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Abstract As a straightforward generalization of the well-known Voronoi con-
struction, Laguerre tessellations have long found application in the modelling,
analysis and simulation of polycrystalline microstructures. The application of La-
guerre tessellations to real (as opposed to computed) microstructures—such as
those obtained by modern 3D characterization techniques like x-ray microtomog-
raphy or focused-ion-beam serial sectioning—is hindered by the mathematical
difficulty of determining the correct seed location and weighting factor for each of
the grains in the measured volume. In this paper, we propose an alternative to the
Laguerre approach, representing grain ensembles with convex cells parametrized
by orthogonal regression with respect to 3D image data. Applying our algorithm
to artificial microstructures and to microtomographic datasets of an Al-5 wt% Cu
alloy, we demonstrate that the new approach represents statistical features of the
underlying data—like distributions of grain sizes and coordination numbers—as
well as or better than a recently introduced approximation method based on the
Laguerre tessellation; furthermore, our method reproduces the local arrangement
of grains (i.e., grain shapes and connectivities) much more accurately. The addi-
tional computational cost associated with orthogonal regression is marginal.
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1 Introduction

Inspired by experience gained from working with metals, mankind has long em-
ployed various processing steps—such as mechanical deformation or heat treatment—
to improve the properties of crystalline solids. It wasn’t until the past 100 years,
however, that materials scientists were able to place this empirical knowledge on a
firm scientific footing, attributing processing-induced property changes to the gen-
eration and annihilation of lattice defects (grain boundaries, dislocations, point
defects,etc.) constituting the microstructure of crystalline materials. And only
during the past decade has a determination of the true three-dimensional arrange-
ment of various microstructural elements—such as the network of grain bound-
aries spanning a polycrystalline specimen—become routinely feasible, thanks to
powerful characterization techniques like x-ray microtomography [19,1], focused-
ion-beam-based serial sectioning [7,25] and diffraction-based x-ray microscopy
[21,17].

The increasing utilization of these new methods to map out polycrystalline
microstructures in 3D has spurred newfound interest in developing mathematical
models for space-filling grain ensembles—i.e., tessellations of space—with em-
phasis placed on matching not only the statistically averaged grain morphology in
real microstructures, but also their grain connectivitiesand local environments. A
popular starting point for such modelling efforts is the Laguerre tessellation (see
[15] or Appendix A of the present paper), which is a generalization of the Voronoi
construction, with weighting factors assigned to “seed points” offering rather flex-
ible control of the resulting cell sizes. As with the conventional Voronoi diagram,
the Laguerre tessellation consists of a set of non-overlapping convex cells that fill
space.

Because Laguerre tessellations are simple to define and construct mathemati-
cally, they are attractive for the modelling of grain ensembles and their dynamics.
For example, static polycrystalline structures have been represented by Laguerre
tessellations based on close-packed spheres with randomlyassigned radii [3], and
the coarsening of grains has been modelled and simulated using 2D and 3D La-
guerre tessellations [24,22,23,28]. Furthermore, Laguerre tessellations have been
applied to the modelling of other materials, like open and closed-cell foams [11,
10]. Interestingly, it can be proven that every normal tessellation in 3D that con-
sists entirely of convex cells is a Laguerre tessellation [9]. A normal tessellation
is one in which adjacent cells are juxtaposed face-to-face,sharing not only a face,
but also its edges and vertices; furthermore, each planar face is contained in ex-
actly two cells, each edge borders exactly three cells, and each vertex is shared by
exactly four cells. These conditions are typically satisfied by real polycrystalline
microstructures, as well, despite the fact that most grainsare slightly non-convex
thanks to the presence of curved boundaries. If we approximate the latter by pla-
nar surfaces bounded by lines connecting the correspondinggrain vertices, then
we can map any such real microstructure to a convex tessellation and, therefore,
to a Laguerre tessellation.

