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Abstract Stationary point processes in R2 with two different types of points,
say H and L, are considered where the points are located on the edge set G of
a random geometric graph, which is assumed to be stationary and connected.
Examples include the classical Poisson–Voronoi tessellation with bounded and
convex cells, aggregate Voronoi tessellations induced by two (or more) inde-
pendent Poisson processes whose cells can be non–convex, and so–called β-
skeletons being subgraphs of Poisson–Delaunay triangulations. The length of
the shortest path along G from a point of type H to its closest neighbor of type
L is investigated. Two different meanings of ’closeness’ are considered: either
with respect to the Euclidean distance (e-closeness), or in a graph–theoretic
sense, i.e., along the edges of G (g-closeness). For both scenarios, compara-
bility and monotonicity properties of the corresponding typical shortest–path
lengths Ce∗ and Cg∗ are analyzed. Furthermore, extending the results which
have recently been derived for Ce∗, we show that the distribution of Cg∗

converges to simple parametric limit distributions if the edge set G becomes
unboundedly sparse or dense, i.e., a scaling factor κ converges to zero and
infinity, respectively.
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1 Introduction

In this paper we extend results on distributional properties of typical shortest–
path lengths in spatial stochastic network models which have recently been
derived in [8,17,18]. More precisely, we consider stochastic models for networks
with two hierarchy levels, i.e., there are network components of two different
kinds: high–level components (HLC) and low–level components (LLC). The
locations of both HLC and LLC are represented by points on the edge set G
of a random geometric graph ([13]) in R2 which is assumed to be stationary
and connected. It is clear that this is fulfilled for the edge set of stationary
tessellations with convex cells (see e.g. [14,15]). But, for instance, also for
so–called aggregate tessellations ([2,16]) and β-skeletons ([1,10]) induced by
homogeneous Poisson processes.

Each LLC is assumed to be connected to its closest HLC, where two differ-
ent meanings of ’closeness’ are considered: either with respect to the Euclidean
distance (e-closeness), or in a graph–theoretic sense, i.e., along the edges of the
graph (g-closeness). In applications, e.g. to telecommunication networks, the
edges of the random geometric graph can represent the underlying infrastruc-
ture, for instance, an inner–city street system. In this case, one is especially
interested in the distribution of shortest–path lengths along the edge set be-
tween the LLC and their closest HLC, which is an important performance
characteristic in cost and risk analysis as well as in strategic planning of wired
telecommunication.

Fig. 1 Edge set of a Voronoi tessellation with locations of HLC and serving zones (dashed)
for e-closeness (left) and g-closeness (right)

In [8,17,18], we associated with each HLC a certain subset of R2 which
is called its serving zone. Each LLC was linked to the HLC in whose serving
zone the LLC is located. In particular, we assumed that the serving zones
were constructed as the cells of the Voronoi tessellation with respect to the
locations of HLC. This is equivalent to link each LLC to its e-closest HLC.
In the present paper, we additionally study a modified connection rule where
we replace the Voronoi cells, considered so far for e-closeness, by Voronoi cells
constructed with respect to the graph metric (g-closeness), see Figure 1. That
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is, each LLC is connected to its g-closest HLC, i.e., the HLC to which the
distance measured along the edges of the graph is smallest.

We assume that the locations of HLC and LLC are given by two stationary
Coxian point processes XH and XL in R2 (see e.g. [5,9,15]) whose random
intensity measures are concentrated on G. In particular, we assume that (i) XH

and XL are conditionally independent given G and (ii) their random intensity
measures are proportional to the one–dimensional Hausdorff measure on G,
with some (linear) intensities λ`, λ

′
` > 0 for XH and XL, respectively.

