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ABSTRACT

In this paper, a new model for the combination of two or more probabilistic

forecasts is presented. The proposed combination model is based on a logit

transformation of the underlying initial forecasts involving interaction terms.

The combination aims at approximating the ideal calibration of the forecasts

which is shown to be calibrated and to maximize the sharpness. The proposed

combination model is applied to two precipitation forecasts, Ensemble-MOS

and RadVOR, which were developed by Deutscher Wetterdienst. The pro-

posed combination model shows significant improvements in various forecast

scores for all considered lead times compared to both initial forecasts. In

particular, the proposed combination model is calibrated, even if both ini-

tial forecasts are not calibrated. It is demonstrated that the method enables

a seamless transition between both initial forecasts across several lead times

to be created. Moreover, the method has been designed in such a way that it

allows for fast updates in nearly real time.
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1. Introduction25

In many situations, it is possible to have access to several probabilistic forecasts of the same26

event (Clemen 1989; Graham 1996; Ariely et al. 2000; Winkler and Poses 1993). As these fore-27

casts might be provided by independent models, non negligible differences can be observed. It is28

then necessary to find a combination of all forecasts for decision makers. Keeping the probabilistic29

forecast that performs best for some specific scores, thus dropping the others, is not an optimal30

choice. It is sometimes worth keeping the information of relatively poor probabilistic forecasts31

regarding these same specific scores, provided there is some degree of statistical independence32

between the forecasts.33

Recently, the rise of Artificial Neural Networks (ANN) for making predictions in various fields34

has also emphasized the power of forecast combination techniques. It can be observed for various35

Kaggle challenges (Pavlyshenko 2018) that the most performant ANN architectures (i.e. having36

the highest generalization capability) are actually aggregations of several individual ones (Chollet37

2017). In the field of weather forecasting, the performance of aggregation methods has long been38

investigated and highlighted (Sanders 1963; Bosart 1975; Vislocky and Fritsch 1995; Baars and39

Mass 2005; Hamill et al. 2008; Ranjan and Gneiting 2010; Gneiting et al. 2013). It is therefore40

legitimate to wonder whether there is an efficient strategy to aggregate probabilistic forecasts in41

order to capture most of the relevant features of the individual ones.42

Several methods for combining probabilistic forecasts have been proposed in the literature. They43

either combine subjective forecasts made by meteorologists or objective ones from Numerical44

Weather Prediction (NWP) models. Most of these techniques rely on a linearly weighted aver-45

age of the probabilistic forecasts. For example, Sanders (1963) has suggested to use the equally46

weighted average of twelve subjective probabilistic forecasts as a combination method. In this47
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case-study, it has been shown that this new aggregated probabilistic forecast had a positive Brier48

skill score relative to the climatological forecast, but, more surprisingly, relative to the best fore-49

caster of the group as well. Vislocky and Fritsch (1995) investigated the average of two post-50

processed (with a Model Output Statistics (MOS) method) objective forecasts derived from two51

different high resolution models. They concluded that the combination product had a higher skill52

than the two individual MOS forecasts, allowing one to provide reliable forecasts for higher lead53

times regarding temperature, wind speed, probability of cloud and precipitation amount. Other54

works related to a linearly weighted average aggregation of probabilistic forecasts include Win-55

kler et al. (1977), Gyakum (1986), Baars and Mass (2005), Hamill et al. (2008).56

Ranjan and Gneiting (2010) have proved that a linearly weighted combination of distinct proba-57

bilistic forecasts is not the best combination strategy. In general it leads to uncalibrated forecasts,58

regardless of whether the underlying individual forecasts are calibrated or not. This important59

theoretical result does not state that such a combination would necessarily decrease the forecast60

skill of the combined forecasts below the forecast skill of the initial forecasts, but rather that it is61

sub-optimal and can potentially be improved by using a non-linear transformation instead. Thus,62

it does not contradict the other empirical results described in the previous paragraph. As a conse-63

quence, Ranjan and Gneiting (2010) suggested a beta-transformed linearly weighted combination64

of several forecasts. Their numerical results have highlighted some significant improvements in the65

reliability and sharpness of the forecasts compared to the classic linearly weighted average. The66

beta-transformed linearly weighted combination has later been adapted in Bassetti et al. (2018)67

for the combination of predictive probability distributions. For a comparison of methods for the68

combination of predictive distributions see Baran and Lerch (2018).69

Following Ranjan and Gneiting’s work, the goal of the present paper is twofold: 1) to give an-70

other theoretical interpretation of calibrated and sharp combined probabilistic forecasts, and 2) to71
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propose a non-linear combination that enables one to significantly increase the forecast quality72

for a dichotomous event. The dichotomous event considered in this paper is that of precipitation73

above 0.1mm per hour. The suggested model is applied to two forecasts (called Ensemble-MOS74

and RadVOR) developed by Deutscher Wetterdienst (DWD), Germany’s National Meteorological75

Service. Ensemble-MOS is a short-term probabilistic forecast (up to 21 hours), while RadVOR76

provides predictions for up to two hours. Generally, RadVOR has better forecast scores for very77

short lead times, whereas for longer lead times Ensemble-MOS forecasts are preferably used.78

The proposed combination model is aimed at capturing most information of the two initial fore-79

casts while achieving a seamless transition between both precipitation forecasts across several lead80

times, see Bowler et al. (2006), Golding (1998), Kober et al. (2012).81

The rest of the paper is organized as follows. In Section 2, the Ensemble-MOS and RadVOR82

forecast data is described. A method is proposed for the transformation of the deterministic Rad-83

