
3D microstructure modeling of compressed fiber-based
materials
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Abstract

A novel parametrized model that describes the 3D microstructure of compressed
fiber-based materials is introduced. It allows to virtually generate the mi-
crostructure of realistically compressed gas-diffusion layers (GDL). Given the
input of a 3D microstructure of some fiber-based material, the model compresses
the system of fibers in an uniaxial direction for arbitrary compression rates. The
basic idea is to translate the fibers in the direction of compression according to
a vector field which depends on the rate of compression and on the locations of
fibers within the material. In order to apply the model to experimental 3D image
data of fiber-based materials given for several compression states, an optimal
vector field is estimated by simulated annealing. The model is applied to 3D im-
age data of non-woven GDL in PEMFC gained by synchrotron tomography for
different compression rates. The compression model is validated by comparing
structural characteristics computed for experimentally compressed and virtu-
ally compressed microstructures, where two kinds of compression - using a flat
stamp and a stamp with a flow-field profile - are applied. For both stamps types,
a good agreement is found. Furthermore, the compression model is combined
with a stochastic 3D microstructure model for uncompressed fiber-based mate-
rials. This allows to efficiently generate compressed fiber-based microstructures
in arbitrary volumes.
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1. Introduction

We introduce a novel parametrized model that describes the 3D microstruc-
ture of compressed fiber-based materials. This model is of high practical rel-
evance since it allows for generating the microstructure of gas-diffusion layers
(GDL) under consideration of compression conditions as found in fuel cells.
Given the input of a 3D microstructure of some (uncompressed) fiber-system,
the model compresses the system of fibers in an uniaxial direction. By the term
‘uniaxial compression’ we mean that the material, located on a fixed ground, is
compressed by a stamp which presses the material from an uniaxial direction
against the fixed ground, see Figure 1. The compression rate is then given by
1 minus the ratio of the thickness of the compressed material and the thickness
of the uncompressed material. The model can be applied to mimic any uniaxial
compression of fiber-based materials. In particular, it is able to describe the
compression for varying stamp geometries and for arbitrary compression rates.
In addition, when applied to systems of non-overlapping fibers, i.e. fibers which
do not penetrate each other, the compression model keeps the fiber system free
of overlaps and it preserves the total volume of the fibers. Note that the idea of
the compression model introduced in the present paper is to rebuild the struc-
ture of compressed materials, i.e., it is a purely morphological approach which
does not include any physics. The advantage of this morphological approach is
that compression of materials can be mimicked by means of simulations in short
time on huge domains and additionally the simulations based on the compression
model are good approximations of real compressed materials.

We apply the compression model to 3D image data describing the microstruc-
ture of non-woven GDL in proton exchange membrane fuel cells (PEMFC),
which consists of (non-overlapping) fibers. PEMFC are a seminal technology
for electrical power generation due to their high efficiency and environment
friendly emissions [1, 2]. An important factor for the efficiency and stability of
the PEMFC is its GDL, which is mainly responsible for the gas supply of the
electrodes and water storage / evacuation within the GDL. For further details
concerning the functionality of GDL we refer e.g. to [3, 4, 5, 6, 7]. The GDL
under examination is a porous material whose solid phase consists of a system
of strongly curved (non-overlapping) carbon fibers. The microstructure of the
GDL is closely related to its functionality, in particular to the transportation of
gases and fluids through the GDL [8, 9, 10, 11, 12]. Thus, the systematic devel-
opment of ‘designed’ morphologies with improved functionality is an important,
but largely unsolved task.

In the operating state of PEMFC, the GDL is uniaxially compressed un-
der the lands of the flow-field in order to ensure the mechanical support of
the membrane as well as thermal and electrical conductivity. It was demon-
strated that the compression rate of the GDL influences the performance of a
PEMFC [13, 14, 15, 16]. In Figure 1 (right), the microstructure of a non-woven
GDL is displayed with a stamp possessing a flow-field structure. In order to
improve the understanding of transportation processes within the GDL in oper-
ating PEMFC, it is of great importance to investigate the correlation between
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compressed microstructures of GDL and the corresponding physical processes,
e.g. gas and water transport.

The first step towards the analysis of this correlation is to understand how
the microstructure changes under compression. In particular, there is a need of
models describing the 3D microstructure of compressed GDL by the flow-field
for varying rates of compression.

In general, there exist two classes of models which virtually compress mi-
crostructures. The first class is based on numerical simulations which rebuild
the geometry of the mechanical compression by solving some differential equa-
tions (e.g. compression of spherical aggregates). In contrast, the second class
represents a purely geometrical approach which does not include any physics
and only aims to realistically rebuild compressed microstructures. Since the
compression of microstructures needs extensive computational time for physical
models and thus limits the volumes or resolution that can be handled, we focus
on the second class of compression models in the following. Furthermore, within
this class, we restrict ourselves to uniaxial compression. In literature, there exist
some models for uniaxial compression of fiber-based materials, cf. [18, 19, 20]. In
[19], a compression model is proposed which mimics compression by a flat stamp
only for multi-layer structures, i.e., consisting of stacked layers. In [18, 20], a
further compression model is presented which allows to uniaxially compress a
given 3D microstructure of some fiber-based materials by a flat stamp where the
microstructure is represented by a 3D image. So far, to the best of the authors’
knowledge, there exists no purely geometrically motivated compression model
which describes uniaxial compression for arbitrary stamp geometries. However,
in reality the GDL is compressed by a flow-field stamp. A stamp which mim-
ics this structure is shown in Figure 1 (right). Note that there are dramatic
structural differences when compressing the GDL either with a flat stamp or
with a stamp possessing a flow-field structure. Thus, there is a need for more
general compression models in order to analyze the influence of compression by
flow-field stamps on transportation properties of the GDL. To fill this gap, we
present a model which is able to describe all kinds of uniaxial compression, in
particular compression by a flow-field-like stamp as occurring for GDL in oper-
ating PEMFC. More precisely, given the input of a 3D microstructure of some
fiber-system, the model uniaxially compresses the system of fibers for arbitrary
stamp geometries and for arbitrary compression rates. The compression model
is constructed by means of a two-stage approach. The basic idea of the model
is to translate the fibers in the direction of compression according to a vector
field Vc which depends on the compression rate c and on the location of the
fibers within the material. Subsequently, an avoidance algorithm is applied to
the translated fiber system which prevents the mutual penetration of fibers and
preserves their lengths. Thus, the proposed compression model generalizes the
model described in [20] in two ways: 1) to arbitrary stamp geometries, and 2) it
keeps non-overlapping fibers free of overlaps. Moreover, an estimation technique
for the optimal vector field in order to fit it to experimental data is introduced
which is based on simulated annealing.