In this case, one is especially interested in the distributions of the typical
shortest–path lengths Ce∗ and Cg∗ along the edge set between the points of XL

and their e-closest resp. g-closest neighbors in XH . Note that even for simple
examples of stationary and fully connected edge sets G in R2, the distributions
of Ce∗ and Cg∗ are not known analytically. However, asymptotic results can be
derived if the edge set G becomes unboundedly sparse or dense. In particular,
under some additional conditions, it can be shown that the distributions of Ce∗

and Cg∗ converge to exponential and Weibull distributions, respectively, which
do not depend on the selected closeness scenario. Furthermore, it can be shown
that the distribution of Cg∗ does not depend on λ′` and, for g-closeness, that
it decreases stochastically in λ`, i.e., the values of the distribution function of
Cg∗ increase pointwise if λ` increases. Although increasing the linear intensity
λ` of XH certainly decreases the size of the typical serving zone for both e-
closeness and g-closeness, it seems to be an open problem whether in the case of
e-closeness the distribution of Ce∗ decreases stochastically in λ`. However, our
numerical experiments clearly indicate that this should be true, see Section 6.
On the other hand, it can be shown that Cg∗ under g-closeness is stochastically
smaller than Ce∗ under e-closeness.

The paper is organized as follows. In Section 2 we describe the hierar-
chical network model investigated in the present paper. Examples of random
geometric graphs, which are stationary and connected, are discussed in Sec-
tion 3. Then, Section 4 deals with comparability and monotonicity properties
of the distributions of typical shortest–path lengths Ce∗ and Cg∗. Afterwards,
in Section 5, we investigate the asymptotic behavior of these distributions for
unboundedly sparse and dense networks, respectively. In Section 6, we present
some numerical results. Finally, Section 7 concludes the paper and gives an
outlook to future research.

2 Stochastic modelling of hierarchical networks

To begin with we give a short description of the hierarchical network model
investigated in the present paper. In particular, we briefly introduce some
fundamental classes of models from stochastic geometry which we are using in
order to construct the network model. The reader, who is interested in further
details, is referred to well–known monographs, see e.g. [5,9,15] for random
(marked) point processes and, in particular, Coxian point processes, [13] for
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random geometric graphs, [14,15] for random tessellations, and [11,14] for
general random closed sets.

2.1 Marked point processes

First we recall some basic notions regarding marked point processes in R2. Let
B2 denote the family of Borel sets of R2 and let M be a Polish space with
its Borel σ-algebra BM. Furthermore, for any n ≥ 1, let Xn : Ω → R2 and
Mn : Ω →M be random variables defined on some probability space (Ω,A,P)
such that #{n : Xn ∈ B} < ∞ with probability 1 for each bounded B ∈ B2.
Then, X = {(Xn,Mn), n ≥ 1} is said to be a marked point process with mark
space M.

Note that we can regard X as a random element of (NM,NM), where NM
is the family of all counting measures on B2⊗BM which are simple and locally
finite in the first component and NM is the usual σ-algebra on NM. We thus
can regard a (marked) point process X as a random counting measure, i.e.
X = {X(B × E), B ∈ B2, E ∈ BM}, where

X(B × E) = #{n : Xn ∈ B,Mn ∈ E} .

For x ∈ R2 we define the shift tx : NM → NM by txX = tx{(Xn,Mn)} =
{(Xn−x,Mn)}. Assume now that X = {(Xn,Mn)} is stationary with intensity

λ ∈ (0,∞), i.e., X
d
= txX holds for each x ∈ R2, where

d
= means equality of

distributions; λ = E#{n : Xn ∈ [0, 1)2}. Then the Palm mark distribution
PoX : BM → [0, 1] of X is given by

PoX(E) =
1

λ
E#{n : Xn ∈ [0, 1)2,Mn ∈ E} , E ∈ BM . (1)

A random variable M∗ distributed according to PoX is called the typical mark
of X.