VOR forecasts into point probabilities, see Theis et al. (2005). Moreover, rain gauge adjusted radar84

precipitation measurements are presented as they are used for validation purposes. In Section 3,85

the notions of calibration and sharpness are defined. Some theoretical considerations on calibrated86

and sharp probabilistic forecasts are also presented. In Section 4, our model is described for the87

combination of two probabilistic forecasts. Then, in Section 5, the proposed model is numerically88

validated. Finally, in Section 6 it is shown that the developed method can also be applied to the89

combination of so-called area probabilities. The paper closes with a conclusion and an outlook to90

some future developments in Section 7.91
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2. Data92

a. Ensemble-MOS93

Ensemble-MOS of DWD is a model output statistics (MOS) system specialized for the opti-94

mization and calibration of probabilistic forecasts based on ensemble systems. In this paper it95

is applied to COSMO-DE-EPS, the ensemble system of the high-resolution convection-permitting96

model COSMO-DE of DWD. Ensemble products as mean and standard deviation for a set of model97

fields are used as predictors in multiple linear and logistic regressions against conventional syn-98

optic observations including rain gauges, especially for precipitation forecasts. Ensemble-MOS99

forecasts based on 5 years of training data (2011-2015) were used in order to provide precipitation100

forecasts from May to July 2016 with lead times from 1h to 21h on a 20km × 20km grid.101

b. RadVOR102

1) DETERMINISTIC FORECASTS103

DWD runs an operational quantitative precipitation estimation (QPE) system, called104

RADOLAN (Weigl and Winterrath 2010). The DWD radar network provides the basis for op-105

timized national composites of current radar reflectivities to be generated on a 5-minute update106

cycle. RADOLAN then combines empirical Z-R relationships with real-time rainfall gauge mea-107

surements from the synoptic station network to yield a calibrated best estimate of current rainfall108

rates.109

For the purposes of providing forecasts and warnings of potential heavy rainfall on nowcasting110

timescales, DWD has developed a follow-on operational system, called RadVOR (Winterrath et al.111

2012), which gives quantitative rainfall forecasts (QPF) for the next two hours with an update cycle112

of 5 minutes. The rainfall estimates from RADOLAN are extrapolated forwards in time with the113
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aid of an optimized rainfall displacement vector field. This field is calculated via a mapping of114

precipitation patterns in successive image data, taking different spatial motion scales into account115

and using satellite motion vectors to add stability, for example in areas where no precipitation is116

present. RadVOR provides moving rainfall estimates in 5-minute forecast steps on a 1x1 km grid117

over the whole territory of Germany as well as summing up rainfall totals for the first and second118

forecast hours.119

2) TRANSFORMATION OF DETERMINISTIC FORECASTS TO PROBABILISTIC FORECASTS120

A method is outlined to convert the deterministic RadVOR forecasts to hourly point probabilities121

on the same grid as the Ensemble-MOS forecasts in order to unify the format of both forecasts.122

Aggregation of RadVOR forecasts in time:123

While Ensemble-MOS provides predictions for time intervals of 60 minutes, RadVOR has a124

forecast interval of 5 minutes length. In order to unify the forecast lengths, all RadVOR fore-125

casts within one hour are aggregated by summation. The result is a deterministic prediction of126

precipitation amounts for one complete hour.127

Recall that in this paper lead times up to +6 hours are considered, although RadVOR only128

produces forecasts up to +2 hours. Thus, when determining RadVOR forecasts for lead times129

above +2 hours, the last available 5-minute prediction is inserted repeatedly. This means that for130

periods with a lead time between +2 and +3 hours, some of the 5-minute predictions are identical.131

Aggregated predictions for periods with a lead time larger than +3 hours are all identical and132

consist of the sum of 12 identical 5-minute predictions. It is to be expected that this approach133

(compared to an aggregation of 12 different 5-minute intervals) leads to concentrated peaks of134

precipitation and therefore leads to a biased forecast.135
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It has been tested how well the hourly forecasts would perform if the last 12 available 5-minute136

forecasts would be used repeatedly instead for higher lead times. This alternative approach leads137

to a smaller bias of −0.005 for lead times from +2h to +6h, but the Brier skill score and the138

reliability are significantly worse.139

It should be noted that the development of a more sophisticated transformation from determinis-140

tic to probabilistic forecasts is outside the scope of this paper. The transformed RadVOR forecast141

merely serves as uncalbirated initial forecast for the proposed combination method. Furthermore,142

the decision to consider lead times longer than +2h was made once it turned out that the combi-143

nation of both forecasts is feasible for up to +6h. The RadVOR forecast still holds some valuable144

information for higher lead times, even if a persistence based extrapolation for up to +6h seems145

not completely satisfactory from a meteorological perspective.146

Local averaging:147

In order to transform the hourly aggregated RadVOR forecasts into probabilistic weather fore-148

casts, a similar approach as in Theis et al. (2005) is used. Recall that Ensemble-MOS predicts149

the likelihood that precipitation at a certain point within an hour exceeds a given threshold. In the150

present paper forecasts for the threshold of 0.1 mm are considered. To transform the aggregated151

RadVOR forecasts accordingly, the predicted hourly precipitation amounts are binarized for the152

threshold 0.1 mm. This means that precipitation amounts equal or larger than 0.1 mm are set equal153

to 1, while precipitation amounts below this threshold are set equal to 0. Let V (r′) denote this bi-154

narized value for a grid point r′ ∈ R′ on the 1km×1km grid R′ and let R denote the 20km×20km155

grid. Finally, a weighted average V (r) of the binarized values is calculated for each r ∈ R using156

the formula157

V (r) =
1

∑r′∈R′w(r,r′)
∑

r′∈R′
w(r,r′)V (r′) (1)
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with weights w(r,r′) =‖r− r′‖−1.75, where ‖·‖ is the Euclidean distance. The exponent−1.75 has158

been chosen empirically from the set {−1,−1.25, . . . ,−2.75,−3}, because it achieved the best159

reliability for the lead time +1h. The resulting average is considered as the probability for the160

exceedance of 0.1mm of precipitation. Since the influence of V (r′) on V (r) becomes negligible161

for larger distances between r and r′, only grid points with ‖r− r′‖ ≤ 50km are considered.162

