
A critical exponent for shortest-path scaling in

continuum percolation

Tim Brereton1, Christian Hirsch1, Volker Schmidt1, Dirk Kroese2

1 Institute of Stochastics, University of Ulm, Germany
2 School of Mathematics and Physics, University of Queensland, Australia

Abstract. We carry out Monte Carlo experiments to study the scaling behavior of shortest

path lengths in continuum percolation. These studies suggest that the critical exponent

governing this scaling is the same for both continuum and lattice percolation. We use

splitting, a technique that has not yet been fully exploited in the physics literature, to

increase the speed of our simulations. This technique can also be applied to other models

where clusters are grown sequentially.

1. Introduction

A natural measure of distance on percolation clusters is chemical distance — the number of

edges in the shortest path between two points. This contrasts with Euclidean distance, which

measures geometric distance rather than path length. The relationship between chemical

distance and Euclidean distance plays an important role in describing percolation clusters;

see, e.g., [1], [2] and [3]. One object of interest is the scaling behavior of the chemical

distance between sites that are close to one another in the sense of Euclidean distance; see,

for example, [4, 5, 6, 7]. It has been shown that, for geometrically close points, the tail of the

chemical distance distribution exhibits power law behavior in the vicinity of the percolation

threshold; see [8]. Estimates of the critical exponent are given in [5] and [6].

In this paper, we investigate the scaling behavior of chemical distance in a continuum

percolation setting. More precisely, we carry out Monte Carlo simulations in two dimensions

that show that the exponent in the prototypical ‘overlapping spheres’ continuum setting

appears to be the same as the exponent in the lattice setting, in agreement with the general

belief that lattice and continuum percolation are in the same universality class; see, e.g.,

[9, 10, 11]. We introduce a technique from the rare-event simulation literature, multilevel

splitting (or simply ‘splitting’), to increase the speed and accuracy of our estimation

procedure. This technique can be applied, more generally, to improve the efficiency of

simulations in both continuum and lattice settings that are carried out in a sequential fashion.

Examples of such simulation techniques include the popular Leath growth model (introduced



in [12]) and the Alexandrowicz method (introduced in [13]). Splitting has recently attracted

interest in the physics literature as a technique for rare-event estimation (see [14] and [15]).

To the best of our knowledge, it has not yet been applied as a sampling technique. However,

similar sequential techniques have been used; see, for example, [16] and [17].

Our definition of chemical distance in a continuum percolation setting is a natural

extension of chemical distance as defined in lattice percolation settings. It also plays a role

in the study of minimal spanning forests, which are related to the study of spin-glass models;

see [18, 19]. Note that the asymptotic behavior of the chemical distance distribution is well

understood for supercritical continuum percolation; see [20]. For a survey of further recent

developments in continuum percolation, see [21].

2. Setting

The ‘overlapping spheres’ model consists of spatially uncorrelated points, specifically the

points of a homogenous Poisson point process in Rd with fixed intensity (we set the intensity

to 1 to simplify calculations). A sphere of radius γ/2 is drawn around each point. Edges

are placed between points if their spheres overlap; that is, if the Euclidean distance between

them is less than γ. This model has been extensively studied; see, for example, [22, 23, 24]

and [25]. Connecting points in this manner results in a random graph. If the intensity is

held constant and γ is allowed to increase, percolation occurs above the critical threshold,

γc, which is dependent on d, the dimension of the model.

We are interested in the scaling behavior of chemical distance for points that are close

to one another. Therefore, we consider a modified version of the ‘overlapping spheres’ model,

where we add two points to the Poisson process and consider the random graph, Gγ, defined

using the connection rule given above. We fix one of these two additional points, o, as the

origin and place the other point, vγ, so that it lies a distance γ from o. Specifically, we set

vγ = (γ, 0, . . . , 0).

We consider the distribution of the chemical distance, Xγ, between o and vγ. A similar

quantity for lattice percolation is considered in [5], where it is argued that this quantity

follows a power law with exponent λlat and, in two dimensions, an estimate is given of

λlat = 2.1055 ± 0.0010. The exponent λlat is closely connected to the shortest path fractal

dimension, dmin, which describes the rate at which the average chemical distance between

two points grows as a function of their Euclidean distance. Indeed, in [7], it was shown

that λlat = 1 + 5/(4dmin). Thus, determining λlat is equivalent to determining dmin and vice

versa. Using this result, [7] provided a refined estimate, based on the exact determination

of a related exponent, of λlat = 2.1056 ± 0.0003. More recent estimates of dmin, obtained in

[26], result in an estimate of λlat = 2.10544 ± 0.00002. In the two dimensional continuum

setting, we provide strong numerical evidence that, for γ = γc, we have P(Xγ = x) ∼ x−λ

as x → ∞. We then estimate the exponent, λ, and show that it appears likely to have the
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same value as the exponent estimated in [5] and [7].