To validate the model, it is applied to the 3D microstructure of non-woven
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GDL in PEMFC gained by synchrotron tomography for four different compres-
sion rates c ∈ {0, 10, 20, 30} (in %). Thereby, we distinguish between two kinds
of compression: 1) using a flat stamp, and 2) a stamp possessing a flow-field
structure. Note that when the compression model is applied to systems of non-
overlapping fibers, single fibers need to be identified in order to separate them
from each other. Such a single-fiber extraction can be done efficiently by the
algorithm introduced in [21]. The compression model is validated by comparing
structural characteristics computed for experimentally and virtually compressed
microstructures. For both types of stamps, a good agreement between experi-
mental and virtual compression is found.

In a second step, we apply the compression model to virtual microstructures
of uncompressed non-woven GDL, which are generated according to a stochastic
3D simulation model introduced in [22]. The combination of the stochastic mi-
crostructure model with the compression model allows to realistically simulate
compressed GDL on an arbitrary large scale for arbitrary compression rates.
Since the access to tomography images is limited or often, only images of un-
compressed media are available, the combination of both models enables us to
efficiently generate a large number of virtual (but realistic) microstructure sce-
narios for compressed GDL. When employed in fuel cell simulation, this model
provides great flexibility: the microstructure of GDL can be easily adapted to
different degrees of compression in order to study the influence of clamping
pressure on fuel cell operation. Furthermore, it allows for studying different
flow-field geometries while the volume of the generated GDL-structure can be
conveniently adjusted to meet the desired requirements. By systematically vary-
ing the parameters of the compression model (describing the 3D microstructure
of compressed GDL), new virtual GDL can be generated and in combination
with computational transport simulations, the microstructure-functionality re-
lationship of the GDL in operating PEMFC can be investigated. In this way,
the systematic design of morphologies with improved functionality based on
computer experiments can be achieved.

The paper is organized as follows. Section 2 briefly describes the material
investigated in this paper and the set-up for the generation of 3D image data. In
Section 3, the compression model is introduced and the estimation technique for
its parameter is presented. Subsequently, in Section 4, the compression model is
applied to synchrotron data of non-woven GDL for different compression rates,
where we distinguish between two kinds of compression, i.e., using a flat stamp
and a stamp possessing a flow-field structure. Section 5 combines a stochastic
simulation model for uncompressed non-woven GDL with the compression model
introduced in the present paper. Finally, Section 6 summarizes the results and
provides a short outlook regarding possible future research.

2. Imaging and material

A prominent example of a fiber-based material is the GDL in PEMFC where
the consideration of compressed GDL is of great importance since the GDL is
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compressed in the operating state of PEMFC. Therefore, 3D image data of un-
compressed and compressed non-woven GDL are needed [23], where we distin-
guish between compression by a flat and by a flow-field-like stamp, see Figures 3
and 4. Thus, in this section, we briefly discuss the imaging technique used in [23]
to record compressed microstructures and we give some details about the ma-
terial considered. Finally, we shortly discuss an algorithm which automatically
extracts a system of single fibers from tomographic 3D images. This algorithm
allows the direct application of the compression model, introduced in Section 3,
to experimental image data of fiber-based materials.

2.1. Imaging technique

The imaging experiments were performed at the Helmholtz-Zentrum Berlin
using the synchrotron tomography station of the BAMline which is located at the
synchrotron source BESSY (Berlin/Germany) [24]. The high brilliance of the
synchrotron X-ray beam allows producing tomographic data of superior quality
in terms of resolution and contrast [23, 25, 26]. This way, smallest details of the
three-dimensional GDL structure such as shape and course of individual carbon
fibers can be accurately rendered. The principal set up of the tomographic
measurement is displayed in Figure 2.

A W-Si double multilayer monochromator with an energy resolution of
∆E/E = 10−2 was used to obtain a monochromatic X-ray beam. The beam
energy was adjusted to 15 keV in order to achieve optimal contrast for fibers.
Images were captured with a 4008 × 2672 pixel2 camera set-up (PCO camera
with a Gadox scintillator screen) rendering a field of view of 3.3×2.2 mm2 with
a pixel size of 0.876 µm and a respective physical spatial resolution of about
2 µm [27]. Circular GDL samples with diameters of 3 mm were adjusted in the
sample holder and mounted on a translation/rotation unit. For each tomogram,
samples were rotated in equidistant steps covering an angular range of 180◦.
A radiographic set of 1500 projections and 500 flatfields was taken and, subse-
quently, reconstructed to a 3D volume. The exposure time is 2.5 s plus 1.7 s
read-out for a single radiograph adding up to an acquisition time of 140 min for
the complete tomogram. The measurements were performed using a dedicated
compression device as sample holder which provides well-defined compression
conditions and meets the instrumental requirements, e.g. in terms of sufficient
beam transmission. The compression device is able to compress GDL by differ-
ent stamp types (see Figures 3-4), in particular, for a flat stamp and a stamp
consisting of a flow-field structure, where the width of the flow-field canal is 790
µm.

2.2. Description of material

The application of the compression model, introduced in the present paper, is
based on tomographic data of the GDL type H2315, a non-woven, carbon fiber-
based material produced by the company Freudenberg FFCCT. This material
does not contain binder, wet proofing agents nor a micro porous layer (MPL).
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H2315 is used as standard material for many fuel cell applications. Note, how-
ever, that it is usually equipped with wet proofing agent and/or MPL in order to
adapt its physical properties to the requirements of the respective application.

2.3. Fiber extraction algorithm

The experimental 3D image data gained by synchrotron tomography displays
the (uncompressed and compressed) non-woven GDL by a matrix of voxels. In
the following, we extract the systems of fibers from the tomographic 3D image
data of uncompressed GDL. Thereby, the complexity of data is reduced since it
is represented by thousands of fibers (approximated by polygonal tracks which
are given in Euclidean coordinates) instead of millions of voxels. Furthermore,
the input data of the compression model introduced in this paper are uncom-
pressed fiber-systems and thus it can be directly applied to the extracted fibers
of uncompressed non-woven GDL.

We briefly describe an algorithm to automatically detect single fibers from
3D tomographic data of fiber-based materials which has been proposed in [21].
The algorithm yields the extracted center lines of individual fibers which are
approximated by polygonal tracks. Since in experimental data there occur ir-
regularities like noise or binarization artefacts it is only possible to extract parts
of the center lines. Then, a stochastic optimization algorithm connects these
fragments of the center lines to each other such that the complete fibers are
correctly reconstructed. For further information see [21]. Exemplarily, we have
applied the algorithm to experimental image data of uncompressed non-woven
GDL. The experimental data and its extracted fiber system are in an excellent
optical accordance, see Figure 5.