In the following, two jointly stationary marked point processes X(1) =

{(X(1)
n ,M

(1)
n )} and X(2) = {(X(2)

n ,M
(2)
n )} with intensities λ1 and λ2 and

mark spaces M1 and M2, respectively, will be considered as a random element
Y = (X(1), X(2)) of the product space NM1,M2

= NM1
× NM2

. The Palm
distribution P∗

X(i) of Y with respect to the i-th component, i = 1, 2, is then
defined on NM1 ⊗NM2 ⊗ BMi by

P∗X(i)(A× E) =
1

λi
E#{n : X(i)

n ∈ [0, 1)2,M (i)
n ∈ E, tX(i)

n
Y ∈ A} , (2)

where A ∈ NM1 ⊗ NM2 and E ∈ BMi . Note that the Palm mark distribution
Po
X(i) of X(i) can be obtained from P∗

X(i) as a marginal distribution.
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2.2 Random geometric graphs

The edge set of a random geometric graph can be described by an F–valued
random variable G : Ω → F such that P(G ∈ S) = 1, where F denotes the
family of all closed subsets of R2 and S ⊂ F is the family of all locally finite
unions of bounded closed segments. The random edge set G is called stationary

if P(G 6= ∅) = 1 and G
d
= G + x holds for each x ∈ R2. If G is stationary,

then we define the intensity γ of G as the expected total edge length per unit
area, i.e., γ = Eν1(G ∩ [0, 1]2), where ν1 denotes the 1-dimensional Hausdorff
measure. Furthermore, G is said to be connected if

(i) for any pair e, e′ ∈ G of random segments with e 6= e′, the set e ∩ e′ is
either empty or consists of a common endpoint of e and e′,

(ii) for any pair e, e′ ∈ G of random segments, there exists a (random) integer
n ≥ 1 and a sequence e1, . . . , en ∈ G of random segments such that

e ∩ e1 6= ∅, e1 ∩ e2 6= ∅, . . . , en−1 ∩ en 6= ∅, en ∩ e′ 6= ∅ .

If, in addition to conditions (i) and (ii), it holds that

(iii) G′ =
⋃∞
n=1 ∂Ξn for some random subsetG′ ⊂ G of edges, where Ξ1, Ξ2, . . . :

Ω → F are bounded (but not necessarily convex) random polygons such
that

⋃∞
n=1Ξn = R2, intΞi 6= ∅ and intΞi ∩ intΞj = ∅ for any i, j ≥ 1 with

i 6= j, and #{n : Ξn ∩B 6= ∅} <∞ for each bounded B ∈ B2, where intΞ
denotes the inner part of the set Ξ,

then G is said to be fully connected.
LetG′ ⊂ G be the maximum subset ofG which satisfies the conditions men-

tioned in (iii). Then, G′ can be seen as a random tessellation of the Euclidean
plane with bounded but not necessarily convex cells, whereas the random set
G \ intG′ can be interpreted as a family of ’dead ends’, see Figure 2.

Fig. 2 Tessellation with bounded but not necessarily convex cells and dead ends
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In the following we always assume that the random edge set G is stationary
with Eν1(G ∩ [0, 1]2) = 1. Furthermore, for each γ > 0 we consider the scaled
edge set Gγ with intensity γ defined by Gγ = G/γ, i.e., we scale the edge set
G such that Eν1(Gγ ∩ [0, 1]2) = γ.

2.3 Serving zones and shortest path lengths

For any γ > 0, we consider stationary Cox point processes XH = {XH,n}
and XL = {XL,n} whose random intensity measures are concentrated on the
scaled edge set Gγ = G/γ, where we assume that G satisfies the connectivity
conditions (i) and (ii) introduced in Section 2.2. The Cox processes XHand
XL are used in order to model the locations of HLC and LLC. In particular,
we assume that (i) XH and XL are conditionally independent given Gγ and
(ii) their random intensity measures are proportional to the one–dimensional
Hausdorff measure ν1 on Gγ , i.e., EXH(B) = λ` Eν1(B ∩Gγ) and EXL(B) =
λ′` Eν1(B ∩ Gγ) for each Borel set B ∈ B2 and for some (linear) intensities
λ`, λ