3. Simulating Xγ and Estimating λ

Our estimation procedure involves generating independent and identically distributed copies

of Xγ, the chemical distance defined above, then using maximum likelihood to estimate λ.

3.1. Simulating Xγ

Generating realizations of Xγ amounts to finding the shortest path (if it exists) between o

and vγ in Gγ. Our approach to simulating Xγ is based on the method introduced in [5]. This

is an extension of the classical Leath model, introduced in [12], where clusters are grown in

shells. A similar approach to growing continuum percolation clusters was used in a three

dimensional setting in [27].

Because we are interested in the asymptotic behavior of Xγ, we increase the speed of

our algorithm by only considering values of Xγ greater than 2. That is, we assume there are

no points in Bγ(o) ∩Bγ(vγ), where Bγ(v) = {x ∈ Rd : ‖x− v‖ < γ}.
We ‘grow’ clusters from the ‘seed’ points o and vγ in a sequential fashion by generating

Poisson processes in unexplored regions within distance γ of existing points. We are able to

proceed in this sequential manner due to the independence property of the Poisson process.

We begin by generating points in Bγ(o) \ Bγ(vγ), which form the initial points of the first

cluster, and points in Bγ(vγ) \Bγ(o), which form the initial points of the second cluster. We

mark the points o and vγ as explored and mark the newly generated points as unexplored,

as they have not yet been explicitly considered by our algorithm. We then proceed to

sequentially examine the unexplored points, which are ordered by their chemical distance

from the seed point of their cluster. If two points have the same chemical distance, we

choose one at random. We examine an unexplored point, v, by generating a Poisson process

in Bγ(v), the open ball centered at v with radius γ. We delete all new points in this ball

whose Euclidean distance to an explored point is less than γ. We add the surviving new

points to the appropriate clusters. If the two clusters connect, we stop the algorithm and

return Xγ. If it is no longer possible to add a point (i.e., we have explored all regions

within distance γ of an existing point and there are no surviving new points), we stop the

algorithm and return the empty set, ∅. By choosing the new points to explore based on

their chemical distance to the seed of their cluster, we are essentially using a variation of

Dijkstra’s algorithm, i.e., breadth-first search; see [28]. This means that, if the two clusters

connect, we can immediately determine the shortest path between o and vγ.

We use two sequences of sets, (Um)m≥0 and (Em)m≥0, to describe the unexplored and

explored points generated by our algorithm. The set Um describes the unexplored points

remaining at the mth step and the set Em describes the points that have already been

explored at the mth step. These sets consist of triples of the form (v, c, t) ∈ Rd×{1, 2}×N.
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The Euclidean coordinates of a point are given by v. If a point is in the cluster containing

the origin then c = 1 and if a point is in the cluster containing vγ then c = 2. The chemical

distance from a point to the originating point of its cluster is given by t.

Because the running time of the algorithm is potentially unbounded, we introduce a

stopping condition as in [5]. If the sizes of the clusters grow beyond a certain threshold

without meeting, we terminate the algorithm and return ∅. We measure the sizes of the

clusters using the sequence (Lm)m≥0, where Lm is the minimal chemical distance from a

point in Um to the originating point of the cluster containing it. We denote the threshold

by Lmax. Note that this stopping condition means we are simulating Xγ conditional on

Xγ ≤ 2Lmax + 1.

The algorithm is described precisely in the following.

Algorithm (Simulating Xγ)

1. Set U0 = ∅ and E0 = {(o, 1, 0), (vγ, 2, 0)}. Set m = 0.

2. Generate Y ∼ Pois(κdγ
d) points, where κd denotes the volume of B1(o) in Rd, in Bγ(o)

and remove all points that also lie in Bγ(vγ). Add the remaining points to U0 with c = 1

and t = 1.

3. Generate Y ∼ Pois(κdγ
d) points in Bγ(vγ) and remove all points that also lie in Bγ(o).

Add the remaining points to U0 with c = 2 and t = 1.

