the intersection of half-spaces

As explained above, we can fit a plane to each face of a gaand each of these
planes restricts the volume of the corresponding extramt#ifconsequently, the
cell is a convex polytope. Convex polytopes can be definedhély vertices (the

polytope itself is then given by the convex hull of the vesicsometimes called
the V-representation) or by an intersection of half-spgeesepresentation). The
latter is directly applicable to our approach, because fimapriate half-spaces
are directly related to the detected planes.



A half-spaceHn g in R? is given by
Hnd = {(X,y,2) € R®: nyx4 noy+nsz+d < 0}, (%)

wheren = (ng,m,n3) € R is a (unit-length) normal vector, ardl€ R is the
signed distance from the origin. It is straightforward tdadb these half-spaces
from the previously detected planBsq, which are the boundaries of the half-
spaces. Of course the proper side for the half-space modbaldetermined; here,
a simple criterion is to require the half-spacé-) to include the centroid dR—
i.e., the grain centroid fulfils the inequality given in the defiiomn of Hy, 4.

Finally, following the steps previously described, we catract planes for all
faces of a given grain, determine the corresponding haéspand obtain a closed
cell by taking their intersection. A schematic illustratiis shown in Figure 1(b).
For m half-spaces of a single grain with > 3 and{(n®,d®) € R® x R,k =
1,...,m}, their intersection and thus the convex ¢2ik given by

C={(xy.2 eR®: n¥x+n¥y+n¥z+d® <0 k=1,...,m}.

3 Evaluation

We evaluate the quality of the proposed cell extraction i@tigm by computing
structural characteristics. First, using the standardueag construction (see Ap-
pendix A), we generate an artificial data set consisting @iaes-filling ensemble
of convex cells (taking on the role of the grains in a polytaijlne microstruc-
ture), to which we apply our algorithm in order to test thelaecy of the resulting
cell extraction. Second, we apply our algorithm to the ggaiha real polycrys-
talline material mapped experimentally by x-ray microtaraphy.

In both cases, we compare our approach to the Laguerre apyaien in-
troduced by Lyckegaardt al. [12]. In the latter, seed points are placed initially
at the centroids of individual grains, and a weighting faetgual to the volume-
equivalent radius of the associated grain is assighed to ®=ed point. An addi-
tional optimization step is carried out to improve the rébylshifting the location
of seed points depending on adjacent cells. From the asalgsiied out in [12],
Lyckegaardet al. conclude that this cell-extraction algorithm reprodudedisti-
cal features like the distribution of cell sizes and theribstion of the number of
faces quite well, but discrepancies can appear in moreistigated local charac-
teristics, such as the sizes and shapes of cell neighbadshoo

Throughout Section 3, when estimating structural charesttes we employ
the Miles—Lantuéjoul correction [14, 8] to avoid bias argsfrom grains touching
the boundary of the grid, and, whenever possible, we prefealculate density
functions rather than histograms, as the shape of the lattéghly sensitive to
the chosen bin widths and positions. In this work, we deteendiensity functions
by (non-parametric) kernel density estimation [20].

3.1 Artificial data set with convex cells

Here, we describe the construction of an artificial polytalfsme microstructure as
a realization of a random Laguerre tessellation. We thefyapp cell-extraction



algorithm and compare the resulting cells to those of thgiral known tessella-
tion.

3.1.1 Generation of the artificial data set

A random Laguerre tessellation is generated by considexingndom marked
point process [6], the points of which are taken to be seedtpdor Laguerre
cells. Numerical marks are assigned randomly to the padoisstituting weight-
ing factors that influence the resulting sizes of the Lagueetls. More precisely,
we employ a Poisson-Laguerre tessellation [9], which ietam the well-known
(homogeneous) Poisson point process. In particular, it pattern is gener-
ated as follows. For a given intensify of the homogeneous Poisson process,
the number of point® in a cuboidW C R? is Poisson-distributed with expecta-
tion value given by the product df and the volume ofV. For a realizatiom of
the number of points, the point pattern itself is denotedhgyget of coordinates
{(%,¥i,z),i =1,...,n}; these points are realized by a uniform distributior\én
and they do not influence each other.