′
` > 0. Thus, the Cox processes XH and XL can be constructed by placing

homogeneous Poisson processes on the edges of Gγ with linear intensity λ`
and λ′`, respectively. Note that the planar intensities λ and λ′ of XH and XL

are given by λ = λ`γ and λ′ = λ′`γ.
Each LLC is assumed to be connected to its closest HLC, where two dif-

ferent notions of closeness are considered: either with respect to the Euclidean
distance (e-closeness), or in a graph–theoretic sense, i.e., along the edges of
the graph (g-closeness), see Figure 1.

In the first case, we consider the Voronoi tessellation TH = {ΞH,n} induced
by the points XH,n of the Cox process XH = {XH,n}, i.e.

ΞH,n = {x ∈ R2 : |x−XH,n| ≤ |x−XH,m| for all m 6= n} ,

where | · | denotes the Euclidean norm. The Voronoi cell ΞH,n is considered
to be the serving zone of the HLC located at XH,n. Furthermore let us denote
by SeH,n = (Gγ ∩ ΞH,n)−XH,n the segment system of the serving zone ΞH,n
corresponding to XH,n, centered at the origin o.

We can then construct the stationary marked point process XL,Ce =
{(XL,n, C

e
n)}, where the mark Cen is the length of the shortest path from XL,n

to XH,j along the edge set Gγ provided that XL,n ∈ ΞH,j . Thus, each LLC is
connected to that HLC which is closest to it in the Euclidean sense.

In the second case, the segment system centered at o of the serving zone
of XH,n, denoted by SgH,n, corresponds to the Voronoi cell SgH,n in the graph
metric, i.e.,

SgH,n = {x ∈ Gγ : c(x,XH,n) ≤ c(x,XH,m) for all m ≥ 1} −XH,n ,

where c(x,XH,n) denotes the length of the shortest path from x ∈ Gγ to XH,n

along the edge set Gγ . Similar as above, we regard the stationary marked point
process XL,Cg = {(XL,n, C

g
n)}, where the mark Cgn = minm≥1(c(XL,n, XH,m))
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is the minimal length of shortest paths from XL,n to the points of XH along
the edges of Gγ . Thus, each LLC is connected to that HLC which is closest to
it in a graph–theoretic sense.

3 Examples

3.1 Stationary tessellations with convex cells

As an example of a random geometric graph, whose edge set G is fully con-
nected, we consider the edge set of a random tessellation T = {Ξn, n ≥ 1} of
R2 with convex cells, i.e. G = G′ =

⋃∞
n=1 ∂Ξn, where Ξ1, Ξ2, . . . : Ω → F are

bounded and convex random polygons such that
⋃∞
n=1Ξn = R2, intΞi 6= ∅

and intΞi∩ intΞj = ∅ for any i, j ≥ 1 with i 6= j, and #{n : Ξn∩B 6= ∅} <∞
for each bounded B ∈ B2.

Special emphasis will be put on three classes of stationary tessellations,
which are induced by homogeneous Poisson point processes: isotropic Poisson
line tessellations (PLT), Poisson–Voronoi tessellations (PVT), and Poisson–
Delaunay tessellations (PDT), see also [8,17,18]. Note that the edge set of a
PVT is shown in Figure 1.

3.2 Aggregate tessellations

Fig. 3 Construction principle (left) and realization (right) of an PVAT with bounded non-
convex cells

Stationary tessellations with bounded, but not necessarily convex cells
can be constructed e.g. in the following way, see [2,16]. For example, let

X(1) = {X(1)
n } and X(2) = {X(2)

n } be two independent homogeneous Pois-

son processes. Let T (1) = {Ξ(1)
n } and T (2) = {Ξ(2)

n } denote the PVT induced
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by X(1) and X(2), respectively. Then, the sequence of random closed sets
T = {Ξn} with

Ξn =
⋃

i:X
(2)
i ∈Ξ

(1)
n

Ξ
(2)
i (3)

is called an aggregate Poisson–Voronoi tessellation (PVAT) induced by X(1)

and X(2). It is not difficult to see that the random edge set G =
⋃∞
n=1 ∂Ξn

induced by the cells Ξn given in (3) is stationary and fully connected, see
Figure 3. Furthermore, an PVAT does not have dead ends, i.e., G = G′.