c. Calibrated hourly radar-measurements163

In order to validate the results obtained in in this paper, rain gauge adjusted radar precipitation164

measurements are used. The measurements were made by the German operational radar network165

of DWD (Winterrath et al. 2012), which covers Germany with 16 radar sites that provide scans in166

intervals of 5 minutes.167

The rate of precipitation is derived by transforming the measured radar reflectivities based on168

empirical reflectivity-precipitation rate (Z-R) relationships, whereas 0.1 mm/h of precipitation is169

the minimum amount which can be detected. To improve accuracy, the precipitation amounts are170

adjusted according to the measurements of about 1,300 rain gauges which are located at meteoro-171

logical measurement sites. Finally, pixel artifacts, which may occur in radar scans, are removed172

by a clutter filter as proposed by Winterrath and Rosenow (2007).173

3. Mathematical background174

Let (Ω,F ,P) be some abstract probability space, i.e., Ω is a non-empty set describing all pos-175

sible states of a certain system, F a σ -algebra of subsets of Ω and P a probability measure on F .176

For instance, Ω can be the set of all possible meteorological scenarios for a given region.177
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a. Self-calibration as an optimal combination approach178

Let P be a continuous random variable taking values in the unit interval [0,1], and Y be a di-179

chotomous random variable taking as values 1 with probability q and 0 with probability 1− q,180

where 0 ≤ q ≤ 1. The random variable P represents a probabilistic forecast for the event Y = 1,181

i.e., that the amount of precipitation exceeds the threshold T = 0.1mm.182

In this paper, the probabilistic forecast P is said to be calibrated if183

P(Y = 1 | P) = E(Y | P) = P. (2)

where P(Y = 1 | P) denotes the conditional probability that the event Y = 1 occurs, given the184

probabilistic forecast P. Analogously, E(Y | P) denotes the conditional expectation of Y given P.185

This notion of calibration means that the information delivered by the probabilistic forecast P is186

reliable, see also Murphy and Winkler (1977, 1987). A direct consequence of Eq. (2) is that on187

average the forecast provides the probability of appearance of the event Y = 1, i.e., E(Y ) = P(Y =188

1) = E(P).189

If P is uncalibrated, then190

f (P) = E(Y | P) 6= P, (3)

where f is an unknown deterministic function. Besides, from basic properties of conditional191

expectation, the random variable f (P) is itself calibrated (see the Appendix for some mathematical192

background). Naturally, f (P) is called the self-calibrated version of P. More generally, if P1, ...,Pn193

are n probabilistic forecasts, then194

f (P1, ...,Pn) = E(Y | P1, ...,Pn) (4)

is the self-calibrated version of the aggregation of the n probabilistic forecasts.195

The notion of calibration is an important property that a probabilistic forecast should exhibit.196

However, the notion of calibration is not sufficient for characterizing the skill of a forecast. For197
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example, the climatological forecast P, which predicts the average probability of precipitation198

only, is perfectly calibrated but not a useful prediction. Therefore, assuming calibration, the notion199

of sharpness makes it possible to discriminate the useful informative forecasts (Gneiting et al.200

2007).201

The sharpness is defined as the variance Var(P) of the forecast P and corresponds to the dis-202

persion of the forecast from the forecast average. The sharper a forecast, the more P takes values203

close to 0 and 1; hence, the higher the variance. Note that sharpness alone is not a measure for204

forecast quality, since sharpness is only a property of the distribution of the predicted probabilities205

but is not affected by how accurate these probabilities are.206

The self-calibrated version f (P) of P is the most sharp probabilistic forecast among all calibrated207

ones which depends on P in the sense that it is the solution of208

f (P) = argmax
g∈G

Var(g(P)), (5)

s.t: E(Y |g(P))=g(P)

where G is the set of deterministic functions g : [0,1]→ [0,1] such that g(P) is a well-defined209

random variable. The proof of Eq. (5) is given in the Appendix. This result generalizes naturally210

for the self-calibrated version f (P1, ...,Pn) of several probabilistic forecasts P1, ...,Pn. Note that211

in Ranjan and Gneiting (2010) it has been proven that a linear combination of n forecasts given212

by g(P1, . . . ,Pn) = w1P1 + . . .+wnPn, where w1, . . . ,wn are some weights, lacks calibration and213

sharpness compared to the self-calibrated version of the forecasts. Our approach is more general214

in that it combines the initial forecasts in a non-linear way and considers interactions between215

them.216

Another fundamental property of the self-calibrated version of probabilistic forecasts is that it is217

the best approximation of Y with respect to the L2-norm, i.e.,218
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f (P1, ...,Pn) = argmin
Z is σ(P1, ...,Pn)-measurable

E
(
(Z−Y )2

)
. (6)

This property is due to the fact that the conditional expectation is the orthogonal projection of Y on219

the space of σ(P1, ...,Pn)-measurable random variables, where σ(P1, ...,Pn) is the sub-σ -algebra of220

F generated by the random variables P1, ...,Pn. Eq. (6) means that f minimizes the expected Brier221

score (see Section 5) and also any strictly proper scoring rule as proven by Ranjan and Gneiting222

(2010).223

For all of these reasons, the self-calibrated version of any set of probabilistic forecasts is the best224

combination method to employ. However, in general the self-calibrated version f of forecasts is225

unknown and therefore intractable : in practice it is not possible to have a closed-form formula226

for the function f (only the existence is ensured). Therefore, some parametric assumptions are227

usually made on f .228

b. Parametric types of combination229

The most commonly used approximation of f is the linear pool fLP defined by230

fLP(P1, ...,Pn) = w1P1 + ...+wnPn, (7)

where the weights w1, . . . ,wn are such that 0 ≤ wi ≤ 1 and w1 + ...+wn = 1. This type of com-231

bination has been widely investigated in the literature, see Baars and Mass (2005), Bosart (1975),232