3. Compression model for fiber-based materials

In this section, we introduce a parametrized model that describes the 3D
microstructure of compressed materials. Given the input of a uncompressed
3D microstructure of a two-phase material consisting of an uncompressed solid
phase and a pore phase, the model compresses the solid phase in an uniaxial
direction for arbitrary compression rates. When speaking of a 3D microstruc-
ture, we refer to a segmented tomographic 3D image or synthetic 3D images
drawn e.g. from stochastic simulation models. To make the model more ac-
cessible, we constrict it and its range of application to materials consisting of
non-overlapping systems of fibers. But note that by slight modifications, the
model can be extended to other types of materials, including composite materi-
als. The compression model introduced in the following should possess several
properties. In particular, the model should

1) describe different uniaxial compression processes on the microstructure of
fiber-based materials realistically, where it should describe the compression
of fiber-based materials accomplished by different stamp geometries, e.g.
by a flat stamp or by a stamp with a flow-field structure, see also Figure 1.
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2) preserve the non-overlapping of fibers.

3) describe compressed microstructures of fiber-based materials with con-
tinuous compression rates c ∈ [0, cmax), where cmax < 1 is the largest
compression rate such that it is possible to preserve a non-overlapping
fiber-system after applying the compression model.

4) be a volume preserving operation, i.e., the total volume of fibers should
remain constant under compression.

In the following, we first introduce the compression model for fiber-based mate-
rials. Then, a fitting procedure of its parameters is discussed when the uncom-
pressed and several compressed microstructures of a fiber-based material are
given.

3.1. Model description

We now introduce a compression model which describes uniaxially com-
pressed microstructures of fiber-based materials. Throughout this paper, we
assume that microstructures are compressed in an uniaxial direction, say, the
z-direction. Consequently, we assume that the fibers are only shifted in the
direction of compression, but the magnitude of the shift may vary in space. To
motivate the assumption, consider Figure 6 displaying a cross-section of a fiber
system (GDL) in an uncompressed state (left) and a compressed state (right).
It can clearly be seen that fibers are mainly shifted in z-direction. Note that
due to binarization artefacts and irregulations of the imaging of the material, it
is implausible to obtain a perfect translation in z-direction even if 100% of the
fibers were shifted in z-direction. On the other hand, it is intuitively clear that
fibers are translated to a large part only in z-direction when considering the
case of uniaxial compression. For these reasons, we neglect possible translations
of fibers in other directions.

The compression model is constructed by means of a two-stage approach.
First, the fibers are translated in the direction of compression according to a
vector field Vc depending on the compression rate c ∈ [0, cmax). Note that each
fiber is represented by a polygonal track. To the starting and endpoints of each
segment of the polygonal tracks, the vector field assigns a transition vector,
which depends on the location of the point within the material. The translation
of the fibers according to the vector field Vc may yield overlaps in the fiber
system and increase or decrease the length of individual fibers. Therefore, in
a second step, we apply an iterative avoidance algorithm [28] to the translated
fiber system which transforms the translated fiber system to a non-overlapping
fiber system, where the length and curvature of the fibers are preserved.

3.1.1. Translation algorithm

Let Ξ =
⋃∞

i=1 Fi ⊕ B(0, r) ⊂ R × R × [0, zmax] be a system of fibers (rep-
resenting a fiber-based material) and let Fi, i = 1, 2, . . . be polygonal tracks
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approximating single fibers, i.e., Fi is a system of line segments defined by

Fi =

ni⋃
j=1

`ij ,

where
`ij = (p

(1)
ij , p

(2)
ij ) ∈ R3×2

is the jth line segment of the ith fiber consisting of starting and endpoints

p
(1)
ij , p

(2)
ij ∈ R3 with Euclidean length |`ij | = r

4 . Moreover, zmax > 0, r defines
the constant radius of the fibers, B(0, r) the (three-dimensional) sphere with
origin as center point and radius r, and ⊕ denotes the Minkovski addition.
Thus, we identify the microstructure of a fiber-based material with the union
set of all fibers, where each fiber is represented by a system of connected line
segments. Given this representation, we can now describe the compression of
fibers in more detail. Let Vc : R×R× [0, zmax]→ R be a continuous vector field
with the constraints that Vc(x, y, 0) = 0 for all (x, y)> ∈ R2, and Vc(x, y, z) ≤ z
for all (x, y)> ∈ R2 and 0 ≤ z ≤ zmax. In the first stage, the system of fibers Ξ
is translated according to the vector field Vc which yields the translated system
of fibers, denoted by Ξ′, where

Ξ′ =

∞⋃
i=1

F ′i ⊕B(0, r), with F ′i =

ni⋃
j=1

`′ij and

`′ij =
(
p
(1)
ij − Vc(p

(1)
ij ), p

(2)
ij − Vc(p

(2)
ij )
)
.

Thus, the translation of the fiber system is described by translating the starting
and endpoints of each line segment of the fibers. In a second step, an avoidance-
algorithm is applied to the translated system of fibers Ξ′, in order to de-overlap
the system of fibers. The resulting microstructure is denoted by Ξ′′. Note
that the compressed microstructure Ξ′′(c) as well as the translated fiber system
Ξ′(c) are located in the set Wc, where Wc = {(x, y, z)> ∈ R3 : (x, y)> ∈ R2, z ∈
[0, zmax − Vc(x, y, zmax)]}. In the following, we shortly discuss the iterative
avoidance algorithm introduced in [28].

3.1.2. Iterative avoidance algorithm

To obtain a system of compressed and non-overlapping fibers, the translated
fiber system Ξ′ described in Section 3.1.1 is further transformed. Recall that r
denotes the thickness of the fibers. The principle idea is to first represent each
fiber by a chain of (overlapping) spheres where the spheres have the same radius
r equal to the fiber thickness and their midpoints are located equidistantly (with
distances r/4 from each other) on the line segments of the fibers, see also Figure 7
(left and center). Using this representation, the basic idea is to translate the
midpoints of the spheres such that no spheres from different fibers overlap, see
Figure 7 (right).

8



In more detail, in every iteration step i, each midpoint M
(i)
n ∈ R3 of those

spheres is translated by a vector t = t1 + t2, i.e.,

M (i+1)
n = M (i)

n + t = M (i)
n + t1 + t2.

The translation function t1 separates overlapping spheres which belong to dif-
ferent chains of spheres by moving them away from each other, and the second
translation t2 preserves the distance and the angle between neighboring spheres
belonging to the same chain of spheres (and thus the length and curvature of the
fibers). For the application of the compression model within the present paper,
the function t1 is weighted stronger than t2 as proposed in [28], i.e., to keep fibers
non-overlapping is more important than preserving their curvatures and lengths.
Note that if considering compression of fiber-based materials where the elasticity
of fibers is strongly restricted, i.e., large bending of fibers is not realistic without
cracking, the weighting of functions t1 and t2 can be adopted accordingly. In
this case, the fibers would not be allowed to exceed a certain bending. If after an

iteration step i, a midpoint M
(i)
n = (m

(i)
n,x,m

(i)
n,y,m

(i)
n,z)> is not located in Wc, it

is set to the point given by the closest distance with respect to the z−coordinate,

i.e., if M
(i)
n /∈ Wc we set M

(i)
n = argmin

(m
(i)
n,x,m

(i)
n,y,z)∈Wc

|z −m(i)
n,z|. For further

information regarding the iterative avoidance algorithm, the reader is referred
to [28]. The final system of non-overlapping fibers is denoted by Ξ′′(c).