Although it is straightforward to compare the statistical properties of cell sizes,
shapes and environments in a given Laguerre tessellation tothe same properties
evaluated for the grains of a real polycrystalline specimen, it is no easy task to
determine the Laguerre tessellation that corresponds mostclosely to a particular
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grain mapping. This would entail finding the set of seed points and weighting fac-
tors that, when inserted into the Laguerre construction, leads to a network of grain
boundaries best matching the one measured experimentally.But in a Laguerre tes-
sellation, there is no guarantee that the seed point for a given cell actually lies
within that cell, as the seed point location depends strongly on the positions and
weighting factors of all nearby seed points, which are also unknown. To solve
this optimization problem, one could, for example, devise astrategy for identi-
fying and iteratively varying the seed point locations and weighting factors until
a predetermined convergence criterion is fulfilled. We refer to the output of such
an approach as aLaguerre approximationto the experimental microstructure. A
prescription for constructing a Laguerre approximation was formulated recently
by Lyckegaardet al. [12], who proposed starting from the centroids and volume-
equivalent radii of individual grains and then applying an additional optimization
step. The resulting representation faithfully reproducesthe statistical properties
of the experimental microstructure, but, according to the authors of [12], their
Laguerre approximation is not always able to capture local grain configurations
precisely. While this method aims primarily at reconstructing the full morphol-
ogy when only grain centres and grain volumes are known, it isalso applicable to
voxelated data.

Lacking a satisfactory solution to this complex optimization problem, we pro-
pose an alternative route to the extraction of a set of convexpolyhedra that closely
matches the grain mapping of any given real polycrystal. Ourapproach offers
most of the advantages of the Laguerre tessellation withoutthe burden of having
to find seed points and weighting factors for the individual cells. In our method,
grains are described parametrically, with the individual faces obtained by orthogo-
nal regression of planes; subsequently, the cells are constructed by an appropriate
combination of the planar faces. Just like the Laguerre tessellation, our parametric
representation of the grains affords significant data reduction, while facilitating
the estimation of structural characteristics for individual grains. The proposed al-
gorithm is explained in Section 2. We test the algorithm by applying it to artificial
3D image data and to a real microtomography data set obtainedfrom an Al-5
wt% Cu alloy, comparing the algorithm’s performance to the Laguerre approxi-
mation devised by Lyckegaardet al. [12] (Section 3). We observe that both our
approach and the Laguerre approximation successfully reproduce statistical fea-
tures of the real ensemble of grains, such as the distributions of grain sizes and
coordination numbers, but our algorithm delivers a significantly closer match to
local grain properties, such as the grain size, shape and neighbourhoods, at the
cost of a slightly more complex parametrization.

2 Representation of grains by parametric cells

In this section, we describe a new algorithm for extracting convex cells directly
from 3D image data. It is assumed that the voxels belonging toeach grain are la-
belled with a unique number—that is, the processed imageI is given by{I(x,y,z)∈
{1, . . . ,N} : (x,y,z)∈W}, whereN ≥ 1 denotes the number of grains andW ⊂N
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is the (convex) grid of voxel coordinates;N = {0,1, . . .}. Furthermore, we as-
sume that all voxels belonging to a given grain with labeli ∈ {1, . . . ,N}—i.e.,
Ri = {(x,y,z) ∈W : I(x,y,z) = i}—form a connected region.
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A convex cell can be described by an intersection of half-spaces, in which the
boundary of each half-space is aligned along a single planarface of the cell. By
looking at the individual faces of a given grain—that is, thevoxels bordering a
grain and one of its neighbours—we can fit a plane to those voxels using orthog-
onal regression and then define a closed cell from the set of all planes delimiting
the given grain. A 2D illustration of this idea is shown in Figure 1(a).

(a) (b)

Fig. 1 Schematic illustration of the cell extraction algorithm in2D: (a) orthogonal regression is
used to fit lines to pixels at each boundary between two grains; taken together, the set of lines
surrounding the grain defines the extracted cell. (b) Implementation of this idea in 2D using
half-planes: orthogonal regression is used to fit lines to pixels (shown here only for two grain
boundaries), the corresponding half-planes are computed (grey), and the intersection of all half-
spaces (dark grey) is taken to define the cell. The filled circle denotes the grain’s centroid, which
must be located within the half-planes.

A prerequisite for this approach to succeed is that the grains under consider-
ation be at least nearly convex. For convex grains having planar faces, the algo-
rithm works perfectly, in the sense that the precision is limited only by the voxel
resolution. Non-planar faces between grains are approximated by planar faces; the
presence of non-convex grains can introduce artefacts, as discussed in Section 3.3.

We now describe the extraction of planes for individual grain faces and the
construction of cells from sets of planar faces.