Genest and McConway (1990), Clemen and Winkler (1999). However, it has been shown by Ran-233

jan and Gneiting (2010) that the linear pool is not optimal, even if the underlying forecasts are234

assumed to be calibrated (see Theorem 1 in their paper).235

This is why Ranjan and Gneiting (2010) proposed a more complex parametric approximation as236

a combination model. They used a non-linear transformation of the linear pool, denoted by fBLP,237
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where238

fBLP(P1, ...,Pn) = Hα,β ( fLP(P1, ...,Pn)) . (8)

The function Hα,β in Eq. (8) is the cumulative distribution function of the beta distribution with239

shape parameters α > 0 and β > 0 defined by240

Hα,β (x) =
∫ x

0
ta−1(1− t)b−1dt, for all x ∈ [0,1]. (9)

It has been shown empirically in Ranjan and Gneiting (2010) that this non-linear transformation241

increases the reliability and the sharpness of the combined forecast compared to the linear pool242

and all initial forecasts P1, . . . ,Pn.243

In the present study, a new type of approximation is proposed for the self-calibrated version of244

two probabilistic forecasts that leads to a reliable and sharp forecast as highlighted in Section 5.245

The approximation is based on the logistic transformation of a non-linear combination of the246

underlying initial probabilistic forecasts with some interaction terms. This approximation of f is247

described in detail in the next section.248

4. Generalized logit combination249

The approximation of a conditional expectation of a dichotomous random variable Y given a set250

of predictors P1, ...,Pn is often achieved with a so-called logit model (or logistic regression). In251

the literature, this model has been used for MOS methods in order to post-process ensemble mem-252

bers returned by a probabilistic forecast (Hamill et al. 2008; Wilks 2009; Ben Bouallègue 2013).253

In the present paper, a more general version of the logit model is proposed to approximate the254

self-calibrated version of a set of probabilistic forecasts. More specifically, the approximation is255

explicitly detailed for the combination of two probabilistic forecasts which generally give different256

predictions.257
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a. Logit combination with triangular functions258

Given a set of predictors P1, ...,Pn, the standard logit model is given as follows:259

fL(P1, . . . ,Pn) = σ

(
a+

n

∑
i=1

biPi

)
, (10)

where σ(x) = 1
1+exp(−x) is the sigmoid function and the coefficients a and b1, . . . ,bn are some260

model parameters, Note that a is usually called the intercept of the model.261

The initial forecasts Pi are not necessarily well calibrated. In such a situation, the standard262

combination model given by Eq. (10) may lead to an uncalibrated forecast as the sigmoid function263

of the simple linear pool is not flexible enough to compensate for the possible underestimation264

and overestimation of the Pi’s (see Fig. 1 for an example of deviations). To mitigate these effects,265

each probabilistic forecast Pi is split into several predictors φ0(Pi), . . . ,φm(Pi), where the functions266

φ0,φ1, . . . ,φm are given by267

φ j(x) = max
{

0,1−m|x− j
m
|
}
, x ∈ [0,1] (11)

for all j ∈ {0,1, . . . ,m}. These functions are called triangular functions. In Fig. 2 a set of tri-268

angular functions is shown for m = 5. Noticing that φ0(x)+ . . .+φm(x) = 1 for all x ∈ [0,1], the269

intercept coefficient becomes unnecessary and the logit model of Eq. (10) transforms into a more270

flexible model fLT (P1, . . . ,Pn) based on the triangular functions φ0, . . . ,φm:271

fLT (P1, . . . ,Pn) = σ

(
n

∑
i=1

m

∑
0=1

bi jφ j(Pi)

)
. (12)

For example, for n = 1, the logit combination model stated in Eq. (12) takes the following form:272

fLT (P1) = σ(w0φ0(P1)+ . . .+wmφm(P1)), (13)

where w1, . . . ,wm are some parameters and the family of triangular functions φ0,φ1, . . . ,φm is con-273

structed such a way that the expression w0φ0(P1) + . . .+ wmφm(P1) can be considered to be a274
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piecewise linear interpolation between the points ( 0
m ,w0),(

1
m ,w1), . . . ,(

m
m ,wm), which transforms275

the values of P1 accordingly. In this way, the model given in Eq. (13) is able to compensate over-276

and underestimations for different values of P1 at the same time.277

b. Interaction terms278

Consider the case of two initial probabilistic forecasts P1 and P2. Let m be the chosen number279

of triangular functions. Fig. 3 shows the effects of single triangular functions on the output of the280

combination model. The output of the combination model fLT for the crossing points (0.1,0.1),281

(0.1,0.8),(0.5,0.1) and (0.5,0.8) in the bottom left subplot is fully determined by the coefficients282

of the four triangular functions. While there are four points and four coefficients, it is generally283

impossible to find a set of coefficients such that the model output for these four points matches284

with an arbitrary set of four probabilities, i.e., the model can choose the four coefficients so that285

the probabilities of only 3 of the 4 points are correctly predicted. See the Appendix for a proof. In286

order to be able to make correct predictions for all four points, the model needs more degrees of287

freedom. For this, some interactions terms of the forecasts P1 and P2 are considered, which consist288

of the four functions γ1,γ2,γ3,γ4 defined on [0,1]2 by289

γ1(p1, p2) =
√

p1 p2,

γ2(p1, p2) =
√

(1− p1)p2,

γ3(p1, p2) =
√

p1(1− p2),

γ4(p1, p2) =
√

(1− p1)(1− p2)

for p1, p2 ∈ [0,1].290
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Keeping the triangular functions considered in Eq. (12) and incorporating the interactions terms291

leads to the following generalized logit combination model:292

fLT I(P1,P2) = σ

(
2

∑
i=1

m

∑
j=0

ai jφ j(Pi) +

4

∑
i=1

m

∑
j=0

bi jφ j(γi(P1,P2))

)
, (14)

where ai j and bi j are some model parameters. Thus, there are 6(m+1) parameters to be fitted.293