3.2. Fitting of vector field Vc for fixed compression rate c
So far, the compression model has been introduced which is uniquely deter-

mined by the parameters of the continuous vector field Vc. It remains, however,
unclear which choice of Vc is most suitable to describe compression of fiber-
based materials in a realistic way. Therefore, in this section, we introduce a
fitting procedure which estimates the continuous vector field Vc of the compres-
sion model described in Section 3.1 for any given value of c ∈ [0, cmax). For
this procedure, 3D image data of one and the same fiber system in both, an
uncompressed and a compressed state, is required. The estimation technique is
based on the fact that the total volume of the fiber system must remain constant
under compression, since fibers cannot overlap. More precisely, the idea is to
choose a vector field such that the translated fiber system Ξ′′ matches the com-
pressed fiber system observed in experimental data as good as possible. Since
we cannot expect a perfect match of these fiber systems due to e.g. binarization
artefacts, this procedure optimizes the match of local distributions of fibers in
the virtually compressed and the experimentally compressed microstructures.
In particular, we subdivide the uncompressed and compressed microstructures
in small (pairwise disjoint) cuboids and minimize the absolute values of the dif-
ferences of the total fiber volumes in corresponding cuboids for uncompressed
and compressed data. To solve this optimization problem we use simulated
annealing, a well-known stochastic optimization algorithm.

3.2.1. Optimization problem

Let us assume that we consider the uncompressed microstructure in the 3D
volume W0 ⊆ R3 and the compressed microstructure in W1 ⊆ R3. Furthermore,
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we assume that the dimension in x− and y−direction of W0 and W1 are the
same but by the uniaxial compression the dimensions in z-direction are allowed
to vary, see Figure 8 a). In a first step, the observation windows W0 and W1

are subdivided in the same number of small disjoint cuboids, where the side
length of the cuboids are equal in x- and y-direction for W0 and W1 but differ
in z-direction, see Figure 8 b). Note that the decomposition of W0 and W1 is
much finer than displayed in Figure 8 b).

Given the decomposition of W0 and W1, we now consider a single pair of
stacks of cuboids, as displayed in Figure 8 c) (left). We denote both stacks by
S′ = (z′0, . . . , z

′
n) and S = (z0, . . . , zn) with corresponding total volumes of fibers

within the cuboids given by (V ′1 , . . . , V
′
n) and (V1(z0, . . . , zn), . . . , Vn(z0, . . . , zn)),

respectively. Since we assume that fibers are only translated in z-direction, the
total fiber volume of both stacks must be the same. Thus, the fibers have to
be compressed in such a way that the fiber volume of each cuboid in the un-
compressed microstructure is the same as the fiber volume of the corresponding
cuboid in the compressed microstructure. In other words, the ‘optimal’ decom-
position S∗ should fulfill the equality

S∗ = arg min
0=z0<...<zn

n∑
i=1

|Vi(z0, . . . , zn)− V ′i |2. (1)

Thus, we have formulated an optimization problem and explain later on (in
Section 3.2.2), how to solve it. Note that, since we assume that fibers are only
translated in z-direction, it is sufficient to optimize each vertical stack of cuboids
separately, see Figure 8 c). For the moment, let us assume that we have already
obtained the optimal decomposition S∗ = (z∗0 , . . . , z

∗
n). Then this gives us de-

tailed information about the local compression: Each starting and endpoints of
the fiber segments (forming polygonal tracks) of the uncompressed fiber system
that is located at point (xj , yk, z

∗
i ) should be translated by the vector given by

(0, 0, z′i − z∗i )
>

according to the optimal decomposition S∗. Thus, the result of
the optimal decomposition S∗ is a set of translation vectors given on discrete
points in the observation window W0, see Figure 8 d).

To compute the ’optimal’ vector field Vc, we fit a continuous and parametric
function to these translation vectors by non-linear regression [29]. In particu-
lar, we first consider a suitable class of parametrized continuous vector fields
{Vc(x, y, z) : Vc(x, y, 0) = 0, and Vc(x, y, z) ≤ z for all (x, y)> ∈ R2} such that
no transitions beyond the observation window are made. Then, the parameters
of the vector field are estimated by non-linear regression methods. For this, we
use the surface fitting tool implemented in Matlab [30]. To check the quality of
how the estimated continuous vector field fits the translation vectors given on
discrete points in space, we consider the coefficient of determination R2 ∈ [0, 1).
It is a measure for goodness-of-fit in terms of non-linear regression. The closer
R2 is to 1 the better the regression model describes the given data. Note that
R2 > 0.9 represents a very good fit [29], where a very good data fit means that
the local distribution of fibers in the virtually compressed structure coincides
with the distribution found in the image data of the experimentally compressed
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structure.

3.2.2. Simulated annealing

In order to solve the optimization problem described in (1), we use simu-
lated annealing, a well-know stochastic optimization algorithm which numeri-
cally solves complex global optimization problems by means of Markov-Chain-
Monte-Carlo simulation [31]. Roughly speaking, the basic idea of the simulated

annealing algorithm is to start with some initial configuration, say (z
(0)
0 , . . . , z

(0)
n )

and then randomly change one component of the vector. The change is accepted
if the cost function (which measures the deviation of the fiber volumes within
the uncompressed and compressed cuboids and which we aim to minimize) gets
smaller. Otherwise, the change is only accepted with a certain probability and
the next iteration step is started. The interesting aspect of simulated annealing
is that it allows transitions which increase the cost function. This makes an
‘escape’ from local minima possible. The probability for accepting transitions
that increase the cost function decreases with an increasing number of steps and
is governed by a so-called cooling schedule.

We now explain the simulated annealing algorithm in more detail. Let the
side length in z-direction of the cuboids of W0 be given by z′0 = 0 < z′1 < . . . <
z′n = zmax and the corresponding side length of the fixed decomposition of W1 be
given by z0 = 0 < z1 < . . . < zn. Furthermore, we denote by MSE(z0, . . . , zn)
the mean squared deviation of the volumes computed for corresponding cuboids
given the decomposition of W0 by (z′0, . . . , z

′
n) and W1 by (z0, . . . , zn), i.e.,

MSE(z0, . . . , zn) =

n∑
i=1

|Vi(z0, . . . , zn)− V ′i |2.