We choose the cuboid for simulation to have the ¥ize- [0,1000° andA to
be 5x 1078, which means that the expected number of pointd/iis 5000. The
random marks assigned to the points are independent amnithalietl according to
a gamma distribution with shape parametets 50 and rate paramet@r= 0.75
(expectation valuer /B and variancex /32) [5]. This combination of parameter
values was found to generate cells similar to the experiahelata presented in
Section 3.2. A 2D section of a realization of this random Lexge tessellation is
shown in Figure 2.

Fig. 2 Cross-section through a 3D artificial data set generated®Bsen-Laguerre tessellation.

3.1.2 Extraction of cells and evaluation

Given that the Poisson-Laguerre tessellation describedslas been discretized
to a cubic grid, it is straightforward to apply the cell-&dtion algorithm proposed



in Section 2. For the sake of comparison, we also compute digeidrre approx-
imation of Lyckegaarctt al. [12] for the same atrtificial data set. Figure 3 shows
the original tessellation overlaid with cells extractedlvy two methods. To quan-
tify the degree of agreement between the extracted andafigells, we compare
them at the voxel level. In light of the near-perfect matctwiaen the boundary
voxels extracted by our approach and those in the original sk, it is clear that
all structural characteristics, like cell sizes, cell faaad cell neighbourhoods, are
also identical.

@) (b) \

Fig. 3 Cross-section through the original Poisson-Laguerrestieg®n, with boundary voxels
shaded grey. Superimposed in black are the boundaries lsf exdtacted by (a) orthogonal
regression and (b) Laguerre approximation [12].

In order to quantify the number of voxels correctly assigveel examine the

set of voxels of an extracted cal, which should be nearly identical to that of
the corresponding original cell. We define the fraction of correct voxels as the
number of voxels in the intersecti@n C divided by the number of voxels i@.
The fraction of correct voxels is a number lying between 0Bnalith values near
unity implying a nearly perfect match to the original voxélete that an extracted
cell that happens to be larger than the original cell canyikdd a high value for
this fraction, even though the extracted cell is not a peffedut in this case the
adjacent cells will automatically manifest much lower eddfor the fraction of
correct voxels.

Figure 4 shows the estimated density function of the fraalifccorrect voxels.
For cells constructed by orthogonal regression, the mesatién value is about
99%, which constitutes a very good overall fit. This is notpsising, because
our algorithm is constructed to match the individual faceslasely as possible
with planes, and the artificial data set consists entirelgaivex cells having
planar faces. The Laguerre approximation [12], on the ofia#d, is generated
by a simpler parametrization. Because the original datassigself a Laguerre
tessellation, it is clear that the cells extracted by therdigm in [12] could have
conceivably matched perfectly throughout the sample, lifact that the mean
fraction of correct voxels was only 84% for the Laguerre agpnation indicates



that determination of the proper seed point locations andiag factors from
cell boundaries alone is a non-trivial endeavour.

The voxel-based comparisons presented in Figures 3 andichiadhat for
(in our sense) optimal data, the extraction of cells by aytmal regression works
nearly perfectly. Despite the artificial data set havingrbgenerated by the La-
guerre construction, the Laguerre approximation [12] dussdescribe the data
nearly as well. For the experimental data set consideredaméxt section, we
extend our analysis beyond the voxel level to include charatics like the sizes
and shapes of grains and their neighbourhoods.
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Fig. 4 Estimated density function plotted against the fractiomamfels correctly assigned in the
artificial data set for cells extracted by orthogonal regis and by Laguerre approximation
[12].