2.1 Extraction of a plane for an individual grain face

In a typical polycrystalline microstructure, the voxels insimultaneous contact with
two grainsi and j are located approximately along a plane in 3D. We wish to detect
this plane using orthogonal regression. The planePn,d ⊂ R

3 parametrized with a
(unit-length) normal vectorn = (n1,n2,n3) ∈ R

3 and signed distanced ∈ R from
the origin is given by

Pn,d = {(x,y,z) ∈ R
3 : n1x+n2y+n3z+d = 0} .

The set of voxels adjacent to two grains with labelsi and j is

Ni, j = {(x,y,z) ∈W : N26(x,y,z)∩Ri 6= /0 andN26(x,y,z)∩Rj 6= /0} ,
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whereN26(x,y,z) denotes the set of 26 voxels that share a face, edge or corner
with the voxel at(x,y,z) (i.e., the voxel neighbourhood defined by a distance less
than or equal to

√
3 from (x,y,z)). Note thatNi, j = Nj,i , which ensures that the

detected planes do not depend on the order of processing.
The idea of orthogonal regression is to minimize the (squared) distance of

points (in our case the voxel coordinates inNi, j ) from the plane that is to be
detected. Formally, we want to find the (global) minimum of the function f :
R

3×R 7→ [0,∞) denoted by

f (n,d) = ∑
(x,y,z)∈Ni, j

(n1x+n2y+n3z+d)2

for a normal vectorn = (n1,n2,n3) ∈ R
3 with length|n|= 1 and signed distance

d ∈R from the origin. Orthogonal regression is therefore a least-squares problem,
which can be solved by singular value decomposition [4]. In essence, for a given
set of boundary voxels, it can be shown that the centroidc∈ R

3 of the voxels lies
on the plane to be extracted, and a normal vectorn ∈ R

3 to the plane is given by
the right-singular vector corresponding to the smallest singular value of a matrix
containing all voxel coordinates shifted by−c [4].

2.2 Determination of grains sharing a common face

We first consider the issue of deciding which pairs of grainsRi andRj share a
common face, since this determines whether a plane between the grains should
be extracted or not. Note that the ruleNi, j 6= /0 does not suffice for this purpose,
because there may be voxels touching two grains that share only a common vertex
or edge. Fitting a plane to these voxels has no physical justification and would
likely generate odd and unpredictable cell shapes. To avoidthis situation, we apply
a threshold criterion, with the value of the threshold determined from an inspection
of the data in question. For the sample data sets discussed inSection 3, we interpret
the square root of the number of voxels inNi, j as an “effective face diameter,”
under the provisional assumption that the voxels inNi, j arise primarily from a
shared grain face. We then calculate the ratio between the effective face diameter
and the mean volume-equivalent diameter of the two grains being evaluated. If
this ratio is larger than the threshold value—typically in the range of 0.2 to 0.25—
then we accept the voxels inNi, j as belonging to a grain face, and we apply the
algorithm of Section 2.1 to extract the corresponding best-fit plane.

2.3 Cell representation by the intersection of half-spaces

As explained above, we can fit a plane to each face of a grainRi , and each of these
planes restricts the volume of the corresponding extractedcell; consequently, the
cell is a convex polytope. Convex polytopes can be defined by their vertices (the
polytope itself is then given by the convex hull of the vertices, sometimes called
the V-representation) or by an intersection of half-spaces(H-representation). The
latter is directly applicable to our approach, because the appropriate half-spaces
are directly related to the detected planes.
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A half-spaceHn,d in R
3 is given by

Hn,d = {(x,y,z) ∈ R
3 : n1x+n2y+n3z+d ≤ 0} , (⋆)

wheren = (n1,n2,n3) ∈ R
3 is a (unit-length) normal vector, andd ∈ R is the

signed distance from the origin. It is straightforward to obtain these half-spaces
from the previously detected planesPn,d, which are the boundaries of the half-
spaces. Of course the proper side for the half-space must also be determined; here,
a simple criterion is to require the half-space in(⋆) to include the centroid ofRi—
i.e., the grain centroid fulfils the inequality given in the definition of Hn,d.

Finally, following the steps previously described, we can extract planes for all
faces of a given grain, determine the corresponding half-spaces and obtain a closed
cell by taking their intersection. A schematic illustration is shown in Figure 1(b).
For m half-spaces of a single grain withm≥ 3 and{(n(k),d(k)) ∈ R

3 ×R,k =
1, . . . ,m}, their intersection and thus the convex cellC is given by

C= {(x,y,z) ∈ R
3 : n(k)1 x+n(k)2 y+n(k)3 z+d(k) ≤ 0, k= 1, . . . ,m} .