4. Choose a point p = (v, c, t) from the current set of unexplored points, Um, with minimum

chemical distance t. Set Um+1 = Um \ {p}, Em+1 = Em ∪ {p}, and Lm = t.

5. Let po1 = (vo1, c
o
1, t

o
1), . . . , p

o
J = (voJ , c

o
J , t

o
J) be the points in Em that are not in the same

cluster as p. Let JS = {j : v ∈ Bγ(v
o
j )} be the set of indices associated with those points

from {vo1, . . . , voJ} that can be connected to v by an edge with length less than γ. If JS 6= ∅
terminate the algorithm and return Xγ = t+ tmin + 1, where tmin = min{toj : j ∈ JS}.

6. Generate Y ∼ Pois(κdγ
d) points, ṽ1, . . . , ṽY , distributed uniformly in Bγ(v). Set y = 1.

7. Let ve1, . . . , v
e
K be the first components of the points in Em. If ṽy /∈

⋃K
k=1Bγ(v

e
k), set

Um+1 = Um+1 ∪ {(ṽy, c, t+ 1)}.
8. If y < Y , set y = y + 1 and repeat from step 7.

9. If Lm > Lmax, terminate the algorithm and return ∅.
10. If Um+1 6= ∅, set m = m+ 1 and repeat from step 4. Otherwise, return ∅.

In practice, the data structures used are chosen carefully in order to improve the

performance of the above algorithm. In particular, the performance of steps 3 and 5 is

improved considerably by using a data structure for the family of sets (Em)m≥0 that orders

the points according to their Euclidean coordinates. For instance, one can discretize the

Euclidean space into boxes and use an array structure to access all points in a given box;

see, for example, the approaches taken in [9, 10, 27], and [29].
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3.2. Illustration of the Simulation Algorithm

For the planar case, d = 2, the basic idea of the algorithm is illustrated in the following.

We begin with the two original vertices (which have different symbols in order to distinguish

the two clusters); see Figure 1, left. The area around them is still unexplored. We first

examine the left point, o. The pattern marks the area where we know there are no points.

We generate a homogeneous Poisson process in the region of radius γ surrounding o. In this

case, one point is generated; see Figure 1, center. We mark the new points as belonging to

cluster 1 and add the explored point to the set of explored points (marked in black). The

same is done for the other original vertex, vγ. Again, only one point is generated; see Figure

1, right. We next generate points in the region surrounding the point in the first cluster

of chemical distance 1 to the originating point. The region that has already been explored

(i.e., in which the Poisson process has already been generated) is marked in gray; see Figure

2, left. We mark this point as explored and add the new points to the list of points to be

explored. We do the same for the point with chemical distance 1 to the originating point

of the second cluster; see Figure 2, center. Next, we consider one of the points in the first

cluster that is of chemical distance 2 to its originating point. This point is within distance

γ of an explored point in the second cluster, forming a path between o and vγ of chemical

length 4; see Figure 2, right. The algorithm terminates.

o vγ

Figure 1. Illustration of the algorithm (steps 1–3).

ve3

o vγ

ve4

o vγ

ve5

o vγ

Figure 2. Illustration of the algorithm (steps 4–10).
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3.3. Estimating λ

As stated above, for γ = γc, we expect that the chemical distance displays power law

behavior. For d = 2, we provide numerical evidence of this in Section 5. Thus, estimating

the critical exponent λ amounts to estimating the parameters of a (right-truncated) power

law distribution. There are two commonly used techniques: linear regression and maximum

likelihood. It has been demonstrated in a number of studies that maximum likelihood is

a more robust approach (see [30, 31]). In particular, almost all the standard assumptions

about statistical error made for least squares estimation are violated, resulting in inaccurate

estimators of λ and incorrect estimators of standard errors. We therefore follow the approach

described in [30] and [32]. That is, we assume that there exists an xmin such that, for all

x > xmin,

P(Xγ = x) = cx−λ, (1)

for some c > 0. Given a sample Xγ
1 , . . . , X

γ
N , generated according to the algorithm described

in Section 3.1, we determine λ and xmin as follows.

The random variable Xγ conditioned on being less than or equal to xmax = 2Lmax + 1

has probability mass function ` : {xmin, . . . , xmax} → [0, 1] with

`(x) = P(Xγ = x |xmin ≤ Xγ ≤ xmax) =
x−λ(xmin)∑xmax

y=xmin
y−λ(xmin)

. (2)

This yields the maximum likelihood estimator λ̂(xmin), which is the solution of∑xmax

y=xmin
y−λ log y∑xmax

y=xmin
y−λ

=
1

N

N∑
i=1

logXγ
i .