The simulated annealing algorithm has three parameters T > 0, M ∈ N and
g ∈ (0, 1). Note that the tripel (T, n, g) is called cooling schedule, see [31]. The

algorithm works as follows, where we put z
(0)
0 = z0, . . . , z

(0)
n = zn.

(a) Set m = 1 and repeat the steps (b) to (d) until m = M then go to (e).

(b) Choose randomly one z
(m−1)
i ∈ {z(m−1)1 , . . . , z

(m−1)
n } and put z

(m)
j =

z
(m−1)
j for all j ∈ {1, . . . , n}\{i}.

(c) Modify z
(m−1)
i by adding a random number X ∼ U(−0.01, 0.01), i.e.,

z
(m)
i = z

(m−1)
i + X. If z

(m−1)
i + X > z

(m−1)
i+1 or z

(m−1)
i + X < z

(m−1)
i−1 ,

z
(m)
i = z

(m−1)
i and repeat step (c).

(d) If MSE(z
(m)
0 , . . . , z

(m)
n ) < MSE(z

(m−1)
0 , . . . , z

(m−1)
n ) accept the modifi-

cation, otherwise accept only with a certain probability which is given
by

exp(−(MSE(z
(m)
0 , . . . , z(m)

n )−MSE(z
(m−1)
0 , . . . , z(m−1)n ))/T ).

Set m = m+ 1 and continue with (b).
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(e) Set T = g · T . If

|MSE(z
(0)
0 , . . . , z

(0)
n )−MSE(z

(M)
0 , . . . , z

(M)
n )|

max{MSE(z
(0)
0 , . . . , z

(0)
n ),MSE(z

(M)
0 , . . . , z

(M)
n )}

< 0.0001

the algorithm terminates, otherwise set z
(0)
0 = z

(M)
0 , . . . , z

(0)
n = z

(M)
n and

go to (a).

As initial value for T we choose T = 1 · 10−6, which is a value where enough
changes are accepted. The number M of iterations per step is chosen equal to
M = 10000, and the factor g is put equal to g = 0.98 as recommended in [31].

3.3. Validation of fitting procedure

In this section, we analyze the goodness of the fitting procedure for the con-
tinuous vector field Vc for fixed c ∈ [0, cmax) introduced in Section 3.2. There-
fore, we generate uncompressed synthetic 3D fiber systems, using the stochastic
model presented in [22]. Then, for a given vector field Vc, we virtually compress
the synthetic fiber system using the compression model introduced in Section 3.1
and subsequently estimate the vector field V̂c from these uncompressed virtual
microstructures, as described in Section 3.2. Then, we compare the given vector
field Vc to its estimated counterpart V̂c.

The parameters of the stochastic fiber model introduced in [22] are chosen
such that the virtually generated fiber systems resemble the fiber systems of
experimental (uncompressed) non-woven GDL, see Section 2. Note that the un-
compressed (virtual) microstructures are simulated on the observation window
W0 = [0, 800]× [0, 800]× [0, 200] (i.e., dimensions of generated GDL structures),
see also Figure 9 (left).

The compressed microstructures are obtained by applying the compression
model presented in Section 3.1, for a given vector field Vc to the simulated
(uncompressed) fiber system. In particular, we consider two different vec-

tor fields V
(1)
c and V

(2)
c , where the first one is chosen as a linear vector field

V
(1)
c (x, y, z) = 0.5 · z which only depends on the z-component, whereas the sec-

ond one is a vector field V
(2)
c (x, y, z) = z · (0.3 − |x − 400| · 0.0015) depending

on the x− and z−components. Subsequently, we apply the compression model
for these two vector fields to the synthetic uncompressed data and compare

the fitted vector fields to the actual ones. Note that both vector fields V
(1)
c

and V
(2)
c fulfill the properties of a vector field for the compression model, i.e.,

both are continuous, and it holds that V
(i)
c (x, y, 0) = 0 and V

(i)
c (x, y, z) ≤ z for

i ∈ {1, 2}. The uncompressed microstructure generated by the stochastic 3D
simulation model as well as the compressed microstructures gained by applying

the compression model for the vector fields V
(1)
c and V

(2)
c to the uncompressed

microstructures are visualized in Figure 9.
Recall that by means of the fitting technique proposed in Section 3.2, esti-

mates of the vector field V
(i)
c at discrete points in the observation window W0
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are computed. Using the surface fitting tool implemented in Matlab [30], a given
non-linear surface can be fitted to these estimates.

In Figure 10, the result of the fitting procedure can be seen. For the first

vector field V
(1)
c , we get a estimated vector field of V̂

(1)
c (x, y, z) = 0.505 · z and

for the second vector field V
(2)
c an estimation of V̂

(2)
c (x, y, z) = z · (0.321− |x−

400|·0.00169) is obtained. Thereby, the coefficients of determination R2 = 0.977

for V̂
(1)
c and R2 = 0.984 for V̂

(2)
c are achieved. Thus, by the fitting procedure

introduced in Section 3.2, it is possible to estimate the vector field of an uniaxial
compression almost perfectly.

3.4. Arbitrary compression rates c

In Sections 3.1 and 3.2, a toolbox has been introduced which consists of a
model to describe microstructures of fiber-based materials under compression
and a procedure to estimate the vector field Vc of the compression model for
a specified compression rate c. Therefore, the uncompressed and one single
compressed microstructure of a fiber-based material have to be given. Thus, it
is possible to describe the microstructural changes from the uncompressed to the
compressed microstructure for one single rate of compression c. Note however
that at the present stage it is not yet possible to describe the compression process
for arbitrary rates of compression c ∈ [0, cmax).

The basic idea to obtain a compression model for arbitrary rates of com-
pression is as follows: First, let us suppose that an uncompressed and m com-
pressed microstructures with compression rates c ∈ {c1, . . . , cm} are available.
For each c ∈ {c1, . . . , cm}, we estimate the corresponding vector field Vc by
means of the fitting technique which was introduced in Section 3.2. Assuming
that {Vc, c ∈ [0, cmax)} is a function of c, this gives us m points of support of

Vc (i.e. {V̂c1 , . . . , V̂cm}) and by subsequently applying regression techniques we
obtain a set of vector fields {Vc, c ∈ [0, cmax)}.

More precisely, the compression of the GDL is managed by the family of
continuous vector fields {Vc, c ∈ [0, cmax)} which is described by some param-

eters (p1, . . . , pn), i.e., Vc = V
(p1,...,pn)
c . Since the vector fields depend on the

compression rate, we interpret the parameter vector (p1, . . . , pn) as a function
of the compression rate c, i.e.

