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ABSTRACT

This paper introduces a new approach to Monte Carlo estimation of the vetdaityarge carriers drift-
diffusing in a random medium. The random medium is modelled by a 1-dimensidtied and the position
of the charge carrier is modelled by a Markov jump process, whose state gpthe set of lattice points.
The transition rates of the Markov jump process are determined by thelyindeenergy landscape of
the random medium. This energy landscape is modelled by a Gaussianspamcesontains regions of
relatively low energy, in which charge carriers quickly become stuckaAssult, the state space is not
adequately explored by the standard algorithms and the velocity of thecotemmiger is poorly estimated. In
addition, the conventional Monte Carlo estimators have very high varia@esapproach aims to reduce
the number of simulation steps that are spent in the low energy problem sedi@ndo this by identifying
the problem regions via a stochastic watershed algorithm. We then usesemedrstate space model,
where the problem regions are treated as single states. In this way, ablate simulate a semi-Markov
process on the coarsened state space. This results in estimators thabiased and have considerably
lower variance than the crude Monte Carlo alternatives.

1 INTRODUCTION

Electron transport in disordered organic semiconductors can be mdnjaieeans of Markov jump processes
on graphs, where the graph represents the random medium and thef stegump process represents
the position of the charge carrier. The transition lfopping) rates of the jump process between adjacent
vertices of the graph can be determined from the electrochemical antlquarechanical properties of the
semiconductorRuhle et al. 201L One of the main characteristics to be measured ishisge carrier
mobility . = v/ F, whichis afunction of the average velocitydift vel ocity v of the charge carrier as it passes
through the random medium under the bias of an external electridfielthe drift velocity can be estimated
via Monte Carlo simulation of the Markov jump process — cal#aktic Monte Carloin the physics literature
(Pasveer et al. 2005Since the charge mobility influences the performance of a material in techical
applications, e.g., the efficiency of organic solar cells, such a modéfctren transport is a key ingredient
of intensive efforts in in-silico design of high-efficiency organic semawgiors Baumeier et al. 2012
The approach introduced bg¢Hinherr et al. 198jland Bassler 1998 which we callCrude Monte Carlo
(CMC), has become a well-established methoess6ler et al. 2009(van der Holst et al. 201 A major
problem, however, is that for a large variety of materials the energy lapdsassociated with the random
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medium contains regions of low energy in which the charge carrier quigdpies stuck. A consequence
of this is that the estimation of drift velocity via crude simulation is not only very tamesuming, (often
to the extent of being practically infeasible), but also leads to estimators dhatstently overestimate
the mobility. In addition, processes in organic electronics take place on multiple tichepatial scales.
Therefore, it is essential to have computationally fast methods that aratgeesystem sizes over a long
physical time without losing too much information about finer scale behaviour.

The purpose of this paper is to provide a fast alternative to the standa@li agorithm that can be
easily extended to 3-dimensional models that are of practical interest. \Wdun& a novel approach to the
problem of deep energy traps, where we identify the problem areag asitochastic watershed algorithm.
We then construct a coarsened state space model, under which therpregiens can be traversed in a
single step of the simulation. In the literature, this type of problems has beerssixtin the context of e.g.
nearly decomposable Markov process€syrtois 1977 Simon and Ando 1961and multiple time-scale
Markov processedHvans 1996Tse et al. 199b A similar strategy of coarsening the state space is used
in (Somoza and Orfipo 2005 to study the relaxation of Coulomb glasses at low temperature. However,
the latter approach only considers pairs of problem states, and dosgegroent the state space prior to
the simulation. In the present paper, we focus on a 1-dimensional systeich already describes the
main physical processes quite wellafi der Holst et al. 2031 However, the basic method presented in
this paper can be extended to 3-dimensional models. In particular, theastioccwatershed segmentation
can be directly applied in 2D and 3D.

2 MODEL

In this section, the random medium is modelled by a 1-dimensional lattice and shi®pof the charge
carrier is modelled by a Markov jump process, whose state space is thidattite points. The transition
rates of the Markov jump process are determined by the underlying ela@dgcape of the random medium.
Such a model is related to both 1-dimensioBalssian Disorder Models (GDM) andCorrelated Disorder
Models (CDM) (van der Holst et al. 2031 1In this paper, we consider a correlated energy landscape, as it
is more accurate for small molecule systems.