Thus, λ̂ can be easily calculated via standard numerical procedures.

The choice of xmin involves a trade-off. If a too small value of xmin is chosen, it may

not be true that equation (1) holds, even approximately. However, if xmin is too large, only

a small fraction of the total sample will be larger than xmin and the estimator of λ will

be inaccurate. In practice, we estimate λ(xmin) for xmin = x0, x0 + 1, x0 + 2, . . . , x1, where

0 ≤ x0 < x1 ≤ xmax − 1. We then evaluate the goodness-of-fit of each λ̂(xmin) by computing

the Kolmogorov-Smirnov statistic

D(xmin) = max
xmin≤x≤xmax

|F (x)− F̂ (x)|, (3)

where, given the estimator λ̂(xmin), F (x) is the theoretical distribution function based on

equation (2) and F̂ (x) is the empirical distribution function. We choose the values of xmin

and λ̂(xmin) corresponding to the smallest value of D.
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4. Splitting

Accurate estimation of the critical exponent λ requires a sufficiently large sample of values

in the right tail of Xγ. We use an approach from rare-event simulation, multilevel splitting,

to significantly reduce the simulation effort required to generate values of Xγ larger than

a prespecified threshold x. This approach, originally introduced in [33], has primarily been

used as a tool for estimating small probabilities, see, for example, [14, 34] and [35], but we

use it instead as a tool for sampling from the extremes of a distribution. Although this idea

is applied in the specific context of estimating the chemical distance exponent, λ, described

above, it can be applied much more generally to simulation models using the Leath method

[12], the Alexandrowicz method [13], or any other approach where the simulation is carried

out in a sequential fashion.

The basic idea of splitting is to identify paths of a stochastic process that seem likely

to generate an event of interest, here {x < Xγ <∞}, and ‘split’ these paths to increase the

number of paths resulting in this event occurring. In the case where a percolation cluster is

generated sequentially the generations of these clusters can be thought of as the time steps

of a stochastic process. When this stochastic process satisfies a certain criterion, we ‘split’

the process by creating a number of replicates. If the splitting criterion is chosen correctly,

these replicates should have a high chance of reaching the rare event set.

In our case, the stochastic process that generates Xγ is implicit in the algorithm

described in Section 3.1. For every m ≥ 0 denote by Ym = (Em, Um, Lm) the mth time

step of the process consisting of the set of explored vertices, Em, the set of unexplored

vertices, Um, and Lm, the shortest distance from any of the unexplored points to its seed.

See Section 3.1 for the precise definitions of these objects. The process (Ym)m≥0 is clearly a

time-homogeneous Markov chain. Define

τ0 = inf{m ≥ 0 : the two clusters in Em connect or Um is empty or Lm > Lmax}.

This is the time at which the algorithm stops running and either returns a chemical distance

or ∅. That is, Xγ = f(Yτ0), where

f(Yτ0) =


0 if Uτ0 = ∅
t+ tmin + 1 if the two clusters in Eτ0 are connected

∞ if Lτ0 > Lmax

.

Given that Xγ > x only if maxm≥0{Lm} ≥ (x − 1)/2, we are able to identify paths of

(Ym)m≥0 that are likely to produce values of Xγ that are larger than x. More precisely, if we

define τ1 = inf{m ≥ 0 : Lm > l1}, where l1 ≤ (x− 1)/2, then it is clear that {x < Xγ <∞}
occurs only if τ1 ≤ τ0 (i.e., Lm becomes larger than l1 before the algorithm terminates). This

means that in order to generate values of Xγ larger than x, the only important paths are

those where (Ym)m≥0 enters the set {Y = (E,U, L) : L ≥ l1}. We increase the proportion of
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the simulation effort spent on paths resulting in the event R = {x < Xγ <∞} by ‘splitting’

these paths. That is, every time that a process (Y i
m)m≥0 hits the level l1, we stop simulating

this process and instead start simulating s new processes, (Y i,1
m )m≥0, . . . , (Y

i,s
m )m≥0, each

beginning at Yτ1 (i.e., Y i,1
0 = · · · = Y i,s

0 = Y i
τ1

).

The splitting approach is illustrated in Figure 3. Originally, three paths are generated.

These paths continue, with non-decreasing L values, until either an event in the description

of τ0 occurs or an event in the description of τ1 occurs. One path returns a chemical distance.