3 Evaluation

We evaluate the quality of the proposed cell extraction algorithm by computing
structural characteristics. First, using the standard Laguerre construction (see Ap-
pendix A), we generate an artificial data set consisting of a space-filling ensemble
of convex cells (taking on the role of the grains in a polycrystalline microstruc-
ture), to which we apply our algorithm in order to test the accuracy of the resulting
cell extraction. Second, we apply our algorithm to the grains of a real polycrys-
talline material mapped experimentally by x-ray microtomography.

In both cases, we compare our approach to the Laguerre approximation in-
troduced by Lyckegaardet al. [12]. In the latter, seed points are placed initially
at the centroids of individual grains, and a weighting factor equal to the volume-
equivalent radius of the associated grain is assigned to each seed point. An addi-
tional optimization step is carried out to improve the result by shifting the location
of seed points depending on adjacent cells. From the analysis carried out in [12],
Lyckegaardet al. conclude that this cell-extraction algorithm reproduces statisti-
cal features like the distribution of cell sizes and the distribution of the number of
faces quite well, but discrepancies can appear in more-sophisticated local charac-
teristics, such as the sizes and shapes of cell neighbourhoods.

Throughout Section 3, when estimating structural characteristics we employ
the Miles–Lantuéjoul correction [14,8] to avoid bias arising from grains touching
the boundary of the grid, and, whenever possible, we prefer to calculate density
functions rather than histograms, as the shape of the latteris highly sensitive to
the chosen bin widths and positions. In this work, we determine density functions
by (non-parametric) kernel density estimation [20].

3.1 Artificial data set with convex cells

Here, we describe the construction of an artificial polycrystalline microstructure as
a realization of a random Laguerre tessellation. We then apply our cell-extraction
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algorithm and compare the resulting cells to those of the original known tessella-
tion.

3.1.1 Generation of the artificial data set

A random Laguerre tessellation is generated by consideringa random marked
point process [6], the points of which are taken to be seed points for Laguerre
cells. Numerical marks are assigned randomly to the points,constituting weight-
ing factors that influence the resulting sizes of the Laguerre cells. More precisely,
we employ a Poisson-Laguerre tessellation [9], which is based on the well-known
(homogeneous) Poisson point process. In particular, the point pattern is gener-
ated as follows. For a given intensityλ of the homogeneous Poisson process,
the number of pointsN in a cuboidW ⊂ R

3 is Poisson-distributed with expecta-
tion value given by the product ofλ and the volume ofW. For a realizationn of
the number of points, the point pattern itself is denoted by the set of coordinates
{(xi ,yi ,zi), i = 1, . . . ,n}; these points are realized by a uniform distribution onW,
and they do not influence each other.

We choose the cuboid for simulation to have the sizeW = [0,1000]3 andλ to
be 5×10−6, which means that the expected number of points inW is 5000. The
random marks assigned to the points are independent and distributed according to
a gamma distribution with shape parameterα = 50 and rate parameterβ = 0.75
(expectation valueα/β and varianceα/β2) [5]. This combination of parameter
values was found to generate cells similar to the experimental data presented in
Section 3.2. A 2D section of a realization of this random Laguerre tessellation is
shown in Figure 2.

Fig. 2 Cross-section through a 3D artificial data set generated by Poisson-Laguerre tessellation.

3.1.2 Extraction of cells and evaluation

Given that the Poisson-Laguerre tessellation described above has been discretized
to a cubic grid, it is straightforward to apply the cell-extraction algorithm proposed
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in Section 2. For the sake of comparison, we also compute the Laguerre approx-
imation of Lyckegaardet al. [12] for the same artificial data set. Figure 3 shows
the original tessellation overlaid with cells extracted bythe two methods. To quan-
tify the degree of agreement between the extracted and original cells, we compare
them at the voxel level. In light of the near-perfect match between the boundary
voxels extracted by our approach and those in the original data set, it is clear that
all structural characteristics, like cell sizes, cell faces and cell neighbourhoods, are
also identical.

(a) (b)

Fig. 3 Cross-section through the original Poisson-Laguerre tessellation, with boundary voxels
shaded grey. Superimposed in black are the boundaries of cells extracted by (a) orthogonal
regression and (b) Laguerre approximation [12].