3.2 Experimental data set of a polycrystalline alloy

After a short description of the method by which 3D microstanal data were
obtained for a polycrystalline alloy, we examine the ceisedmined by orthog-
onal regression and present various measures for quaugtifiye extent to which
the extracted cells properly represent the real microsirac

3.2.1 Data description

Cylindrical samples of an Al-5 wt% Cu alloy (4 mm diameter, dhrheight) were
characterized using a SkyScan 1172 laboratory tomograah &btropic resolu-
tion of 2 um (voxel side length). Absorption-contrast microtomodmapields a
three-dimensional mapping of the local absorption of xsrasariations in which
can arise, for instance, from concentration gradientsgotesst the boundaries be-
tween different phases. When Al-Cu alloys with low coppenteat are heated
above the solidus temperature, phase separation occarsdlid, Al-rich grains
surrounded by a liquid phase having a significantly higherceatration of Cu
atoms [13,16]. Upon subsequent cooling to room temperatheeliquid phase
crystallizes into an eutectic mixture of two solid phases,the local Cu concen-
tration in the formerly liquid regions remains enhancefgaively marking the
boundaries of the Al-rich grains in the tomographic recartdton (Figure 5(a)).
Because coverage of the grains by the eutectic mixture wasiplete, we applied
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a watershed image-processing algorithm to a Euclideaardisttransform of the
binary images to fill in gaps in the network of grain boundsu(€igure 5(b)) [2,
18]. Additional details concerning the measurement and segmentation proce-
dures can be found in [27].

Fig. 5 (a) Cross-section through a tomographic reconstructicenoAl-5 wt% Cu alloy mea-
sured after cooling from above the solidus down to room teatpee; lighter regions indicate the
presence of the phaseA&lu, which forms during crystallization of the liquid phasgrsunding
the solid, Al-rich grains. (b) Same cross-section follagvininarization and application of the
watershed transformation.

3.2.2 Extraction of cells and evaluation

As mentioned above, the watershed transformation was wsestbnstruct the
network of grain boundaries, thereby uniquely identifyiognected sets of voxels
as belonging to the interior regions of individual grainstte sample. This is
precisely the starting point considered in Section 2 foretkteaction of cells from
a 3D mapping of a polycrystalline microstructure. Applioatof this method to
the Al-5 wt% Cu data set yields the cell system illustrateBigure 6(a) in black,
which is superimposed on the boundary network of the orlgoraographic data
plotted in grey.

To assess the accuracy of cell extraction, we again coniddraction of cor-
rect voxels, as defined in Section 3.1; the estimated defsittion is plotted in
Figure 7. As with the artificial data set, we see that orthadjoegression applied
to data from a real sample yields very high values for the nfestion of cor-
rect voxels (096), with only 5% of all cells having a value smaller tha®.0The
Laguerre approximation [12] achieves a mean fraction ouiaBb@7, but 5% of
the cells manifest a value belowdd. This quantitative discrepancy is reflected in
obvious qualitative differences between the overlays shiovwigure 6.

3.2.3 Comparison of further structural characteristics

In this section, we consider important structural chandsties of polycrystalline
microstructures with respect to grain sizes, shapes amghbeurhoods, compar-
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Fig. 6 Cross-section through a tomographic reconstruction 05 Alt% Cu following image
processing as described in the text; voxels at grain boigslare shaded grey. Superimposed
in black are the boundaries of cells extracted by (a) orthagoegression and (b) Laguerre
approximation [12].
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Fig. 7 Estimated density function plotted against the fractiomamfels correctly assigned in the
Al-5 wt% Cu data set for cells extracted by orthogonal regjmsand by Laguerre approxima-
tion [12].

ing the corresponding values for cells extracted by orthagjoegression and by
Laguerre approximation of the same experimental Al-5 wt%d@ia set.