2.1 Electron Transfer Rates

Electron transfer rates between neighboring molecikasd j in disordered organic semiconductors can
be obtained from the high-temperature limit of classical charge-trangfenttfMarcus 1993 according to
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wherefi = 6.58 - 10716 eV - s is the reduced Planck constahg, = 8.62 - 10~° eV - K~! is Boltzmann’s
constant, andl’ the temperature. In realistic morphologies, the quantitigs(transfer integral),\;;
(reorganization energy) antlE;; (driving force) are evaluated explicitly using a combination of quantum-
mechanical electronic structure techniques and classical simulation meseedRiihle et al. 2011 The
driving force AE;; = E; — E; + e(x; — x;) F comprises static site energy differendés— E£; and a drift
terme(x; — x;)F due to an externally applied electric field acting on the elementary chargewhere

x; is the Cartesian coordinate of the center of mass of molecule

2.2 Energy Landscape

In the approaches described i@gropceanu et al. 2097(Ruhle et al. 2011 and references therein, the
motion of the charge carrier is modelled as a time-homogeneous Markov juropsgioX; },., Where
the state space is the vertex set of a 3-dimensional graph. In the followengonsider a 1-dimensional
abstraction of such 3-dimensional models. We use a finite state §pace, n}, imposing cyclic boundary
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conditions to approximate an infinite random medium. One of the main factorsrileiteg the dynamics

of the jump process via ed.is the underlying energy landscape which determines the transitiongates
We consider jumps to nearest neighbouring states only, i.e., we;pst 0 if |i — j| # 1. In amorphous
tris-(8-hydroxyquinoline)aluminum, a typical organic semiconductor, ageampic evaluation based on a
simulated morphology yield energiés which are positively correlated across neighboring molecules (see
(Ruhle et al. 201)), i.e., the energy landscapg;, F», . .., E,, behaves like a moving average process.
More precisely,F; satisfies

K
w ~ .
Ei:kz—:l( 2K+1€i—k+m€i , i=1,...,100 modn,

where the{e; } and{z; } are sequences of independent and identically distriduted o) random variables.
Note thatK controls the broadness of the spatial correlatiozgfandw controls the local roughness of
the energy landscape; in particular, for= 0 all {E;} are independent and the energy landscape becomes
very rough. A typical realization with a parametrization of the microscopic filata (Ruhle et al. 201},
i.e.,n=100,K =1,m = —0.182 eV,o? = 0.034eV?, andw = 0.9, is given in Figurel.
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Figure 1: Moving average energy landscape.

All remaining parameters to determine the transition raies eq.1 exceptAE;; are chosen constant.
More preciserij = 1.7-10~*eV? (an average value of the microscopic data, assuming that neighboring
sites are separated dynm), \;; = 0.23 eV, andT is set to room temperature so thai7 = 0.025eV.

The energy difference is given bXFE;; = E; — E; + (j — i)0, whereé = 0.01eV is the drift term,
corresponding to an external electric figitl= 107 V/m. In general, the charge carrier is more likely to
move from a higher energy region to a lower energy region than it is to ntove & lower energy region
to a higher energy region. Thus, it tends to spend a large amount of timeneergy valleys.

2.3 Drift Velocity

The drift velocityv is defined mathematically as the long-run average velocity with which a chargerc
travels through the random medium:
. Xy —Xo
v=lim ——.
t—00 t

This quantity is usually estimated via Monte Carlo methods. For conveniences irdimensional case
we can treat the Markov jump process (MJP) as a birth-death procéhbsbivth rateso; = ¢; ;41 and
death rateg}; = ¢; ;1. We then simulate a MJP, trackinlg the distance travelled to the right by the jump
process. In the presented algorithms, we focusVorather thart in order to highlight how the accuracy
of the estimator changes as a function of step size. The CMC approachédstimation of drift velocity
is given in the following algorithm:
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Algorithm 2.1 (Crude Monte Carlo estimation of drift velocity) For a given number of steps N

1. Setd=0,j=0andt=0.

2. Draw Xy uniformly from {1,...,n}.
s ax. .
3. Wth probability W set Xj11 =X;+1andd =d+1. Otherwise, set X;,; = X; —1 and
d=d—1.