In order to quantify the number of voxels correctly assigned, we examine the
set of voxels of an extracted cell̂C, which should be nearly identical to that of
the corresponding original cellC. We define the fraction of correct voxels as the
number of voxels in the intersection̂C∩C divided by the number of voxels inC.
The fraction of correct voxels is a number lying between 0 and1, with values near
unity implying a nearly perfect match to the original voxels. Note that an extracted
cell that happens to be larger than the original cell can alsoyield a high value for
this fraction, even though the extracted cell is not a perfect fit, but in this case the
adjacent cells will automatically manifest much lower values for the fraction of
correct voxels.

Figure 4 shows the estimated density function of the fraction of correct voxels.
For cells constructed by orthogonal regression, the mean fraction value is about
99%, which constitutes a very good overall fit. This is not surprising, because
our algorithm is constructed to match the individual faces as closely as possible
with planes, and the artificial data set consists entirely ofconvex cells having
planar faces. The Laguerre approximation [12], on the otherhand, is generated
by a simpler parametrization. Because the original data setis itself a Laguerre
tessellation, it is clear that the cells extracted by the algorithm in [12] could have
conceivably matched perfectly throughout the sample, but the fact that the mean
fraction of correct voxels was only 84% for the Laguerre approximation indicates
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that determination of the proper seed point locations and weighting factors from
cell boundaries alone is a non-trivial endeavour.

The voxel-based comparisons presented in Figures 3 and 4 indicate that for
(in our sense) optimal data, the extraction of cells by orthogonal regression works
nearly perfectly. Despite the artificial data set having been generated by the La-
guerre construction, the Laguerre approximation [12] doesnot describe the data
nearly as well. For the experimental data set considered in the next section, we
extend our analysis beyond the voxel level to include characteristics like the sizes
and shapes of grains and their neighbourhoods.
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Fig. 4 Estimated density function plotted against the fraction ofvoxels correctly assigned in the
artificial data set for cells extracted by orthogonal regression and by Laguerre approximation
[12].

3.2 Experimental data set of a polycrystalline alloy

After a short description of the method by which 3D microstructural data were
obtained for a polycrystalline alloy, we examine the cells determined by orthog-
onal regression and present various measures for quantifying the extent to which
the extracted cells properly represent the real microstructure.

3.2.1 Data description

Cylindrical samples of an Al-5 wt% Cu alloy (4 mm diameter, 4 mm height) were
characterized using a SkyScan 1172 laboratory tomograph atan isotropic resolu-
tion of 2 µm (voxel side length). Absorption-contrast microtomography yields a
three-dimensional mapping of the local absorption of x-rays, variations in which
can arise, for instance, from concentration gradients present at the boundaries be-
tween different phases. When Al-Cu alloys with low copper content are heated
above the solidus temperature, phase separation occurs into solid, Al-rich grains
surrounded by a liquid phase having a significantly higher concentration of Cu
atoms [13,16]. Upon subsequent cooling to room temperature, the liquid phase
crystallizes into an eutectic mixture of two solid phases, but the local Cu concen-
tration in the formerly liquid regions remains enhanced, effectively marking the
boundaries of the Al-rich grains in the tomographic reconstruction (Figure 5(a)).
Because coverage of the grains by the eutectic mixture was incomplete, we applied
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a watershed image-processing algorithm to a Euclidean distance transform of the
binary images to fill in gaps in the network of grain boundaries (Figure 5(b)) [2,
18]. Additional details concerning the measurement and data segmentation proce-
dures can be found in [27].

(a) (b)

Fig. 5 (a) Cross-section through a tomographic reconstruction ofan Al-5 wt% Cu alloy mea-
sured after cooling from above the solidus down to room temperature; lighter regions indicate the
presence of the phase Al2Cu, which forms during crystallization of the liquid phase surrounding
the solid, Al-rich grains. (b) Same cross-section following binarization and application of the
watershed transformation.

3.2.2 Extraction of cells and evaluation

As mentioned above, the watershed transformation was used to reconstruct the
network of grain boundaries, thereby uniquely identifyingconnected sets of voxels
as belonging to the interior regions of individual grains inthe sample. This is
precisely the starting point considered in Section 2 for theextraction of cells from
a 3D mapping of a polycrystalline microstructure. Application of this method to
the Al-5 wt% Cu data set yields the cell system illustrated inFigure 6(a) in black,
which is superimposed on the boundary network of the original tomographic data
plotted in grey.