A natural structural characteristic is the distributiongo&in sizes. Although
the grains themselves are not perfectly spherical, it ismomto equate the size
of a given grain to the diameter of a sphere having the sameneal The esti-
mated density functions for grain sizes computed in thismearmre plotted in
Figure 8(a). We see there that all of the distributions taka similar shape, but
some discrepancies are apparent between the experimatdaset and the La-
guerre approximation, particularly with respect to smalains, which tend to be
represented by Laguerre cells that are somewhat too lalgendar-linearity of a
scatter plot of the diameter of each extracted cell agati®sbrresponding tomo-
graphic grain diameter attests to the high accuracy ourezélfction algorithm
(Figure 8(b)). The few outliers can be attributed to the gneg of non-convex
cells in the real microstructure (see Section 3.3).

Another interesting structural characteristic is the sigitg of grains [26].
Sphericityis defined to be the ratio of the surface area of the volumévelgunt
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Fig. 8 (a) Estimated density functions for the volume-equivalgnain diameter: distributions
calculated directly from tomographic data as well as froriscextracted by orthogonal re-
gression or Laguerre approximation [12]. (b) Scatter pfdhe volume-equivalent diameter of
extracted cellys.the corresponding grain diameter measured by tomography.

sphere to the surface area of the corresponding grain orfSsehll values for this
ratio imply that the shape differs significantly from thataophere—e.g.the true
shape could be elongated in a particular direction. As showigure 9, neither
orthogonal regression nor the Laguerre approximationdd2k a satisfactory job
of representing the sphericity of the experimental graiihe:mean sphericity is
approximately equal in all three cases, but the distriloutibsphericities is wider
for both types of extracted cells than for the original gsaiDetailed investiga-
tion reveals that discrepancies are particularly notiteetdy small grains, which
tend to be rather spherical in the experimental data sets€prently, the approx-
imation of planar faces (which is enforced by the cell exioacalgorithms) can
be rather poor for these grains (particularly in light of fhet that small grains
have few faces), and the sphericity of the cells extractedifese grains never
approaches unity. Therefore, the differences in sphgribat are clearly visible
in Figure 9 can be attributed primarily to the constraint @fieexity on each cell
in the extracted cell network (which, in turn, entails thiitcell boundaries be
planar).

A further important characteristic of space-filling enséashbof grains is the
coordination number, which denotes the number of neighlgoains sharing a
common face with a given grain. Figure 10(a) compares ttedivel frequency
of coordination numbers determined directly from expentaédata to the same
quantity evaluated for microstructural representatiomglpced by the two cell-
extraction algorithms. For the tomographic data set, teatification of shared
grain faces was performed using the algorithm describe@atiéh 2.2.

When assessing grain adjacency, it is of interest to determihether the
topology of the system is represented properly. Figure)1fsents histograms
for the number of incorrectly assigned neighbours, whidteiermined by count-
ing all differences in the adjacency lisi-e-, by summing up the number of miss-
ing neighbours and the number of additional neighbours.lfesdy discussed in
[12], the cells extracted by Laguerre approximation arepssfect with respect
to the local arrangement of cells. Cell extraction by orthra) regression mani-
fests similar deficiencies in the proper representatiotiaf particular structural
characteristic, although they are somewhat less sevarérthiae case of Laguerre
approximation.
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Fig. 9 Grain sphericity: (a) tomographic data acquired from Al-8arCu; (b) cells extracted
by orthogonal regression; (c) cells extracted by Laguepm@@imation [12]. In each row, the
density function for sphericity is plotted on the left, afe tdependence of sphericity on the
grain/cell size is illustrated graphically on the right.

For both cell-extraction routines, erroneous neighbowigasnents can be
traced to the constraint of cell convexity. When the orth@joegression of planes
is applied to the boundaries of a non-convex grain, it is iptes$or a neighbour
to be lost when the voxels of the corresponding shared faceotigenerate a
half-space that restricts the volume of the resulting égdproaches based on La-
guerre tessellations do not suffer from this particulabpem, but there—as we
have seen above—it is much more difficult to obtain a goodaivgtto the indi-
vidual grain faces, which may, in turn, lead to incorrecgigned neighbours. In
the following section, we discuss in greater detail the-egtraction artefacts that
can arise from non-convex grains.