4. Draw 7; ~ Exp(axy; + fx,) and set t =t + 7;.
5. Setj=j5+1.1f j <N, repeat from Sep 3.
6. Returnv =d/t.

Using the CMC approach, the drift velocity is significantly overestimatedrfaller values ofV. The
addition of a burn-in period reduces, but does not remove, the biasteFAghows average point estimates
of v for the CMC estimator and the CMC estimator with a burn-in period th&0% of the sample size
N.
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Figure 2: Estimates of drift velocity vs. sample size

In order to assess the performance of the estimators, we estimated their miestaradard deviation
via a bootstrap. The results are summarized in TAblMote that the variance of the estimaibrs very
large. In particular, for smaller values of the estimated standard deviation is of the same order as the
estimated mean af.

Table 1: Mean and standard deviationof
(in nm/s) using CMC with a burn-in period

N Mean Standard deviation
10*  5.15 x 108 6.85 x 103
105 3.74 x 107 6.47 x 107
106 2.76 x 108 5.19 x 10°
107 7.62 x 10° 1.13 x 108
108 7.80 x 10° 3.65 x 10°

109  7.68 x 10° 9.87 x 10%
1019 7.70 x 10° 1.35 x 10*
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The primary obstacle to efficient estimation is the existence of problem regitwse the MJP becomes
trapped for very long periods of time, commonly ud @ steps. As a result, the state space is not adequately
explored by the standard algorithm (for a finite state space, with cyclicdamyrconditions, the MJP does
not come close to the stationary distribution), and the time spent in problenmsdgioften underestimated.

3 FAST SIMULATION OF CHARGE TRANSPORT

The idea behind our approach to improving the estimation of the drift velocitydsdosen the state space,
so that the problem regions can be traversed in a single step. This is yone b

1. identifying the problem regions via a stochastic watershed algorithm,
2. reducing these problem regions to single states,

3. replacing the MJP with a semi-Markov process,

4. carrying out the simulation with the new coarsened state space model.

3.1 Stochastic Watershed Algorithm

In order to increase the efficiency of the simulations, we need to coarsestate-space in such a way
that charge carrier moves between each pair of neighboring states Withestly high transition rates.
This is done by collapsing the ‘valleys’ in the energy landscape into singfee(s states. In order to do
this, it is necessary to identify the relatively low energy regions of theggnkindscape. The approach
we use is a modification of the standard watershed transformation comkiddreage segmentation, see
e.g. Beucher and Meyer 1993The stochastic watershed is chosen since it directly extends to 2D and 3D
models and can handle large system sizes. Firstly, for segmentation gsirp@screate an adjusted energy
landscape which takes into account the drift of the MJP. This is becaaddiR with drift corresponds

to a MJP with zero-drift when the energy landscape is tilted appropriatet¢yFgure3. More precisely,

the energy landscapl,, Es, . . ., E, is transformed ta&y, E», . . ., E,, with

E,=E; —i5, i=1,...,n.

Note that cyclic boundary conditions are applied to the tilted energy lanelstep the energy difference
between states and1 is shifted byno.

20 40 60 80 100
n

Figure 3: Tilted energy landscape.

The problem regions are determined by the tilted energy landscape, sintartbition rateg;; only
depend on the energy differences for the tilted energy landscapepritiag the tilted energy landscape
as a 1D image, the coarsening of the state space can be viewed as thenpobliteage segmentation



Brereton, Kroese, Senzel, Schmidt, and Baumeier

in image analysis. A widely applied tool in image segmentation is the watershedotraation. Its
key idea was introduced byBéucher and Langjoul 1979. Initially developed for gray-scale images,
the watershed transformation was extended for continuous valuesNagreaf and Schmitt 1994 The
algorithm normally used today was developed Belcher and Meyer 1993 The basic idea of the
watershed algorithm is to consider the image as a topographic relief. Thigépbigrelief is then flooded
with water starting at all local minima. If water from different sources (lonmima) merge at a certain
point, a watershed marker is set. The set of watershed markers segmémiatie into disjoint regions,
so-called basins; see Figudefor a schematic example.

basins topographic relief watershed marker

—

Figure 4: Watershed transformation.