3.3 β-skeletons

Another interesting class of geometric graphs with connected edge set is formed
by β-skeletons, first introduced in [10]. Let β ∈ [1, 2] and let I ⊂ Rd be a locally
finite set. The β-skeleton G(β, I) is the edge set of a graph with vertex set I,
which is defined as follows. For x, y ∈ I let

m(1)
xy =

β

2
x+ (1− β

2
) y , m(2)

xy = (1− β

2
) x+

β

2
y ,

and

Aβ(x, y) = B(m(1)
xy , |m(1)

xy − y|) ∩ B(m(2)
xy , |m(2)

xy − x|) , (4)

where B(z, r) = {z′ ∈ R2 : |z − z′| < r} denotes the open ball with center at
z ∈ R2 and with radius r ≥ 0, see Figure 4. Then we put

G(β, I) =
⋃

x,y∈I: I∩Aβ(x,y)=∅

[x, y] . (5)

x

y

1

Fig. 4 Schematic representation of the intersection of balls Aβ(x, y) for β = 1 (dotted),
β = 1.5 (dashed) and β = 2 (solid)

Note that the edge set G(β, I) is monotonously decreasing in β, see Fig-
ure 5. Furthermore, it is not difficult to see that β-skeletons G(β, I) on a finite
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vertex set I always fulfill the connectivity conditions (i) and (ii) introduced in
Section 2.2. Property (i) immediately follows from the definition of β-skeletons
given in (4) and (5). Moreover, for any finite vertex set I the following rela-
tionship holds: For any β ∈ [1, 2], we have

MST(I) ⊆ RNG(I) = G(2, I) ⊆ G(β, I) , (6)

where MST(I) and RNG(I) denote the minimum spanning tree and relative
neighborhood graph of I, respectively (see e.g. [3]). Since MST (I) fulfills con-
dition (ii) by definition, (6) implies that this is true also for G(β, I). Note
however that for an arbitrary point process X ⊂ Rd proving a.s. connectivity
or the finiteness of cells of G(β,X) is a non-trivial problem.

Fig. 5 Examples of β-skeletons for β = 1 (left), β = 1.5 (center), and β = 2 (right)

4 Comparability and monotonicity

Let Gγ = G/γ be an arbitrary stationary random edge set in R2 with some
intensity γ > 0 which is connected, i.e. G satisfies the connectivity conditions
(i) and (ii) introduced in Section 2.2. We now define the typical shortest–path
lengths Ce∗ = Ce∗(γ, λ`, λ

′
`) and Cg∗ = Cg∗(γ, λ`, λ

′
`) and show that (i) Cg∗

is stochastically smaller than Ce∗ for all (γ, λ`, λ
′
`) ∈ [0,∞)3, and (ii) Cg∗ is

stochastically decreasing if λ` increases. We conjecture that the monotonicity
property (ii) is also true for Ce∗, as indicated by the numerical results displayed
in Figure 7.
What we are mainly interested in are the distributions of the typical marks Ce∗

and Cg∗ of the stationary marked point processes XL,Ce and XL,Cg introduced
in Section 2.3. Note that the realizations of XL,Ce can be constructed from the
corresponding realizations of XL and XH,Se , where XH,Se = {(XH,n, S

e
H,n)}.