3.3 Influence of non-convexity

The proposed algorithm aims to obtain an exact representatindividual grains.
For an ensemble of convex grains with planar faces, ouresgthction method
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Fig. 10 (a) Distribution of the coordination number of grains in wgnaphic image data as well
as of cells extracted by orthogonal regression and Laga@peoximation [12]. (b) Distribution
of the number of incorrectly assigned neighbours: comparef cells extracted by orthogonal
regression to Laguerre approximation, evaluated in bosesavith respect to grain neighbour
assignments determined from experimental data.

works perfectly. However, the orthogonal regression aggmodoes not explic-
itly enforce constraints like the face-to-face adjacerfoyetls or the matching of
edges and vertices; consequently, it is highly likely theg tonditions for nor-
mality of a tessellation will be violated to a certain extediten our algorithm is
applied to a microstructure containing non-convex graifis. now discuss two
types of artefacts that can arise from non-convexity.

First, our algorithm works by fitting a plane to the boundastvieen two
grains. This ensures that we obtain a good fit with respedtd@bsition of the
boundary itself, but the approach places no constraintheridcations of the
edges and vertices delineating the shared face. Considexxample, the 2D il-
lustration in Figure 11(a). Grain number 1 shares a curvemhthary with grain
3 below, which is clearly non-convex. By fitting lines to thisundary and to
the boundary between grains 1 and 2, we obtain the verteldabé. The same
procedure applied to the boundaries of grain 2, howevelgyia different ver-
tex positionV’ for the same line separating cells 1 and 2. Such non-mataifing
vertices in 2D—or edges and vertices in 3D—will generallulein small gaps—
i.e.regions not covered by any extracted cell—or even in smatlaps between
neighbouring cells. Examination of our data found that agimnately 97% of all
voxels were included within an extracted cell, but this neméllso encompasses
artefacts of the second type, which we discuss next.

A second type of artefact occurs when a detected half-spaseff too much
volume from a cell. This can be a particularly serious probighen the segmen-
tation of an experimental data set fails to detect a boundatyeen two grains,
falsely grouping the voxels together as a single grain. Theruof the two grains
is usually highly non-convex, frequently taking on a “dognak” shape. Then, be-
cause each planar face is detected individually and useahistrict the resulting
cell by taking the intersection of the corresponding hakiees, some half-spaces
may not restrict the volume of the cell at all, or, even wotkey may strongly af-
fect the overall cell shape at the wrong location. This galheresults in extracted
cells that are significantly smaller than the correspondijragns, as illustrated in
Figure 11(b). (Such an obvious loss of volume between thgrai grain and the
extracted cell could be a useful tool for automatically detey underlying seg-
mentation errors.)
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(b)

(©

Fig. 11 Schematic illustration of artefacts caused by non-conveaing. (a) Edges and vertices
of adjacent cells are not forced to be equal, which may reswdmall gaps (unshaded white
region). (b) Two grains recognized as one in the segmentatianot be represented properly by
a convex cell (detected cell bordered in solid blue linestrieting planes dashed, lost volume
in white); (c) A planar face can be “cut off” from one grain whanother face more strongly

restricts the volume of the extracted cell (the face markeblie has no affect on the spatial
extent of cell 3); since the former face may still be releviantan adjacent cell (cell 2 in the

illustrated example), a gap can form between the extractsl c

The misclassification of two grains as a single grain is tyeafault of seg-
mentation and not of cell extraction. Nevertheless, thefact of a half-space
having no effect or even the wrong effect on the cell shapeocanr under less-
extreme circumstances, as well. The enforced approximafia curved boundary
by a planar face can generate a half-space that “cuts ofErditted planar faces
in such a manner that a “cut off” plane disappears as a facerfercell, but the
same plane forms the boundary of an adjacent cell. Such aic#bestrated in
Figure 11(c). Here, the plane fitted to the boundary betweging 2 and 3 is only
relevant for cell 2, since, for cell 3, this plane is cut off thye half-space gener-
ated from the (non-planar) boundary between grains 1 andhi3. ghenomenon
can account for instances in which cells extracted by owrélgn have different
neighbours than the corresponding grains in the experahdata set.