Another path fails to return a chemical distance (i.e., U becomes empty before a path between

o and vγ can be found). The third successfully reaches the set {Y = (E,U, L) : L ≥ l1}.
This path (which is thicker than the others) splits into four paths. One successfully reaches

the target set, R, and the other three prematurely terminate.

Figure 3. A schematic illustration of the splitting approach. One path of (Ym)m≥0

successfully hits l1. This path is thicker than the others. It is then split into four separate

paths, one of which successfully reaches the rare event set. Again, this path is thicker than

the others.

If we only take as our sample the resulting values of Xγ that are bigger than x, it is

easy to see that these satisfy

P (f (Yτ0) = x |Lτ1 > l1, x < f (Yτ0) <∞) = P (Xγ = x |x < Xγ <∞) .

Of course, the use of splitting means that the samples are no longer independent. However,

if the splitting factor, s, is not too large relative to the number of paths that hit l1, this is

not an issue in practice.

When we apply splitting in this manner, the expected number of points larger than x

is s times larger than it would be using standard Monte Carlo. In other words, we only

need to begin with N/s processes in order to get a sample size in the right-tail that would

require simulating N processes using standard Monte Carlo. We can repeat this process a
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number of times by using a sequence of levels l1 < l2 < · · · < lK = (x− 1)/2 and splitting a

process s times when it crosses a level. Using this approach, we generate roughly sK times

more samples of Xγ conditioned on {x < Xγ <∞} than we would have using conventional

Monte Carlo. In our setting, the optimal xmin is small enough that this is not necessary, but

in many other settings multiple levels are required.

The appropriate way to measure the effectiveness of the splitting method is by comparing

the work required to generate a sample from {Xγ : Xγ > x} using splitting to the work

required using standard Monte Carlo. In the continuum setting, the cost of the splitting,

i.e. copying the data structure s times, is considerable. However, for sufficiently large x,

there is a substantial computational saving in that far fewer samples must be generated

in order to generate s samples of Xγ conditioned on being greater than x. This saving

outweighs the cost of copying the data structures and results in a significant speed increase

and ability to generate samples from much further in the tail of Xγ. In the numerical results

given below, it takes approximately 30% more time to generate a sample using conventional

Monte Carlo than it does using the splitting approach. Note that we are not in the classical

setting of splitting, where the cost of replicating the relevant stochastic process is negligible.

Thus the performance increases we obtain are not comparable to those obtained in that

setting. When we performed simulations in the lattice setting, where the data structures

are simpler and smaller than in the continuum setting, we achieved much more substantial

reductions in computation time. We are confident that research into new and efficient data

structures for investigating continuum percolation should lead to significant improvements

in the performance of the splitting approach.

5. Numerical Results

The numerical results in the following section were obtained using programs implemented in

Java and running in the background on a single PC with 32 GB RAM and an Intel i7-4770K

CPU.

5.1. Exponential vs. Polynomial Decay

We performed our simulation not only for γ = γc, but also for other choices of γ. The

resulting simulations provide strong evidence that polynomial decay of the conditional

probability mass function of Xγ, given in (2), occurs only for γ = γc. The results are

shown in Figure 4.

5.2. Estimates using the Standard Monte Carlo Sample

We carried out a numerical investigation of the critical exponent for d = 2. The critical

percolation threshold for this model, γc, is estimated in [10] to be γc ≈ 1.198468; see, [36]
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Figure 4. Estimates of `(x) = P(Xγ = x |Xγ < xmax) for a variety of different edge lengths.

and [37] for two additional papers where this threshold is estimated.

Using the standard Monte Carlo procedure, we generated a sample of size N = 1.5×109

with Lmax = 4000. Generating this sample took approximately 26.7 days computer time. We

estimated λ(xmin) for xmin = 3, . . . , 7990. According to the Kolmogorov-Smirnov statistic,

given in (3), the optimal value of xmin is xmin = 458. This gives a rate estimate of

λ̂(458) = 2.1025.

Figure 5. Left: Values of λ̂(xmin) estimated using the standard Monte Carlo sample for

xmin = 380, . . . , 6000. Right: Values of λ̂(xmin) estimated using the standard Monte Carlo

sample for xmin = 380, . . . , 2000.

The estimates of λ(xmin) for xmin = 380, . . . , 6000 are shown on the left of Figure 5.