A limitation of the standard watershed transformation is that it often yields egersntation. That
is, the segmentation into basins (here: super-states of the jump processdostreicted) is too fine. We
therefore use the stochastic watershed transformation introducedingylp and Jeulin 2007 The idea
is to replace the local minima as starting points of flooding by random startindgspoemerated by a
homogeneous Poisson process with some intensihere discretized on the discrete 1D lattice that forms
the state space. The outcome is a random set of watershed markeegisgghe (random) basins. The
procedure is repeated an appropriate number of times (G@b6:times, in the case of a energy landscape
with lengthn = 100) and the relative frequencies of markers on the discrete lattice are cainpunally, a
global thresholding is performed and markers are only accepted if thetivesfrequencies exceed a certain
thresholdT'. In our case, a homogeneous 1D Poisson process with intensity).1 is chosen, together
with 7= 0.1. The choices of\ and T influence the segmentation of the energy landscape. In general,
A is chosen so that the expected number of starting points is less than the tataémaf local minima.
The thresholdl” determines the size of the super-states. A higher threshold yields lapmrsates. The
thresholdI” is chosen such that the size of the super-states is numerically feasiblem&ibisystem sizes,
it is also possible to collapse all states into a single super-state. The reshé sfochastic watershed
segmentation with the above mentioned parameters is displayed in Bigure
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Figure 5. Top. Left: standard watershed segmentation of the tilted enandgdape. Right: relative
frequencies of watershed markers computed from the stochastic vweatdrsd) together with the threshold
T = 0.225 (blue line). Bottom. Left: watershed segmentation by the stochastic wateiRlgtd: watershed
segmentation by the stochastic watershed together with samples of the MJfef@nd starting points.

3.2 Coarsened State Space Model

The stochastic watershed segmentation allows us to decompose the statélspace:} into a random
number of subsets. They are separated from each other by the points, S, € {1,...,n} at which
the relative frequencies of watershed markers exceed the thréBhd@edch of these segmentation points
consists of a single state of the original MJP. We amalgamate the collection of Is¢tte=en any two
consecutive segmentation points into a single super-state. Thus, weucbnle coarsened state space

{i, ce ﬁ} where each state is either a segmentation point or a problem region. wabhexample of
this is shown in Figuré.
S1 S2
1 2 3 4 5 6 7 8 9
I i _
1 2 3 Y

Figure 6: Coarsened state space.

Given the coarsened state space, we can describe the movement afrjeeadrrier by a semi-Markov
process{ X, }:>o; see e.g.imnios and Oprisan 2001 The jump chain is still Markovian and, while the
sojourn times are no longer exponentially distributed, they remain conditionaigpéendent.

In order to calculate the charge carrier mobility, we need to track the distemaded by the charge
carrier and the time taken to traverse this distance. Because we are cogsaléong-run quantity, we
can replace the random time spent in a super-state with its expected valus, fédheach super-state
or segmentation point, = 1,...,7, we calculate 9 values. The first valué, represents the distance
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travelled if the entire state is traversed. If the state is entered from the lefth#rge carrier moves left
with probability P-- and moves right with probability’-R. The mean time taken to move left is denoted
by TZ-LL, and the mean time taken to move rightth?. If the state is entered from the right, the analagous
quantities are denoted biRt, PRR, 7RL and 7RR. These quantities are determined by considering a
Markov jump process on the states within the super-state, with the two adjoegngesitation points acting
as absorbing barriers. To calculate the probabilifgs, PR, PR, PRR | we partition the state space of

this MJP such that the transition matix and jump matrix/ take the following forms

0 0 I 0
Q_(SO S> and J_<R T>’
respectively. The matri¥ = (p;;,) of absorption probabilities from transient stgtito absorbing staté
is given byP = (I —T)"' R. We setP = p; 1, PFR = p1o, PR = p, ;1 and P = p,; 15. To
find the expected times until absorption, we note that the matrix of the densitihe absorption times,

(f;.1(t)), from transient statg into absorbing stat is given by é°S,, where é° is a matrix exponential.
If we set f7,(t) = fr(t)/pjx, we obtain the densities of the conditional absorption times. The matrix

of expected absorption time&lit; ), is given by(Sz)_l Sp. Thus, the expected conditional absorption
times are given by, = Et;;/p; . Hence, we can calculat¢t = 7 1, 7/R = 71,7~ = 7,1 ; and

RR _
T, = Tr—1—1,2-

3.3 Aggregate Simulation Algorithm

The procedure described above, which is based on the aggregataitiaa regions of states into single
super-states, can be summarized as follows.

Algorithm 3.1 (Aggregate Monte Carlo Estimation of Drift Velocity)
Let N be the number of steps

1. Given an initial energy landscape Ei, ..., By, identify an appropriate coarsened state space
1,...,n, via the stochastic watershed algorithm.

2. Asdescribed above, cal culate the absor ption probabilities and expected sojourn times corresponding

to the new (aggregate) state space.