In the upper right subplot of Fig. 3 three triangular functions for γ1 are depicted. The triangular294

functions of the interaction terms allow the model to chose coefficients for the case when the two295

forecasts P1 and P2 predict both high probabilities (for γ1), low probabilities (for γ4), or make296

diverging predictions (for γ2 and γ3), namely the four corners of [0,1]2.297

It has to be emphasized that the model given in Eq. (14) creates a fine-tuned combination be-298

tween P1 and P2 with interaction terms, but also enables to be corrected systematic unreliable299

forecasts as a MOS method would do. A numerical validation of the combination model proposed300

in Eq. (14) is performed in the next section.301

5. Numerical validation302

In this section, the performance of the combination model proposed in Eq. (14) is analyzed303

using several validation scores. In particular, the model given in Eq. (14) is compared to the initial304

probabilistic forecasts (RadVOR and Ensemble-MOS) and also to the standard logit combination305

model fL given in Eq. (10).306
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a. Validation scores307

Various forecast scores can be used in order to assess the accuracy and the skill of a forecast308

(Wilks 2006). The following validation scores are considered in this paper: bias, Brier score,309

Brier skill score, reliability, and reliability diagram.310

1) BIAS311

The bias of a probabilistic forecast P is defined as the expected difference between the forecast312

P and the dichotomous random variable Y with E(Y ) = q, i.e.,313

Bias(P) = E(P−Y ) = E(P)−q. (15)

An accurate precipitation forecast P makes predictions with a bias close to 0, which indicates314

that the occurrence of rain is neither overestimated nor underestimated on average. As already315

mentioned in Section 3, a calibrated forecast P is necessarily unbiased.316

2) BRIER SCORE AND BRIER SKILL SCORE317

The Brier score is given by the expected squared error between the forecast P and the dichoto-318

mous random variable Y , i.e.,319

BS(P) = E((P−Y )2). (16)

It is a measure of accuracy that is sensitive to strong deviations of given forecasts to their actually320

observed counterparts.321

Furthermore, in order to assess the skill of a forecast, the Brier skill score is often used. It is322

based on a comparison of the Brier score of the forecast and the one of a reference forecast Pre f323

used as a benchmark, i.e.,324

BSS(P) = 1− BS(P)
BS(Pre f )

.
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In this paper, the average Pre f = q for the selected period May to July 2016 of the occurrence of325

precipitation exceeding the threshold 0.1mm is considered as a reference forecast. Note that if the326

Brier score of the forecast is lower than that of the reference forecast, then the Brier skill score is327

positive. In this case, the proposed forecast is considered to be skillful.328

3) RELIABILITY AND RELIABILITY DIAGRAM329

The reliability score is considered as a measure of conditional bias. Assume that for the proba-330

bilistic forecast n predictions p1, ..., pn are available, which correspond to n observations y1, ...,yn331

of the considered event. Denote by B1, ...,BI a partition of the unit interval [0,1] into I subintervals.332

Each partition component Bi contains Ni values of forecasts pk. These forecast values correspond333

to the observations of the event yk. By p̄i the average of the forecasts within Bi is denoted and by334

ȳi the relative frequency of the events which correspond to the forecasts within Bi, i.e.,335

p̄i =
1
Ni

∑
k∈Bi

pk, (17)

ȳi =
1
Ni

∑
k∈Bi

yk. (18)

Then, the reliability is defined as336

RelI(P) =
1
n

I

∑
i=1

Ni(p̄i− ȳi)
2. (19)

The reliability diagram is the graphical representation of the (pk,yk)-pairs. The deviation of the337

reliability diagram from the first bisector of the axes is a qualitative visualization of the reliability.338

For a quantitative assessment, each reliability diagram is enclosed in a band. The upper and lower339

end of the band are the 95% and 5% quantiles of the reliability diagrams for single locations.340
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b. Training and testing procedure341

For the validation results presented in this section, each forecast has been trained and tested342

using a rolling-origin with reoptimization scheme initially proposed by Armstrong and Grohman343

(1972). During this procedure, the model is updated with new training data for each hourly step344

of the time series in chronological order. The point in time T , until which the model has been345

trained, is called the forecasting origin and represents the current time in an operational scenario.346

The forecasting origin splits the data into available data from the past (training set) and unavailable347

data from the future (the test set). For each training step, the forecasting origin is moved one hour348

forwards in time and the model is updated with the new data that became available for training.349

The update means that the optimization procedure is run with the new available data. At the350

forecasting origin T , the model makes predictions for the future time interval [T +L− 1,T +L],351

where L is the chosen lead time in hours. The forecasting origin T is rolled over until T +L≤M,352

where M is the final time of the data set. As the forecast quality of the initial forecasts (here353

RadVOR and Ensemble-MOS) are likely to depend on the lead times, each model has been trained354

independently for the considered lead times. Therefore, it is possible to assess the accuracy and355

the skill of the combination model with respect to the lead times.356

The rolling-origin with reoptimization approach enables us to have more testing data when the357

data set is not too large and quantify the amount of data required for the training (Tashman 2000).358

The next section provides the results of an experimental study of the training procedure for the359

proposed combination model fLT I in Eq. (14).360

c. Evaluation of the fitted model361

Before fitting the model to a given data set, two important parameters, called hyperparameters,362

need to be fixed:363
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1. the learning rate η used in the optimization algorithm for updating the model parameters,364

where the so-called stochastic gradient descent algorithm is considered in the present paper,365

see also Bottou (2010). The learning rate determines the magnitude of change of the param-366

eters in each training step: a too high learning rate value may cause the algorithm to miss367

the global minimum (or a desirable local minimum), but a too small value may result in the368

algorithm taking long to converge or even getting stuck in an undesirable local minimum (see369

also Goodfellow et al. (2016) for further details),370

2. the number m of triangular functions φ1, . . . ,φm for the proposed combination model.371