The estimates of λ(xmin) for xmin = 380, . . . , 2000 are shown on the right of Figure 5. The

values of λ̂(xmin) appear fairly stable for at least the first 2000 values of xmin, with the

subsequent loss of stability due to the smaller sample sizes used for large values of xmin.

Closer investigation of values in this region shows that λ̂(xmin) fluctuates between 2.102 and

2.106 with the estimate obtained using the Kolmogorov-Smirnov statistic at the lower end

of the range. Note that this degree of fluctation shows the sensitivity of the estimator to the

choice of xmin.
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Note that, prior to the simulations with Lmax = 4000, we carried out simulations using

Lmax = 3000 with a sample size of N = 109. These simulations gave an optimal value of

xmin = 854 with λ̂(854) = 2.1064. This suggests that there is considerable variability in the

estimator and also sensitivity to the cut-off point Lmax.

5.3. Estimates using the Splitting Sample

We also used splitting to generate samples of Xγc , carrying out the splitting at the level

400. This produced a sample of Xγc conditioned on being larger than 800. The splitting

point was chosen based on the standard Monte Carlo sample with Lmax = 3000 and N = 109

which returned an optimal choice of xmin = 854. We calculated a sample of N = 1.5 × 107

with a splitting factor of s = 100, giving us a sample in the tail of equivalent size to the

sample gained using standard Monte Carlo with N = 1.5 × 109. This took approximately

20.2 days to generate, which is roughly 75% of the time required by the standard Monte

Carlo approach. The optimal value of xmin, according to the Kolmogorov-Smirnov statistic,

given in (3), is xmin = 1065. This gives a rate estimate of λ̂(1065) = 2.1051.

Figure 6. Left: Values of λ̂(xmin) estimated using the splitting sample for xmin =

900, . . . , 6000. Right: Values of λ̂(xmin) estimated using the splitting sample for xmin =

900, . . . , 2000.

The estimates of λ(xmin) for xmin = 900, . . . , 6000 are shown on the left of Figure 6 and

the estimates of λ(xmin) for xmin = 900, . . . , 2000 are shown on the right of Figure 6. As in

the standard Monte Carlo case, the values of λ̂(xmin) appear fairly stable for at least the first

2000 values of xmin, with the subsequent loss of stability due to the smaller sample sizes used

for large values of xmin. Closer investigation of values in this region shows that, at least for

xmin > 1000, λ̂(xmin) fluctuates between about 2.1035 and 2.1055 with the estimate obtained

using the Kolmogorov-Smirnov statistic at the higher end of the range.

5.4. Estimates using the Joint Sample

We then carried out an estimate of λ using the combined sample from the standard Monte

Carlo and splitting approaches. This sample of Xγc conditioned on being larger than 800
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was equivalent to that obtained using standard Monte Carlo with a sample size N = 3×109.

The optimal value of xmin, according to the Kolmogorov-Smirnov statistic, is xmin = 991.

This gives a rate estimate of λ̂(991) = 2.1045.

Figure 7. Left: Values of λ̂(xmin) estimated using the joint sample for xmin = 850, . . . , 6000.

Right: Values of λ̂(xmin) estimated using the joint sample for xmin = 850, . . . , 2000.

The estimates of λ(xmin) for xmin = 900, . . . , 6000 are shown on the left of Figure 7. The

estimates of λ(xmin) for xmin = 900, . . . , 2000 are shown on the right of Figure 7. As in both

the standard Monte Carlo and splitting cases, the values of λ̂(xmin) appear fairly stable for

at least the first 2000 values of xmin. Closer investigation of values in this region shows that,

as in the splitting case, for xmin > 1000, λ̂(xmin) fluctuates between about 2.1035 and 2.1055.

Here, the estimate obtained using the Kolmogorov-Smirnov statistic is in the middle of the

range.

5.5. Summary of Numerical Results

The four estimates we have obtained are λ̂ = 2.1025 for the standard Monte Carlo sample

with Lmax = 4000 and N = 1.5 × 109, λ̂ = 2.1064 for the standard Monte Carlo sample

with Lmax = 3000 and N = 109, λ̂ = 2.1051 for the splitting sample with Lmax = 4000 and

N = 1.5×109, and λ̂ = 2.1045 for the joint sample with sample size equivalent to a standard

Monte Carlo sample of N = 3×109. We note that standard errors are not available for these

estimators, which are also biased (though not as biased as estimates obtained using least

squares). Nevertheless, these estimates broadly agree with the results for lattice percolation

given in [5] and [7], as well as the estimate based on the results in [26].
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