(p1, . . . , pn)> : [0, 1]→ Rn

c 7→ (p1(c), . . . , pn(c))> (2)

For each pair of uncompressed and compressed microstructure, the parame-

ters (p1, . . . , pn) of the same parametric vector field V
(p1,...,pn)
c are fitted using

the estimation method introduced in Section 3.2. This yields m + 1 points
of support for the function (p1, . . . , pn), i.e., we obtain (p̂1(c), . . . , p̂n(c)) for
c ∈ {0, c1, . . . , cm}. Based on these fitted values we describe the dependency of
the compression rate c on the individual parameters pi by a function pi(c), where
pi(c) is computed by means of non-linear regression. The vector field Vc which

uniquely determines the compression model is then given by V
(p1(c),...,pn(c))
c .
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4. Application to experimental data

To begin with, we apply the compression model introduced in Section 3 to
the experimental image data of non-woven GDL in PEMFC which have been
described in Section 2. In particular, as data basis, we consider experimental
3D image data of non-woven GDL without compression (c = 0) and for three
different compression rates c ∈ {10, 20, 30} (in %). The goal in this section is to
use the model introduced in Section 3 in order to describe the compression of
fiber systems of non-woven GDL in PEMFC for arbitrary rates of compression
c ∈ [0, cmax). Finally, we validate the compression model for arbitrary rates of
compression by comparing structural characteristics computed for experimen-
tally and virtually compressed microstructures.

4.1. Estimation of vector fields

Suppose that experimental 3D image data of compressed fiber systems for
compression rates c ∈ {0, 10, 20, 30} (in %) are available, see Figures 3 and 4. In
the following, we distinguish between two kinds of compression, i.e., using a flat
stamp and a stamp possessing a flow-field structure, see Figure 1. For each type
of stamp, we separately apply the fitting technique introduced in Section 3.4 in
order to describe the microstructure of GDL compressed by an arbitrary rate
of compression. Recall that the uncompressed, experimental GDL is given in a
domain size 1314×1314×200 µm3 for the series of images which are compressed
by a flat stamp, and 1314× 1314× 210 µm3 for the flow-field stamp.

4.1.1. Flat stamp

In case of the flat stamp, we choose n = 1 in (2), and V
(p1(c))
c (x, y, z) =

p1(c) ·z. Table 2 illustrates that the choice of this parametric form is reasonable
since the coefficients of determination R2 are very close to 1. Moreover, it turns
out that the function pi(c) = 1 − c is a suitable choice, see Figure 12 (left).
Thus, for the flat stamp, {Vc, c ∈ [0, cmax)} is given by Vc(x, y, z) = (1− c)z for
c ∈ [0, cmax). In other words, by compressing GDL using a flat stamp, fibers are
translated linearly according to their locations with respect to the z-coordinate.
Note that in fact, this behavior is intuitive but it was never shown before and
often used as model assumption, see e.g. [20].

4.1.2. Flow-field stamp

In the next step, we consider the estimation of the parametrized vector field
Vc for compression by a flow-field stamp. First note that the channel of the flow-
field stamp has a width of w = 790 µm. Since the profile of the flow-field stamp
replicates in y-direction, we assume that the vector field Vc for compression by
a flow-field stamp does not depend on the y-coordinate, but on the orthogonal
distance d(·) (given in µm) to the center of the flow-field channel (orientated
in (0, 1, 0)> direction as displayed in Figure 4). Note that the estimated vector
field contains all information to describe the transition of fibers caused by the
compression. Hence, all structural changes of microstructures that occur by the
uniaxial compression can be explained by means of the vector field. To get an
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idea for the choice of the parametrized vector field Vc concerning compression
by a flow-field stamp, consider Figure 11. In this figure, we see that fibers
underneath the rips of the flow-field (i.e. fibers with d(x) > w

2 ) are translated
linearly according to their locations with respect to the z-coordinate. But fibers
underneath the channel of the flow-field (i.e. fibers with d(x) < w

2 ) follow a
non-linear translation rule. Note that values of Vc smaller than zero indicate
decompression of the fibers. Thus, fibers located close to the center of the
flow-field channel are decompressed, see Figure 11. Moreover, we observe that
the decompression of fibers within the flow-field channel is smaller (larger) the
closer the fibers are located to the bottom (top) of the GDL. Thus, in this
case the continuous vector field Vc is constructed by distinguishing between
the two disjoint regions and describe the translation of fibers in those regions,
separately. To assure the continuity of Vc, we include a small transition region
(d(x) ∈ [w2 −4, w2 ]) connecting regions 1 and 2, linearly. Thus, for the parametric
vector field Vc, it seems reasonable (see Table 2) to put n = 6 and consider the
set-up

V (p1(c),...,p6(c))
c (x, y, z) = g1(z; c)1Id(x)≥w

2
+ (g1(z; c)

+

(
g1(z; c)− g2(w

2 − 20, z, c)

20

)
· (d(x)− w

2
)

)
1Iw

2 −20<d(x)<w
2

+ g2(x, z; c)1Id(x)≤w
2 −20 ,

where

g1(z; c) = p1(c) · z,
g2(d(x), z; c) = p2(c)z + p3(c)d(x)z + p4(c)z2 + p5(c)z3 + p6(c)d(x)2z2

and c ∈ [0, cmax). Moreover, we put p1(c) = 1− c and for i ∈ {2, . . . , 6} we use
the family of equations pi(c) = ai (exp(bic)− exp(dic)), where the estimated
coefficients are specified in Table 1. Table 2 and Figure 12 (right) illustrate that
the choice of Vc seems to be adequate.

4.2. Validation of compression model

In Section 4.1, vector fields of the compression model for compression by a
flat stamp and a stamp with flow-field structure are estimated in order to de-
scribe compressed microstructures of non-woven GDL in PEMFC for arbitrary
compression rates c ∈ [0, cmax). We now check if the compression model re-
produces the microstructures of compressed non-woven GDL for the two stamp
types sufficiently well. More precisely, to generate the virtually compressed mi-
crostructures we first consider the extracted fiber system of the uncompressed
GDL, see Section 2.3. Subsequently, the extracted fibers are translated by the
compression model with the help of the estimated vector fields for the compres-
sion rates c ∈ {0, 10, 20, 30} (in %), computed in Section 4.1.

From Figure 13 it can be seen that the virtually compressed images coincide
quite nicely with the synchrotron images of experimentally compressed materi-
als. In addition to visual comparison we check the goodness-of-fit more formally.

15



That means, the compression model is validated by comparing structural char-
acteristics computed for experimentally compressed and virtually compressed
microstructures.