Std=0,j=0andt=0.

Draw X uniformly from {1, e ,ﬁ} and the state variable LEF'T uniformly from {true, false}.

5. If LEFT = true, then with probability pg}j set Xj41 = X; —1,d=d— 1, LEFT = false and
t=1+7%"; otherwise, set Xj1 = X; +1,d=d+dy, andt =t + 7"

6. If LEFT = false, then with probability p§ set X;41 = X; — 1, d =d —dx, and t = ¢t + 7§";
otherwise, set X;41 = X; +1,d=d +1, LEFT = true and t = ¢ + 7§~

7. Setj=j5+1.1f j <N, repeat from Sep 5.

8. Returnv =d/t.

B w

Figure7 shows the performance of the aggregate Monte Carlo estimator relative@tGeand CMC
with burn-in estimators.
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Figure 7. Estimates of drift velocity vs. sample size.

4 NUMERICAL RESULTS

In order to compare our approach of Aggregate Monte Carlo (AMC) simulatiibh the conventional
Monte Carlo approaches stated in SectihB, we fixed a number of energy landscapes and estimated
the drift velocity using both the CMC and AMC estimators. The means and sthad@aiations of the
estimators were calculated using a bootstrap. The obtained numerical egsuidtemmarized in Tab4,
where Figurer corresponds to Tab2 Note that in all cases the CMC estimator is considerably overbiased
for small sample sizes and that the standard deviation of the AMC estimatoemkerders of magnitude
lower than that of the CMC estimator. In particular, these findings do narakpn the sizes = 100,
1000, and 10000 of the considered energy landscapes. Note however that the valdlee pfeans and
standard deviations of vary from case to case. The reason for this is the randomness of thgyene
landscape, being modelled by a Gaussian process. In other wordsalties presented in Tabl@s 3,
and4 correspond to estimates for conditional drift velocities, given threerdiftesamples drawn from the
Gaussian energy landscape.

Table 2: Means and standard deviations (sd} ¢fn nm/s) for
CMC with burn-in and AMC, for a landscape of size= 100.

N CMCmean CMCsd AMC mean AMC sd
104 5.15x 10% 6.85 x 108  8.92 x 10° 5.20 x 10°
10° 3.74x 107 647 x107 7.73x10° 1.62 x 10°
10 2.76 x 105 5.19 x 10°  7.62 x 10° 5.16 x 10*
107 7.62x10° 1.13x10% 7.62x10° 1.62x 10*
108 7.80x 10° 3.65x 10° 7.61 x 10° 5.36 x 10°
109 7.68 x 10° 9.87 x 10* 7.61 x 10° 1.63 x 103
1010 770 x 10°  1.35 x 10*  7.61 x 10° 4.77 x 102

5 CONCLUSIONS AND FURTHER RESEARCH

We introduced a new approach to Monte Carlo estimation of the velocity ofjelwrriers drift-diffusing
in a random medium, where the random medium is modelled by a 1-dimensional éattidhe position
of the charge carrier is modelled by a Markov jump process, whose state gpthe set of lattice points.
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Table 3: Means and standard deviations (sd) ¢in nm/s) for
CMC with burn-in and AMC, for a landscape of size= 1000.

N CMC mean CMCsd AMC mean AMC sd
10 1.26 x 10° 1.58 x 109  1.76 x 108 2.82 x 107
10° 4.50 x 10 3.96 x 10®  1.73 x 108 8.60 x 10°
105 1.95x10% 1.02x10% 1.72x10%® 2.70 x 106
107 2.03x10% 3.32x 107 1.72x 10® 8.46 x 10°
108 2.04 x 108 9.66 x 106 1.72 x 108 2.65 x 10°

Table 4: Means and standard deviations (sd) ¢in nm/s) for
CMC with burn-in and AMC, for a landscape of size= 10000.