In spite of such artefacts, our strategy for extracting dpeatric) cells per-
forms quite well in general for experimental data corresiog to typical poly-
crystalline microstructures. As expected, the high acgureted in voxel-based
comparisons carries over to statistical characteristich® cell ensembles, as
well. The Laguerre approximation [12] is likewise able t@nresent global sta-
tistical features faithfully, but it is less suited to theoper description of more
sophisticated structural characteristics of space-lirain ensembles. It should
be noted that Laguerre tessellations have the clear adyaotaby definition, al-
ways generating a tessellation-es, it is impossible for there to be gaps between
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cells or for edges and vertices not to coincide. Unfortulaitds these same con-
straints that make it so difficult to determine the “best’"dpeints and weighting
factors for accurately approximating a measured polyatijise microstructure by
the Laguerre construction.

4 Conclusions

We have presented a new algorithm for extracting paramegtis from 3D image
data that is based on the orthogonal regression of indiVighaén faces. Applied
to an artificial data set consisting of convex grains, théedraction algorithm
generates a nearly perfect match, as quantified by a voseldbeomparison. For
experimental 3D image data, the new algorithm also workequell, performing
significantly better in most respects than a recently pregdsaguerre approxi-
mation algorithm [12]. The latter conclusion is based orwea#ons of statistical
features like distributions of grain size and the number @fjnbours (coordi-
nation number), but also on local characteristics like tamber of incorrectly
assigned neighbours per grain. The higher accuracy inseptation comes at the
cost of a slightly more complex parametrization. It showdchbted that voxelated
(image) data are needed for our approach, while [12] reguindy grain centres
and volumes, which may be easier to obtain. A further disaihge is the pos-
sibility for artefacts like small gaps between adjacentscel the case of clearly
non-convex grains. The latter problem was negligible fer dal microstructure
studied in this work.
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A Laguerre tessellations

The Laguerre tessellation [15]—a weighted version of thé-lweown Voronoi diagram—has
long been a popular choice for modelling polycrystallinaigrstructures (see.q.[3,24,22,23,
28]). In a Voronoi diagram, each “seed point” (also calledpring point”) creates exactly one
cell, as every point in space is assigned to its nearest sgetl fm 3D, the result is a partition
of space into convex polyhedra. When constructing a Laguessellation, every seed point is
given an additional weight?, which permits finer control over the cell sizes. The weightan
be interpreted as the squared radius of a sphere centre@ see¢l point—see Figure 12 for an
illustration in 2D.

Formally, a 3D Laguerre tessellation is defined as followisefsa (locally finite) seE=
{(xi,ri),iel}C R3 xR+ of seed points; with radii rj, the Laguerre cell ofxi,r;) with respect
to Sis given by

C((x,ri), S = {y e Rt ly—xiP =2 < |y —x;[* =17, (x;,r)) € S} .

Then, the Laguerre tessellation is the set of all Laguetlis {&((xi,r;),S),i € 1}. Note thatitis
possible for a seed point to create no cell at all, provideddjacent seed point has a sufficiently
large weight. For the same reason it is also possible for @ geiat not to be contained within
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—

Fig. 12 lllustration of Laguerre tessellation in 2D: seed pointthwieights pictured as circles,
along with the resulting Laguerre cell boundaries.

the cell generated by that seed point. These propertieslzatgpthe determination of the seed
point locations and corresponding weights when only theltieg cells are known.
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