In particular, for each compression rate c, we compare the porosity and the
mean spherical contact distance for experimentally compressed and virtually
compressed microstructures. Note that the porosity of a 3D microstructure
given in an observation window W is defined as the volume of the pore phase
divided by the volume of W Moreover, the mean spherical contact distance is
the mean value of the closest distances from all points located in the pore phase
to the fiber phase. When describing the properties of porous materials the
spherical contact distance is of high significance. Since it describes the spatial
(micro-) structure of the pore phase this information is closely related to the
pore size distribution. The influence of compression on pore size distribution
and the possible consequences for mass transport are discussed in more detail in
the recent paper [23]. Since the microstructures compressed by a flat stamp are
homogeneous, the porosity and the mean spherical contact distance are com-
puted in the whole observation window. The microstructures compressed by a
stamp with flow-field structure can be decomposed in two quite homogeneous
sub-regions: the region underneath the flow-field channel and the region un-
derneath the rips of the flow-field, see the blue boxes in Figure 14. Thus, for
each sub-region separately, the porosity and the mean spherical contact distance
are computed. The results of comparing structural characteristics for experi-
mentally compressed and virtually compressed microstructures can be seen in
Figures 15. For both types of stamps a good agreement is found. Note that this
also justifies the model assumption of the compression model, i.e., that fibers are
only translated in z-direction (the direction of the uniaxial compression). Re-
considering Figure 15 we clearly see that the porosity (mean spherical contact
distance) computed for the samples compressed by a flat stamp and underneath
the land regions when referring to compression by a flow-field stamp decreases
(increases) linearly with respect to the compression rate. In contrast, the poros-
ity (mean spherical contact distance) underneath the channel regions of samples
compressed by a flow-field stamp shows a non-linear behavior. This can be ex-
plained by the computed vector fields considered in the previous section where
underneath the land (channel) of the flow-field a linear (non-linear) translation
of fibers is observed. Note that the focus of the present paper is on the intro-
duction of a compression model which is capable to generate microstructures of
GDL with an arbitrary degree of compression in very large volumes taking into
account the influence of the flow-field geometry. Changes in the microstruc-
ture that result from compression and possible consequences for the fuel cell
operation are discussed in more detail in the recent paper [23].

5. Application to simulated data

In addition to the scenarios considered in Section 4, the compression model
can be applied not only to experimental data but also to virtual non-woven GDL
data sampled from stochastic microstructure models. The main advantages of
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virtual GDL are that they can be produced in arbitrarily large observation win-
dows with arbitrarily many replications and that their generation is cost- and
time-saving. Moreover, by systematically varying the parameters of the stochas-
tic microstructure model, new virtual GDL can be produced and in combination
with computational transport simulations, microstructure and functionality re-
lationships of the GDL can be investigated. Thus, after the estimation of the
vector fields as discussed in Section 4.1, the compression models for flat stamps
and stamps with flow-field structure are applied to (uncompressed) virtual non-
woven GDL. For the generation of the (uncompressed) virtual non-woven GDL
a stochastic simulation model is used which has recently been developed in
[22]. In particular, it has been shown in [22] that transport-relevant charac-
teristics are captured by the microstructure model quite well. Thus, simulated
3D microstructures drawn from the model proposed in [22] can be seen as re-
alistic representations of experimental uncompressed GDL. The combination of
this stochastic simulation model with the compression model proposed in the
present paper can be interpreted as a stochastic 4D model which describes con-
tinuously compressed 3D microstructures of non-woven GDL in PEMFC for
arbitrary compression rates c ∈ [0, cmax).

By comparing the same structural characteristics as considered in Section 4
we validate the 4D model, i.e., we check if the stochastic 4D compression model
describes experimentally compressed microstructures of non-woven GDL ade-
quately. As shown in Figure 15, a very good accordance between these charac-
teristics is found. Additionally, there is a nice visual accordance of experimental
3D image data of compressed non-woven GDL and the virtually compressed non-
woven GDL sampled from the stochastic simulation model proposed in [22] in
combination with the compression model introduced in the present paper, see
Figure 16.

6. Conclusions

We have introduced a novel parametrized model that describes the 3D mi-
crostructure of compressed fiber-based materials. Given the input of a 3D mi-
crostructure of some fiber-system, the model compresses the system of fibers in
an uniaxial direction for arbitrary compression rates. The compression model
was applied to non-woven GDL in PEMFC and subsequently validated by com-
paring structural characteristics computed for experimentally compressed and
virtually compressed microstructures, where two kinds of compression - using a
flat stamp and a stamp with flow-field profile - were considered. For both types
of stamps, an excellent agreement between experimental compression and virtual
compression was found. In addition, the compression model was combined with
a stochastic model for uncompressed non-woven GDL. This allows to generate
virtual GDL in arbitrarily large volumes with arbitrarily many replications and
with low computational efforts. Thus, by systematically varying the parameters
of these combined models, new virtual GDL can be generated and in combina-
tion with computational transport simulations, the microstructure-functionality
relationship of the GDL can be investigated. Currently, the compression model
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is used for virtual scenario analyzes with the general aim to quantify the effect
of compression using a stamp with a flow-field structure compared to compres-
sion by a flat stamp. The results of this ongoing research will be reported in
a forthcoming paper. But note that the presented compression model is very
flexible and can thus be applied to various problems not only in the field of GDL
in PEMFC.

Acknowledgement

We gratefully acknowledge funding of the present research by the German
Federal Ministry for Education and Science (BMBF) in the framework of the
priority program ‘Mathematics for Innovations in Industry and Services’ under
grant numbers 03MS607A, 03MS607B and 03MS607C.

[1] Hartnig, C., and Roth, C. (eds.) (2012). Polymer Electrolyte Membrane
and Direct Methanol Fuel Cell Technology, Volume 1: Fundamentals and
Performance of Low Temperature Fuel Cells. Cambridge: Woodhead Pub-
lishing.

[2] Hoogers, G. (eds.) (2012). Fuel Cell Technology Handbook. Boca Raton:
CRC Press LLC.

[3] Hartnig, C., Jörissen, L., Kerres, J., Lehnert, W. and Scholta, J. (2008).
Polymer electrolyte membrane fuel cells (PEMFC). In: M. Gasik (ed.),
Materials for Fuel Cells. Cambridge: Woodhead Publishing, 101-184.

[4] Jia, K. and Li, X. (2011). Water transport in polymer electrolyte membrane
fuel cells. Progress in Energy and Combustion Science, 37, 221-291.

[5] Mathias, M.F., Roth, J., Fleming, J. and Lehnert, W. (2003). Diffusion
Media materials and characterisation. In: W. Vielstich, A. Lamm and
H. Gasteiger (eds.), Handbook of Fuel Cells. London: J. Wiley & Sons,
517-537.

[6] Wang, C.-Y. (2004). Fundamental Models for Fuel Cell Engineering. Chem-
ical Reviews, 104, 4727-4766.

[7] Zamel, N. and Li, X. (2013). Effective transport properties for polymer
electrolyte membrane fuel cells – With a focus on the gas diffusion layer.
Progress in Energy and Combustion Science, 39, 111-146.

[8] Vielstich, W. and Lamm, A. (eds.) (2003). Handbook of Fuel Cells -
Fundamentals, Technology and Applications. Chichester: J. Wiley & Sons.