Thus, instead of XL,Ce , we can consider the vector Y = (XL, XH,Se) and the
Palm distribution P∗XL with respect to XL, which has been introduced in (2).
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Let (X∗L, X̃H,Se) be distributed according to P∗XL , where we use the notation

X̃H,Se = {(X̃H,n, S̃
e
H,n)} and G̃γ =

⋃
n≥1

(
S̃eH,n + X̃H,n

)
. (7)

Let X̃e
H,o denote the closest point (in the Euclidean sense) of {X̃H,n} to the

origin o. Then, the typical shortest–path length Ce∗ = Ce∗(γ, λ`, λ
′
`) can be

given by
Ce∗ = c(X̃e

H,o) , (8)

where c(X̃e
H,o) denotes the length of the shortest path from o to X̃e

H,o along the

edges of G̃γ . These remarks are of general nature and remain true if we pass
from the Euclidean to the graph metric. In particular, the typical shortest–
path length Cg∗ = Cg∗(γ, λ`, λ

′
`) can be given by

Cg∗ = c(X̃g
H,o) , (9)

where c(X̃g
H,o) denotes the length of the shortest path from o to the g-closest

point X̃g
H,o of {X̃H,n} along the edges of G̃γ .

Consider the stationary (marked) Cox processes XH,Se = {(XH,n, S
e
H,n)}

and XH,Sg = {(XH,n, S
g
H,n)} introduced in Section 2.3. Their Palm mark

distributions can be used to get the following representation formulae for the
distributions of Ce∗ and Cg∗.

Lemma 4.1. Let h : R → [0,∞) be a Borel–measurable function which is
non–negative. Then,

Eh(Ce∗) = λ`E
∫
Se∗H

h(c(y))ν1(dy) (10)

and

Eh(Cg∗) = λ`E
∫
Sg∗H

h(c(y))ν1(dy) , (11)

where Se∗H and Sg∗H denote the typical marks of XH,Se and XH,Sg , respectively,
and c(y) is the shortest path length from y to o along the edges of Se∗H resp.
Sg∗H .

Proof. Having in mind that C∗e and S∗eH are the typical marks of the jointly
stationary marked point processes XL,C and XH,Se , formula (10) easily follows
from Neveu’s exchange formula, see [12]. Formula (11) is obtained in the same
way.

From (10) and (11), it can be seen that the distributions of Ce∗ and Cg∗

do not depend on λ′`. Furthermore, the following result is true.

Proposition 4.2. For any (γ, λ`, λ
′
`) ∈ [0,∞)3, it holds that Cg∗ ≤st C

e∗,
i.e.,

P(Cg∗ ≤ t) ≥ P(Ce∗ ≤ t) for all t > 0. (12)
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Proof. By the definitions of e-closeness and g-closeness, i.e., by the definitions
of the random variables X̃e

H,o and X̃g
H,o introduced in Section 2.3 we get that

c(X̃g
H,o) ≤ c(X̃e

H,o) with P∗XL -probability 1. Thus, (12) immediately follows
from (8) and (9).

In order to show that Cg∗ = Cg∗(γ, λ`, λ
′
`) stochastically decreases in λ`,

the following auxiliary result is useful.

Lemma 4.3. The point process X̃H = {X̃H,n} introduced in (7) is a (non-

stationary) Cox process on G̃γ with linear intensity λ`, i.e., for each B ∈ B2

it holds that EX̃H(B) = λ` Eν1(B ∩ G̃γ).

Proof. The assertion immediately follows from Slivnyak’s theorem for station-
ary Cox processes, see e.g. [15], p. 156.

Proposition 4.4. For any fixed (γ, λ′`) ∈ [0,∞)2, the typical shortest–path
length Cg∗ = Cg∗(γ, λ`, λ

′
`) stochastically decreases in λ`, i.e.,

Cg∗(γ, λ`,2, λ
′
`) ≤st C

g∗(γ, λ`,1, λ
′
`) if λ`,1 ≤ λ`,2. (13)

Proof. For any λ` > 0, we consider the point process X̃H = X̃H,λ` introduced
in (7), which is a Cox process with linear intensity λ` according to Lemma 4.3.