In Fig. 4 the effect of η and m on the validation scores is shown. It seems that models with a372

higher number of triangular functions also require a higher learning rate. However, there does not373

seem to be a combination of hyperparameters that is superior to all others, especially if the same374

set of hyperparameters is chosen for all lead times. For the results presented in this paper, the hy-375

perparameters of the model fLT I have been set to η = 0.0005 and m = 10, which perform well for376

all considered forecast scores and all considered lead times. While there are other hyperparameter377

configurations with a similar performance, it has to be taken into account that the number of model378

weights increases with an increase of m and therefore should be chosen as low as possible.379

For the standard logit combination model fL the appropriate learning rate η has been determined380

in a similar way, by comparing the Brier skill scores for different learning rates, where η = 0.0025381

performed best for short lead times, η = 0.001 for the mid range lead times and η = 0.0005 for382

long lead times. Since the differences were not significant (below 0.001), η = 0.001 was chosen383

for all lead times.384

Once the hyperparameters were fixed, the models were fitted to the data using the rolling-origin385

with reoptimization procedure (see Section 5b). Fig. 5 visualizes the output of the fitted model386
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fLT I and the corresponding observed probabilities. Notice that the proposed combination model387

gives more significance to forecasts provided by RadVOR for short lead times, while Ensemble-388

MOS is given more emphasis for longer lead times. This is in accordance with the validation389

scores since the RadVOR forecasts perform better than Ensemble-MOS forecasts at shorter lead390

times and worse for the longer lead times (see Fig. 6 and 1).391

Fig. 7 depicts the distribution of the parameters ai j and bi j of the fitted combination model fLT I392

introduced in Eq. (14) for the months of June (in red) and July (in blue) with violin plots. In393

this model, the initial probabilistic forecasts P1 and P2 (based on Ensemble-MOS and RadVOR)394

are split into 11 triangular functions φ0, . . . ,φ10, resulting in 11 parameters for each probabilistic395

forecast. Also, each interaction term γ1,γ2,γ3 and γ4 is decomposed into 11 triangular functions.396

For each value x ∈ {0,0.1, . . . ,0.9,1} on the x-axis, there is a triangular function φ , with φ(x) = 1,397

the corresponding parameter of which is depicted at x in Fig. 7. For example for the value x = 0398

regarding the RadVOR column, the violin plots in blue, respectively in red, can be seen as the399

influence of RadVOR predictions close to the value x = 0 on the combination model for the month400

of June, respectively of July. For the lead time +1h the RadVOR parameters range from −2 to401

+1.5, while the Ensemble-MOS parameters are between −0.5 and 0.5. Therefore, the predic-402

tions based on RadVOR have a larger influence on the combined forecast. With increasing lead403

times, Ensemble-MOS parameters spread out further and RadVOR parameters move closer to 0.404

These observations are consistent with those made regarding Fig. 5. Moreover, the parameters for405

Ensemble-MOS and γ1 at x = 1 are close to zero because Ensemble-MOS made almost no pre-406

dictions close to 1 (see the bar plots in Fig. 1 and data plots in Fig 5).Therefore, these parameters407

get seldomly updated and stay close to 0. It is notable that most parameters show a similar distri-408

bution for both months of June and July. Data for the month of May has been omitted due to the409

warm-up period at the beginning of the training, which leads to different parameter distributions410
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for May in comparison to June and July. Also, it can be seen that the variance of the parameter411

distribution increases for longer lead times. This is probably due to increased forecast errors in the412

initial forecasts. Note that if all 11 weights of a predictor are arranged on a line, then the triangular413

functions mimic the behavior of a standard logit combination model with one parameter for each414

initial predictor. However, the ability to choose parameters in a non-linear way leads to a more415

general and flexible combination model.416

The interaction terms γ1 and γ4 take values close to 1 if both initial forecasts agree. In Fig. 7417

it can be seen that if both initial forecasts predict precipitation, γ1 further increases the predicted418

probability of the model, while if both initial forecasts predict no precipitation, γ4 decreases the419

predicted probability further. γ2 takes values close to 1 if Ensemble-MOS predicts no precipitation,420

but RadVOR does. For lower lead times, when RadVOR has a high forecast skill, γ2 further421

increases the predicted probability of the model. For higher lead times and a lower forecast skill of422

RadVOR, the weights of γ2 move closer to zero. Similarly the slope of γ3 changes with increasing423

lead time according to which of the initial forecasts has a higher forecast skill.424

The bias, Brier skill score, reliability and sharpness of the initial forecast, of the standard logit425

combination model fL and of the proposed combination model fLT I are shown in Fig. 6. The box426

plot diagrams represent the variability of the daily scores depending on lead time. They measure427

the consistency of the probabilistic forecasts from day-to-day predictions: the wider a box plot428

diagram is, the less consistent is the model. The continuous lines represent the validation scores429

over all locations and points in time of the data set. Note that the Brier skill score of 3 months is not430

equal to the average daily Brier skill score, which is more sensitive to days with a low Brier skill431

score. The overall scores for the combination model fLT I are significantly better than those for432

the initial probabilistic forecasts with respect to the Brier skill score and the reliability. Ensemble-433

MOS shows little increasing bias, RadVOR a negative Bias of −2% and the combination models434
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are almost perfect for the 3 month average. Moreover, the daily predictions of the proposed model435

are more consistent than the initial forecasts. Besides, the proposed combination model preserves436

the sharpness for short lead times, but decreases it for longer lead times. Notice that all the scores437

of fLT I are also improved compared to the standard logit combination model. In order to see438

the effect of interaction terms on the validation scores, the forecasts have been combined with a439

model of type fLT , which extends the logistic regression model fL with triangular functions only.440