N CMC mean CMCsd AMC mean AMC sd
10 897 x10° 1.12x10° 6.66 x 10° 5.36 x 107
10° 3.32x10% 3.85x10% 1.35x 107 7.86 x 106
105 1.33x10% 1.02x10% 1.03 x 107 1.76 x 106
107 4.86 x 107 2.92 x 107 1.01 x 10" 5.60 x 10°
105 1.12x 107 1.31x10% 1.00 x 107 1.68 x 10°

The transition rates of the Markov jump process are determined by thelyindeenergy landscape of
the random medium. This energy landscape is modelled by a Gaussianspamcesontains regions of
relatively low energy, in which charge carriers quickly become stuckaAssult, the state space is not
adequately explored by the standard algorithms and the velocity of theecbamger is poorly estimated.
In addition, the conventional Monte Carlo estimators have very high vasan©ur approach aims to
reduce the number of simulation steps that are spent in the low energy mroédgons. We do this by
identifying the problem regions via a stochastic watershed algorithm. We Heea coarsened state space
model, where we aggregate the problem regions to a single (super-)\&&ate then able to simulate a
semi-Markov process on the aggregate state space. This results in estithataare unbiased and have
considerably lower variance than the crude Monte Carlo estimators.

This paper has focused on the improved estimation of drift velocity in a 1Borarmedium. As an
immediate extension of this work, we aim to extend the use of the AMC approg&hnd 3-dimensional
models. The methods described in this paper, such as the stochastic ecGtdgsirithm, can all be applied
in a higher dimensional setting. In addition, we aim to investigate whether th&oMaump Process
modelling the charge carrier’s position can be profitably replaced by asdhffi approximation.

Acknowledgements

This work was partially supported by the DAAD / Go8 Australia-Germany tJBiesearch Cooperation
Scheme and Deutsche Forschungsgemeinschaft (DFG) under thgyProgram “Elementary Processes
of Organic Photovoltaics” (SPP 1355). Dirk Kroese acknowledgesuppast of the Australian Research
Council under grant number DP0985177. We are grateful to Hanari2afbr helpful comments and Falk
May for a critical reading of the manuscript.



Brereton, Kroese, Senzel, Schmidt, and Baumeier

REFERENCES

Angulo, J., and D. Jeulin. 2007. “Stochastic watershed segmentatioBth Imternational Symposium on
Mathematical Morphology, 265—-276.

Bassler, H. 1993. “Charge transport in disordered organic photlumbors”. Physica Status Solidi (b) 175
(15): 15-56.

Baumeier, B., F. May, C. Lennartz, and D. Andrienko. 2012. “Chaksnigr in silico design of organic
semiconductors”Journal of Materials Chemistry 22:10971-10976.

Beucher, S., and C. Lar#joul. 1979. “Use of watersheds in contour detection’.rier national workshop
on image processing, real-time edge and motion detection / estimation.

Beucher, S., and F. Meyer. 1993. “The morphological approachgmeetation: the watershed transfor-
mation”. In Mathematical Morphology in Image Processing, Volume 34, 433—481.

Coropceanu, V., J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, ahdredas. 2007, April. “Charge
transport in organic semiconductor&hemical Reviews 107 (4): 926-952.

Courtois, P. 1977Decompsability. ACM Monograph Series. New York: Academic Press.

Evans, S. 1996. “Analysing system behaviour on different time scalesitochastic Networks - Theory
and Applications, edited by F. Kelly, S. Zachary, and I. Ziedins, Volume 4Rolyal Satistical Society
Lecture Notes Series, Chapter 14, 231-246. Oxford: Clarendon Press.

Limnios, N., and G. Oprisan. 200&emi-Markov processes and reliability. Series Statistics for Industry
and Technology. Boston: Birktuser.

Marcus, R. A. 1993. “Electron transfer reactions in chemistry. Thaad/experiment’Reviews of Modern
Physics 65 (3): 599.

Najman, L., and M. Schmitt. 1994. “Watershed of a continuous functionSdnal Processing (Special
issue on Mathematical Morphology.), Volume 38, 99-112.

Pasveer, W., J. Cottaar, C. Tanase, R. Coehoorn, P. Bobbert,n®, Blale Leeuw, and M. Michels. 2005.
“Unified description of charge-carrier mobilities in disordered semicotiolgigoolymers”. Physical
Review Letters 94:206601-1-206601—4.

Ruhle, V., A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkgek;, B. Baumeier, and D. Andrienko.
2011. “Microscopic simulations of charge transport in disorderedmcgsemiconductors’Journal of
Chemicyl Theory and Computation 7 (10): 3335-3345.

Sclbnherr, G., H. Bssler, and M. Silver. 1981. “Dispersive hopping transport via siwsg a Gaussian
distribution of energies”Philosophical Magazine B 44 (1): 47—-61.

Simon, H., and A. Ando. 1961. “"Aggregation of variables in dynamic systesonometrica 29 (2):
111-138.