To assess the accuracy of cell extraction, we again considerthe fraction of cor-
rect voxels, as defined in Section 3.1; the estimated densityfunction is plotted in
Figure 7. As with the artificial data set, we see that orthogonal regression applied
to data from a real sample yields very high values for the meanfraction of cor-
rect voxels (0.96), with only 5% of all cells having a value smaller than 0.9. The
Laguerre approximation [12] achieves a mean fraction of about 0.87, but 5% of
the cells manifest a value below 0.64. This quantitative discrepancy is reflected in
obvious qualitative differences between the overlays shown in Figure 6.

3.2.3 Comparison of further structural characteristics

In this section, we consider important structural characteristics of polycrystalline
microstructures with respect to grain sizes, shapes and neighbourhoods, compar-
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(a) (b)

Fig. 6 Cross-section through a tomographic reconstruction of Al-5 wt% Cu following image
processing as described in the text; voxels at grain boundaries are shaded grey. Superimposed
in black are the boundaries of cells extracted by (a) orthogonal regression and (b) Laguerre
approximation [12].
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Fig. 7 Estimated density function plotted against the fraction ofvoxels correctly assigned in the
Al-5 wt% Cu data set for cells extracted by orthogonal regression and by Laguerre approxima-
tion [12].

ing the corresponding values for cells extracted by orthogonal regression and by
Laguerre approximation of the same experimental Al-5 wt% Cudata set.

A natural structural characteristic is the distribution ofgrain sizes. Although
the grains themselves are not perfectly spherical, it is common to equate the size
of a given grain to the diameter of a sphere having the same volume. The esti-
mated density functions for grain sizes computed in this manner are plotted in
Figure 8(a). We see there that all of the distributions take on a similar shape, but
some discrepancies are apparent between the experimental data set and the La-
guerre approximation, particularly with respect to smaller grains, which tend to be
represented by Laguerre cells that are somewhat too large. The near-linearity of a
scatter plot of the diameter of each extracted cell against its corresponding tomo-
graphic grain diameter attests to the high accuracy our cellextraction algorithm
(Figure 8(b)). The few outliers can be attributed to the presence of non-convex
cells in the real microstructure (see Section 3.3).

Another interesting structural characteristic is the sphericity of grains [26].
Sphericityis defined to be the ratio of the surface area of the volume-equivalent
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Fig. 8 (a) Estimated density functions for the volume-equivalentgrain diameter: distributions
calculated directly from tomographic data as well as from cells extracted by orthogonal re-
gression or Laguerre approximation [12]. (b) Scatter plot of the volume-equivalent diameter of
extracted cellsvs.the corresponding grain diameter measured by tomography.

sphere to the surface area of the corresponding grain or cell. Small values for this
ratio imply that the shape differs significantly from that ofa sphere—e.g.the true
shape could be elongated in a particular direction. As shownin Figure 9, neither
orthogonal regression nor the Laguerre approximation [12]does a satisfactory job
of representing the sphericity of the experimental grains:the mean sphericity is
approximately equal in all three cases, but the distribution of sphericities is wider
for both types of extracted cells than for the original grains. Detailed investiga-
tion reveals that discrepancies are particularly noticeable for small grains, which
tend to be rather spherical in the experimental data set. Consequently, the approx-
imation of planar faces (which is enforced by the cell extraction algorithms) can
be rather poor for these grains (particularly in light of thefact that small grains
have few faces), and the sphericity of the cells extracted for these grains never
approaches unity. Therefore, the differences in sphericity that are clearly visible
in Figure 9 can be attributed primarily to the constraint of convexity on each cell
in the extracted cell network (which, in turn, entails that all cell boundaries be
planar).

A further important characteristic of space-filling ensembles of grains is the
coordination number, which denotes the number of neighbourgrains sharing a
common face with a given grain. Figure 10(a) compares the relative frequency
of coordination numbers determined directly from experimental data to the same
quantity evaluated for microstructural representations produced by the two cell-
extraction algorithms. For the tomographic data set, the identification of shared
grain faces was performed using the algorithm described in Section 2.2.