The results show that fLT I compared to fLT (not shown here) has improved bias, reliability and441

sharpness.442

Reliability diagrams are shown for these probabilistic forecasts in Fig. 1. The histograms repre-443

sent the empirical distributions of the probabilistic forecasts. It seems that the combination model444

fLT I is significantly more reliable for all lead times compared to the initial probabilistic forecasts445

and to the standard logit combination model. Fig. 6 and 1 highlight that the fLT I combination446

model has a higher accuracy and skill than the initial probabilistic forecasts without impacting too447

much of the sharpness.448

For the results presented in this paper, the combination model fLT I has been trained on all point449

probabilities regardless of their corresponding location. Therefore the combination model can not450

correct local errors, which affect only a subset of locations. To assess how well the combination451

model performs for single stations, the considered forecast scores for each location are shown452

in Figs. 8, 9 and 10. Especially for the bias and the Brier skill score local differences can be453

observed for the combination model. However these differences seem to occur already in the454

initial forecasts and are not introduced by the combination model. In Fig. 10 the local reliability455

of the combination model is much more homogeneous than for both initial forecasts.456

In Fig. 11 the initial and combined point probabilities are illustrated for one hour to showcase457

the seamless transition between both initial forecasts.458
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d. Runtime of the fitted model459

In addition to validation scores, the runtime of a model is critical for operational use, especially460

if the initial forecasts have a fast update cycle of a few minutes like RadVOR. To benchmark the461

runtime of the proposed combination model fLT I , the model was run on an Intel Core i7-860 (2.8462

Ghz).463

In order to combine 2210 hourly forecasts for approximately 1370 locations and 8 lead times,464

it took 41 minutes and 11 seconds to combine both considered forecasts, which corresponds to465

1.118 seconds per hourly forecast. This includes reading the initial forecasts from a file, making a466

prediction for each location, saving the new predictions to a file and updating the model parameters467

with the new observations. The transformation of the RadVOR forecasts has not been considered468

in this evaluation, since the transformation is independent of the combination itself and does not469

affect the runtime in the general use case of the proposed model fLT I .470

Note that the model only requires the most recent information of the last hour to make the next471

prediction and to update the model parameters, which results in the short runtime and also in a low472

memory use.473

6. Application to area probabilities for warning events474

In this section the wide applicability of the approach proposed in this paper for the calibrated475

combination of probabilistic precipitation forecasts is demonstrated. More precisely, we show that476

our approach can also be used for the calibrated combination of so-called area probabilities. Note477

that most NWP models generate predictions for single points on a certain grid. This is also the478

case for RadVOR and Ensemble-MOS. In Kriesche et al. (2015), a stochastic geometry model has479

been introduced, which calculates area probabilities based on point probabilities. This model was480

developed for the generation of weather warnings. For instance, in order to predict the likelihood481
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of flooding, the probability of precipitation within the catchment area of a river is of interest,482

without knowing the exact location of the precipitation event. Similarly, emergency forces might483

have an interest in the area probability for critical weather events in their area of responsibility.484

In our case, area probabilities can be defined as the probability of precipitation exceeding the485

threshold 0.1mm in at least one point within a certain fixed area A. From this definition, it follows486

that area probabilities of a given weather event are at least as large as the probabilities for single487

points or arbitrary subsets within A. Formally, the area probability p(A) for the occurrence of488

precipitation anywhere inside A has the following representation, see e.g. Hess et al. (2018):489

p(A) = 1− exp

(
−∑

s∈S
a(s)ν2 ((A⊕b(o,r))∩V (s))

)
, (20)

where S is the set of points for which point probabilities are given, V (s) is the Voronoi cell cor-490

responding to location s, a(s) is a model parameter representing the number of precipitation cells491

per unit area in V (s). Furthermore, ν2(G⊕b(o,r)) is the area of the dilated set A⊕b(o,r) where492

A⊕ b(o,r) denotes the Minkowski sum of A and the disk b(o,r) which is centered at the origin493

and has some radius r > 0 (Chiu et al. 2013). Note that the model parameters r and a(s) for all494

s ∈ S are estimated on the basis of corresponding point probabilities. For further details, we refer495

to Kriesche et al. (2015, 2017) .496

In principle, combined area probabilities can be computed in two different ways. Namely, they497

can be computed498

1. based on already combined point probabilities (Method 1) ;499

2. for point probabilities of each initial forecast and then combined by the proposed combination500

model fLT I (Method 2).501

In Fig. 12 the validation scores for area probabilities based on RadVOR, Ensemble-MOS and502

their combination are compared, where the area probabilities for Ensemble-MOS and RadVOR503

25



show similar behavior as the corresponding point probabilities in Fig. 6. Based on these forecast504

scores, Fig. 12 shows that Method 2 leads to a much smaller bias and better reliability than Method505

1, whereas the BSS does not show any significant difference. Thus, when computing calibrated506

area probabilities, Method 2 described above should be used.507

7. Conclusion508

The combination model presented in this paper for combining probabilistic forecasts demon-509

strates significant improvements in forecast accuracy, skill and consistency with respect to all510

considered forecast scores. The forecast scores show even a large improvement for lead times511

where currently no RadVOR forecasts are available. Both the conversion of deterministic Rad-512

VOR predictions to probabilistic forecasts and the fitting of the proposed combination model are513

computationally rather cheap and, therefore, they allow for a seamless update of Ensemble-MOS514

forecasts.515

Furthermore, the method has been applied to the combination of area probabilities, which can516

be used for warning events. The computation of area probabilities is based on a stochastic geom-517

etry model using point probabilities. The proposed method has been used to highlight that area518

probabilities should be computed from the point probabilities first and then combined with the519

combination model.520

The combination model has not been applied to thresholds other than 0.1 mm yet. It is likely521

that a model trained for some threshold would not yield satisfactory results if it were applied to522

forecasts of another threshold. Therefore it would be required to train a separate model for each523

threshold and thus also increase the amount of parameters used in total.524

Note that combination models of the type considered in this paper could also be constructed525

using artificial neural networks (ANN). For such models, there is no need to specify the explicit526
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parametric form between the underlying initial probabilistic forecasts and the event that is being527

predicted. Thus, ANN models may allow for more flexibility. Besides, it may also be possible to528

train a general ANN for the combination of forecasts, which can predict exceedance probabilities529

not only for one threshold, but for several thresholds simultaneously. In this case, the consis-530

tency of the calibrated probabilities has to be ensured, i.e., the probabilities have to be smaller for531

increasing thresholds, see also Ben Bouallègue (2013).532

The development of such ANN-based combination models for the prediction of several thresh-533

olds or a probability distribution will be the subject of a forthcoming paper.534
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APPENDIX A538

Calibration539

Using the same notation as before in this paper, let f (P) be the self-calibrated version of a540

probabilistic forecast model P. It can be easily seen that f (P) is calibrated in the sense of Eq. (2).541

Namely it holds that542

E(Y | f (P)) = E(Y | E(Y | P))

= E(Y | P)

= f (P).