[9] Litster, S., Sinton, D., and Djilali, N. (2006). Ex situ visualization of liquid
water transport in PEM fuel cell gas diffusion layers. Journal of Power
Sources, 154, 95-105.

18



[10] Sinha, P.K., Halleck, P., and Wang, C.-Y. (2006). Quantification of liquid
water saturation in a PEM fuel cell diffusion medium using X-ray microto-
mography. Electrochemical and Solid-State Letters, 9, A344-A348.
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[23] Tötzke, C., Gaiselmann, G., Osenberg, M., Bohner, J., Arlt, T., Markötter,
H., Hilger, A., Wieder, F., Kupsch. A., Müller, B.R., Hentschel, M.P.,
Banhart, J., Schmidt, V., Lehnert, W., and Manke, I. (2013). Three-
dimensional study of compressed gas diffusion layers using synchrotron X-
ray imaging. Journal of Power Sources, (to appear).

[24] Görner, W., Hentschel, M.P., Müller, B.R., Riesemeier, H., Krumrey, M.,
Ulm, G., Diete, W., Klein, U. and Frahm, R. (2001). Accelerators, Spec-
trometers, Detectors and Associated Equipment. Nuclear Instruments and
Methods in Physics Research Section A, 467-468 (Part 1), 703-706.

[25] Banhart, J., Borbely, A., Dzieciol, K., Garcia-Moreno, F., Manke, I., Kard-
jilov, N., Kaysser-Pyzalla, A.R., Strobl, M., and Treimer, W. (2010). X-ray
and neutron imaging - Complementary techniques for materials science and
engineering. International Journal of Materials Research, 101, 1069-1079.

[26] Kinney, J.H., and Nichols, M.C. (1992). X-ray tomographic microscopy
(XTM) using synchrotron radiation. Annual Review of Materials Science,
22, 121-152.

[27] Williams, S.H., Hilger, A., Kardjilov, N., Manke, I., Strobl, M., Douissard,
P.A., Martin, T., Riesemeier, H., and Banhart, J. (2012). Detection system
for microimaging with neutrons. Journal of Instrumentation, 7, P02014.

[28] Altendorf, H. and Jeulin, D. (2011). Random walk based stochastic mod-
elling of 3D fibre systems. Physical Review E, 83, 041804.

[29] Bates, D.M. and Watts, D.G. (1988). Nonlinear Regression Analysis and
Its Applications. New York: J. Wiley & Sons.

[30] Matlab Works (2013) - http://www.mathworks.com/

[31] Laarhoven, P. J. M. and Aarts, E.H.L.. (1987). 3D Simulated Annealing:
Theory and Applications. Dortrecht: Kluwer Academic Publisher.

20



Table 1: Estimated coefficients of pi(c) = ai(exp(bic)− exp(dic)) for i ∈ {2, . . . , 6}

i = 2 i = 3 i = 4 i = 5 i = 6

ai -0.235 0.041 0.784 -1.282·10−5 -0.305
bi -1.911 0.347 -7.583 -1.150 -1.666
di -16.14 0.316 -7.627 -20.15 -1.666

Table 2: Coefficient of determination R2 computed for the fitted vector fields of the compres-
sion model applied to experimental non-woven GDL data for different rates of compression c
and stamp geometries

c = 10 c = 20 c = 30

flat stamp 0.93 0.97 0.96
flow-field stamp 0.95 0.96 0.97
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Figure 1: 3D image of non-woven GDL (yellow fibers) with flat stamp (left) and with stamp
of flow-field structure (right)

Figure 2: Scheme of the principal experimental set up at the tomographic instrument.
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Figure 3: 3D image data gained by synchrotron tomography of non-woven GDL compressed
by a flat stamp with compression rates c = 0 % (top left), c = 10 % (top right), c = 20 %
(bottom left) and c = 30 % (bottom right).

Figure 4: 3D image data gained by synchrotron tomography of non-woven GDL compressed
by a flow-field stamp with compression rates c = 0 % (top left), c = 10 % (top right), c = 20
% (bottom left) and c = 30 % (bottom right). The red (yellow) marked fibers are located
underneath the channel (the rips of the flow-field stamp).
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Figure 5: 3D image of uncompressed GDL (left) and its extracted system of single fibers
(right).

Figure 6: Cross-section view on non-woven GDL in uncompressed state (left) and in com-
pressed state with c = 20%.

Figure 7: Schematic 2D visualization of a fiber system (left) being represented by overlapping
spheres (center) and subsequently translated to a system without overlaps between different
fibers (right).
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Figure 8: Fitting the vector field of the compression model for fixed c.

Figure 9: Left column: Realizations of two uncompressed microstructures drawn from the
stochastic 3D simulation model; right column: Compression model applied to the uncom-

pressed microstructures (left) for the vector fields V
(1)
c (top) and V

(2)
c (bottom)
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Figure 10: The fitted vector fields V̂
(1)
c (left) and V̂

(2)
c (right) displayed by the surface, where

the blue points are estimates of the vector field V
(i)
c at discrete points in the observation

window W0 obtained by the simulated annealing algorithm.

Figure 11: Blue points: Estimated transition vectors by the fitting technique introduced in
Section 3.2 and applied to the 10 % compressed GDL by a flow-field stamp. Surface: linear
interpolation between these points.
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Figure 12: Fitted functions pi(c) for the compression by a flat stamp (left) and a flow-field
stamp (right), where p2, . . . , p6 are appropriate scaled in order to check the goodness of fit.

Figure 13: First row: Experimental 3D image data of non-woven GDL compressed by flat
stamp (left) and by a flow-field stamp (right) with compression rate c = 30 %; second row:
Extracted fiber system virtually compressed by a flat stamp (left) and by a flow-field stamp
(right) using the compression model with compression rate c = 30 %.
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Figure 14: The blue boxes display the decomposition in two quite homogeneous sub-regions,
i.e., a channel and a land region.

Figure 15: Validation of compression model by comparing the porosities (top) and the mean
spherical contact distances (bottom) computed for the experimentally compressed image data
(black lines), for data generated by virtually compressing the extracted fiber systems (red
lines) and for data gained by compressing virtual non-woven GDL by the compression model
(blue lines), where we distinguish between compression by a flat stamp (left) and a flow-field
stamp (right).

28



Figure 16: First row: experimental (left) and synthetic (right) uncompressed non-woven GDL
data; Second row: Non-woven GDL data compressed by a flat stamp (with compression
rate c = 30 %) experimentally (left) and using the compression model (right); Third row:
Non-woven GDL data compressed by a flow-field stamp (with compression rate c = 30 %)
experimentally (left) and applying the compression model on a virtual fiber system sampled
from the stochastic non-woven GDL model (right).
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