When assessing grain adjacency, it is of interest to determine whether the
topology of the system is represented properly. Figure 10(b) presents histograms
for the number of incorrectly assigned neighbours, which isdetermined by count-
ing all differences in the adjacency list—i.e., by summing up the number of miss-
ing neighbours and the number of additional neighbours. As already discussed in
[12], the cells extracted by Laguerre approximation are notperfect with respect
to the local arrangement of cells. Cell extraction by orthogonal regression mani-
fests similar deficiencies in the proper representation of this particular structural
characteristic, although they are somewhat less severe than in the case of Laguerre
approximation.
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Fig. 9 Grain sphericity: (a) tomographic data acquired from Al-5 wt% Cu; (b) cells extracted
by orthogonal regression; (c) cells extracted by Laguerre approximation [12]. In each row, the
density function for sphericity is plotted on the left, and the dependence of sphericity on the
grain/cell size is illustrated graphically on the right.

For both cell-extraction routines, erroneous neighbour assignments can be
traced to the constraint of cell convexity. When the orthogonal regression of planes
is applied to the boundaries of a non-convex grain, it is possible for a neighbour
to be lost when the voxels of the corresponding shared face donot generate a
half-space that restricts the volume of the resulting cell.Approaches based on La-
guerre tessellations do not suffer from this particular problem, but there—as we
have seen above—it is much more difficult to obtain a good overall fit to the indi-
vidual grain faces, which may, in turn, lead to incorrectly assigned neighbours. In
the following section, we discuss in greater detail the cell-extraction artefacts that
can arise from non-convex grains.

3.3 Influence of non-convexity

The proposed algorithm aims to obtain an exact representation of individual grains.
For an ensemble of convex grains with planar faces, our cell-extraction method
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Fig. 10 (a) Distribution of the coordination number of grains in tomographic image data as well
as of cells extracted by orthogonal regression and Laguerreapproximation [12]. (b) Distribution
of the number of incorrectly assigned neighbours: comparison of cells extracted by orthogonal
regression to Laguerre approximation, evaluated in both cases with respect to grain neighbour
assignments determined from experimental data.

works perfectly. However, the orthogonal regression approach does not explic-
itly enforce constraints like the face-to-face adjacency of cells or the matching of
edges and vertices; consequently, it is highly likely that the conditions for nor-
mality of a tessellation will be violated to a certain extentwhen our algorithm is
applied to a microstructure containing non-convex grains.We now discuss two
types of artefacts that can arise from non-convexity.

First, our algorithm works by fitting a plane to the boundary between two
grains. This ensures that we obtain a good fit with respect to the position of the
boundary itself, but the approach places no constraints on the locations of the
edges and vertices delineating the shared face. Consider, for example, the 2D il-
lustration in Figure 11(a). Grain number 1 shares a curved boundary with grain
3 below, which is clearly non-convex. By fitting lines to thisboundary and to
the boundary between grains 1 and 2, we obtain the vertex labelled V. The same
procedure applied to the boundaries of grain 2, however, yields a different ver-
tex positionV ′ for the same line separating cells 1 and 2. Such non-matchingof
vertices in 2D—or edges and vertices in 3D—will generally result in small gaps—
i.e. regions not covered by any extracted cell—or even in small overlaps between
neighbouring cells. Examination of our data found that approximately 97% of all
voxels were included within an extracted cell, but this number also encompasses
artefacts of the second type, which we discuss next.

A second type of artefact occurs when a detected half-space cuts off too much
volume from a cell. This can be a particularly serious problem when the segmen-
tation of an experimental data set fails to detect a boundarybetween two grains,
falsely grouping the voxels together as a single grain. The union of the two grains
is usually highly non-convex, frequently taking on a “dog-bone” shape. Then, be-
cause each planar face is detected individually and used to construct the resulting
cell by taking the intersection of the corresponding half-spaces, some half-spaces
may not restrict the volume of the cell at all, or, even worse,they may strongly af-
fect the overall cell shape at the wrong location. This generally results in extracted
cells that are significantly smaller than the correspondinggrains, as illustrated in
Figure 11(b). (Such an obvious loss of volume between the original grain and the
extracted cell could be a useful tool for automatically detecting underlying seg-
mentation errors.)
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(a) (b)

(c)

Fig. 11 Schematic illustration of artefacts caused by non-convex grains. (a) Edges and vertices
of adjacent cells are not forced to be equal, which may resultin small gaps (unshaded white
region). (b) Two grains recognized as one in the segmentation cannot be represented properly by
a convex cell (detected cell bordered in solid blue lines, restricting planes dashed, lost volume
in white); (c) A planar face can be “cut off” from one grain when another face more strongly
restricts the volume of the extracted cell (the face marked in blue has no affect on the spatial
extent of cell 3); since the former face may still be relevantfor an adjacent cell (cell 2 in the
illustrated example), a gap can form between the extracted cells.