Somoza, A., and M. Orfin. 2005. “Monte Carlo method for relaxation in electron glass&$ysical
Review B 72.

Tessler, N., Y. Preezant, N. Rappaport, and Y. Roichman. 2009.reheansport in disordered organic
materials and its relevance to thin-film devices: a tutorial reviewanced Materials 21:2741-4761.

Tse, D., R. Gallager, and J. Tsitsiklis. 1995. “Statistical multiplexing of multiple tcee Markov streams”.
IEEE J. Sel. Areas Commun. 13 (6): 1028—-1038.

van der Holst, J., F. van Oost, R. Coehoorn, and P. Bobbert. 201dnt&Carlo study of charge transport
in organic sandwich-type single-carrier devices: effects of coulombyactiens”. Physical Review
B 83:085206—-1 — 085206—13.

AUTHOR BIOGRAPHIES

Tim Brereton is a PhD student at the University of Queensland. He has a Bachelarierice (Hon-
ours) in Mathematics and a Masters of International Economics and Finawottefrom the University of
Queensland. His research interests include simulation, computational statisticsathematical finance.



Brereton, Kroese, Senzel, Schmidt, and Baumeier

His email address ism.brereton@ugqconnect.edu.au

Ole Stenzelis a PhD student at the Faculty of Mathematics and Economics of Ulm Univerkigy
has a Master (Diploma) in Mathematics from the University of Hamburg. Hisares interests include
stochastic geometry, spatial statistics, and Monte Carlo simulation of spatiahstmcmodels as well as
their applications to 3D analysis of nanomorphologies in advanced energyiatg His personal website
can be found unddnttp://www.uni-ulm.de/stochastikis email address isle.stenzel@uni-ulm.de

Bjorn Baumeier is a Postdoctoral Research Fellow in Denis Andrienko’s group at the Rlarck
Institute for Polymer Research. His work focuses primarily on first-priasigalculations of ground
and excited state properties of molecular structures relevant for tndrspwlations. He obtained his
Diploma and PhD in solid state physics from the University dirdter, Germany, working in the group
of Prof. J. Pollmann on self-interaction corrections to density-functidhebry, and has worked on
surface plasmonics with Prof. A. Maradudin at the University of Califqrhigine. His website is
http://www.mpip-mainz.mpg.de/baumeier/ His email address ibaumeier@mpip-mainz.mpg.de

Dirk Kroese is ARC Professorial Fellow at the University of Queensland. His rebemterests include
Monte Carlo methods, adaptive importance sampling, randomized optimizatohra@aevent simulation.
He has over 70 peer-reviewed publications, including three monogr&umsilation and the Monte Carlo
Method, 2nd Edition, 2007, John Wiley & Sons (with R.Y. Rubinstein), Thes€iEntropy Method, 2004,
Springer-Verlag, (with R.Y. Rubinstein), and the Handbook of MontddClstethods, 2011, John Wiley
& Sons (with T. Taimre and Z.1. Botev). His website hi#tp://www.maths.uq.edu.aukroese His email
address ikroese@maths.ug.edu.au

Volker Schmidt is Professor at the Faculty of Mathematics and Economics of UIm UniveHiyresearch
interests include stochastic geometry, spatial statistics, and Monte Carlo simwaspatial stochastic
models as well as their applications to structural analysis of (microscopigeographically mapped)
image data. He is (co-) author of more than 100 peer-reviewed publicatimhsding several textbooks
and monographs. His personal website can be found umitie//www.uni-ulm.de/stochastikHis email
address iwvolker.schmidt@uni-ulm.de


mailto://tim.brereton@uqconnect.edu.au
http://www.uni-ulm.de/stochastik
mailto://ole.stenzel@uni-ulm.de
http://www.mpip-mainz.mpg.de/$\sim $baumeier/
mailto://baumeier@mpip-mainz.mpg.de
http://www.maths.uq.edu.au/~kroese/
mailto://kroese@maths.uq.edu.au
http://www.uni-ulm.de/stochastik
mailto://volker.schmidt@uni-ulm.de

	INTRODUCTION
	MODEL
	Electron Transfer Rates
	Energy Landscape
	Drift Velocity

	FAST SIMULATION OF CHARGE TRANSPORT
	Stochastic Watershed Algorithm
	Coarsened State Space Model
	Aggregate Simulation Algorithm

	NUMERICAL RESULTS
	CONCLUSIONS AND FURTHER RESEARCH