This is a special case of the tower property of conditional expectation, which says that the identity543

E(X | E(X |H )) = E(X |H ), holds for any random variable X and sub-σ -algebra H of F .544

Note that the latter identity is sometimes called the Doob martingale property.545
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APPENDIX B546

Sharpness547

It turns out that f (P) has the maximum variance compared to any other calibrated model g(P)548

that is a function of P.549

Indeed, let g : [0,1]→ [0,1] be any deterministic function such that g(P) is a well-defined random550

variable, which is calibrated, i.e., E(Y | g(P)) = g(P). For brevity, we thereafter write f instead of551

f (P), and g instead of g(P). First, notice that552

Var( f ) = E( f 2)−q2,

Var(g) = E(g2)−q2,

where q = E(Y ). Then, it follows that553

Var( f )−Var(g) = E( f 2)−E(g2).

To show that E( f 2)−E(g2)≥ 0, it suffices to observe that554

E((Y −g)2)≥ E((Y − f )2)

as f = E(Y |P) is the orthogonal projection of Y on the L2-space of square-integrable random555

variables. Besides,556

E((Y − f )2) = E(Y 2)−2E(Y f )+E( f 2)

= q−2E(E(Y f | P))+E( f 2)

= q−E( f 2).

Note that the latter equality is straightforward because E(E(Y f | P)) = E( fE(Y | P)) = E( f 2) as557

f (P) is σ(P)-measurable. With the same type of argument, one can show that E((Y − g)2) =558
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q−E(g2). This gives that559

q−E(g2)≥ q−E( f 2)

and, thus, that E( f 2)≥ E(g2).560

APPENDIX C561

Limitation of fLT562

In this section a limitation of the combination model fLT is shown, which can be resolved with563

additional coefficients that may be provided e.g. by the interaction terms in the combination model564

fLT I . Consider the model fLT with two initial forecasts P1 and P2:565

fLT (P1,P2) = σ

(
2

∑
i=1

m

∑
0=1

bi jφ j(Pi)

)
.

The triangular functions φ j reach their maximum at j
m with φ j(

j
m) = 1 for each j ∈ {0, . . . ,m}. For566

the case where P1 and P2 take values in {0, 1
m , . . . ,

m−1
m ,1} all triangular functions are zero, except567

for the two triangular functions, which take their maximum at j1
m = P1 and j2

m = P2. It then holds568

that569

fLT (P1,P2) = σ

(
2

∑
i=1

m

∑
0=1

bi jφ j(Pi)

)
= σ

(
b1 j1φ j1(P1)+b2 j2φ j2(P2)

)
= σ

(
b1 j1 +b2 j2

)
. (C1)

Now consider four points (P
′
1,P

′
2),(P

′′
1 ,P

′
2),(P

′
1,P

′′
2 ),(P

′′
1 ,P

′′
2 ) with P

′
1,P

′′
1 ,P

′
2,P

′′
2 ∈570

{0, 1
m , . . . ,

m−1
m ,1}, which form a rectangle similar to the crossing points of the four trian-571

gular functions in Fig. 3. For each of the four points, fLT can be reduced as in Eq. C1:572

fLT (P′1,P
′
2) = σ( b1 j′1

+b2 j′2
),

fLT (P′′1 ,P
′
2) = σ( b1 j′′1

+b2 j′2
),

fLT (P′1,P
′′
2 ) = σ( b1 j′1

+ b2 j′′2
),

fLT (P′′1 ,P
′′
2 ) = σ( b1 j′′1

+ b2 j′′2
).
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These equations can be transformed into573

σ
−1( fLT (P′1,P

′
2)) = b1 j′1

+b2 j′2
,

σ
−1( fLT (P′′1 ,P

′
2)) = b1 j′′1

+b2 j′2
,

σ
−1( fLT (P′1,P

′′
2 )) = b1 j′1

+ b2 j′′2
,

σ
−1( fLT (P′′1 ,P

′′
2 )) = b1 j′′1

+ b2 j′′2
.

Moreover, they can be written as a system of linear equations:574 

1 0 1 0 σ−1( fLT (P′1,P
′
2))

0 1 1 0 σ−1( fLT (P′′1 ,P
′
2))

1 0 0 1 σ−1( fLT (P′1,P
′′
2 ))

0 1 0 1 σ−1( fLT (P′′1 ,P
′′
2 ))


.

Since the matrix is singular, it follows that in general there is no set of coefficients that would575

solve the system of linear equations and therefore the model fLT can not satisfy the equations for576

all four points and will have to pick an approximate solution.577
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FIG. 11: A case study for the combination of point probabilities for a single hour (14th July 2016
from 10:00 to 11:00) for the lead times from +6h down to +1h.
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FIG. 12: Forecast scores for area probabilities based on RadVOR, Ensemble-MOS and their com-
bination. In case of Method 1, the point probabilities given by RadVOR and Ensemble-MOS,
respectively, are first combined and then converted into area probabilities. In case of Method 2,
both sets of point probabilities are first converted into area probabilities and then combined. The
x-axis represents the lead times of the forecasts and the y-axis the scores values.
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