The misclassification of two grains as a single grain is clearly a fault of seg-
mentation and not of cell extraction. Nevertheless, the artefact of a half-space
having no effect or even the wrong effect on the cell shape canoccur under less-
extreme circumstances, as well. The enforced approximation of a curved boundary
by a planar face can generate a half-space that “cuts off” other fitted planar faces
in such a manner that a “cut off” plane disappears as a face forone cell, but the
same plane forms the boundary of an adjacent cell. Such a caseis illustrated in
Figure 11(c). Here, the plane fitted to the boundary between grains 2 and 3 is only
relevant for cell 2, since, for cell 3, this plane is cut off bythe half-space gener-
ated from the (non-planar) boundary between grains 1 and 3. This phenomenon
can account for instances in which cells extracted by our algorithm have different
neighbours than the corresponding grains in the experimental data set.

In spite of such artefacts, our strategy for extracting (parametric) cells per-
forms quite well in general for experimental data corresponding to typical poly-
crystalline microstructures. As expected, the high accuracy noted in voxel-based
comparisons carries over to statistical characteristics of the cell ensembles, as
well. The Laguerre approximation [12] is likewise able to represent global sta-
tistical features faithfully, but it is less suited to the proper description of more
sophisticated structural characteristics of space-filling grain ensembles. It should
be noted that Laguerre tessellations have the clear advantage of, by definition, al-
ways generating a tessellation—i.e., it is impossible for there to be gaps between
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cells or for edges and vertices not to coincide. Unfortunately, it is these same con-
straints that make it so difficult to determine the “best” seed points and weighting
factors for accurately approximating a measured polycrystalline microstructure by
the Laguerre construction.

4 Conclusions

We have presented a new algorithm for extracting parametriccells from 3D image
data that is based on the orthogonal regression of individual grain faces. Applied
to an artificial data set consisting of convex grains, the cell-extraction algorithm
generates a nearly perfect match, as quantified by a voxel-based comparison. For
experimental 3D image data, the new algorithm also works quite well, performing
significantly better in most respects than a recently proposed Laguerre approxi-
mation algorithm [12]. The latter conclusion is based on evaluations of statistical
features like distributions of grain size and the number of neighbours (coordi-
nation number), but also on local characteristics like the number of incorrectly
assigned neighbours per grain. The higher accuracy in representation comes at the
cost of a slightly more complex parametrization. It should be noted that voxelated
(image) data are needed for our approach, while [12] requires only grain centres
and volumes, which may be easier to obtain. A further disadvantage is the pos-
sibility for artefacts like small gaps between adjacent cells in the case of clearly
non-convex grains. The latter problem was negligible for the real microstructure
studied in this work.
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A Laguerre tessellations

The Laguerre tessellation [15]—a weighted version of the well-known Voronoi diagram—has
long been a popular choice for modelling polycrystalline grain structures (seee.g.[3,24,22,23,
28]). In a Voronoi diagram, each “seed point” (also called a “spring point”) creates exactly one
cell, as every point in space is assigned to its nearest seed point. In 3D, the result is a partition
of space into convex polyhedra. When constructing a Laguerre tessellation, every seed point is
given an additional weightr2, which permits finer control over the cell sizes. The weightr2 can
be interpreted as the squared radius of a sphere centred on the seed point—see Figure 12 for an
illustration in 2D.

Formally, a 3D Laguerre tessellation is defined as follows. Given a (locally finite) setS=
{(xi , r i), i ∈ I} ⊂R

3×R
+ of seed pointsxi with radii r i , the Laguerre cell of(xi , r i) with respect

to S is given by

C((xi , r i),S) =
{

y ∈ R
3 : |y−xi |2− r2

i ≤
∣∣y−x j

∣∣2− r2
j , (x j , r j ) ∈ S

}
.

Then, the Laguerre tessellation is the set of all Laguerre cells {C((xi , r i),S), i ∈ I}. Note that it is
possible for a seed point to create no cell at all, provided anadjacent seed point has a sufficiently
large weight. For the same reason it is also possible for a seed point not to be contained within



17

Fig. 12 Illustration of Laguerre tessellation in 2D: seed points with weights pictured as circles,
along with the resulting Laguerre cell boundaries.

the cell generated by that seed point. These properties complicate the determination of the seed
point locations and corresponding weights when only the resulting cells are known.
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