Given G̃γ , this means that X̃H,λ` is a homogeneous Poisson process on G̃γ
with intensity λ`. Consequently, due to the well–known invariance property of
Poisson processes with respect to convolution, we get that for any 0 < λ`,1 ≤
λ`,2:

X̃H,λ`,2
d
= X̃H,λ`,1 + X̃H,λ`,2−λ`,1 ,

where the Cox processes X̃H,λ`,1 and X̃H,λ`,2 are assumed to be conditionally

independent given G̃γ . For the length c(X̃g
H,o(λ`)) of the shortest path from o

to the g-closest point X̃g
H,0 = X̃g

H,0(λ`) of X̃H,λ` along the edges of G̃γ , this
implies that

c(X̃g
H,o(λ`,2)) ≤st c(X̃

g
H,o(λ`,1)) (14)

for any λ`,1, λ`,2 > 0 with λ`,1 ≤ λ`,2. Using (9), this completes the proof.

Unfortunately, the argument which leads to (14) seems not to work for e-
closeness. However, we conjecture that also Ce∗ = Ce∗(γ, λ`, λ

′
`) stochastically

decreases in λ`, as indicated by the numerical results stated in Section 6.

5 Limit theorems

The study of limit cases of unboundedly sparse or dense edge sets is an impor-
tant matter for modeling of realistic networks. The link between theoretical
work and applications are the parametric functions fitted to empirical distribu-
tions of typical path lengths (see Section 6.2). Those formulas are embedded
in specialized software and are expected to produce results for all possible
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densities of edges sets. The computation of empirical densities for shortest
paths can be done for a large range around moderate density values, but is
not possible for very high or low ones. If theoretical results for limit cases
exist, one can fill the gap in a way based on sound considerations. We inves-
tigate the asymptotic behavior of the distributions of Ce∗ and Cg∗ for two
different cases: κ = γ/λ` → 0 and κ→∞. First observe the simple scaling re-

lations Ce∗(γ, λ`)
d
= aCe∗(aγ, aλ`) and Cg∗(γ, λ`)

d
= aCg∗(aγ, aλ`). Therefore

it suffices to understand the limit behaviour as κ → 0 under the additional
assumption of fixed λ`. Similarly, in the case κ → ∞ we may assume that
γ → ∞ and λ` → 0 in a way that λ`γ remains fixed. For κ → 0, we show in
Theorem 5.1 that the distributions of Ce∗ and Cg∗ converge to an exponential
distribution, where no additional assumptions on the underlying random geo-
metric graph G are needed. Furthermore, for κ→∞, we show in Theorem 5.2
that the distributions of Ce∗ and Cg∗ converge to a Weibull distribution pro-
vided that G is isotropic and mixing satisfying G′ = G and Eν21(∂Ξ∗) < ∞,
where Ξ∗ denotes the typical cell of G.

We denote by Exp(δ) an exponential distribution with expectation δ−1.
Furthermore, Wei(a, b) denotes the Weibull distribution with scale parameter
a > 0 and shape parameter b > 0.

5.1 Asymptotic exponential distribution for κ→ 0

First we regard the case that κ = γ/λ` → 0 with λ` fixed, i.e., γ → 0.

Theorem 5.1. Let G be an arbitrary random geometric graph which is sta-
tionary and connected. Then, for any fixed λ` > 0, it holds that

Ce∗(γ, λ`)
d→ Z and Cg∗(γ, λ`)

d→ Z (15)

if γ → 0, where
d→ denotes convergence in distribution and Z ∼ Exp(2λ`).

Proof. We can use similar arguments as in [17], where the asymptotic behavior
of Ce∗ has been considered for the special case that G is the edge set of a
stationary tessellation with convex cells. Namely, it holds that limγ→0Rγ =∞
with P∗XL–probability 1, where Rγ = max{r > 0 : B(o, r)∩ S̃oγ = B(o, r)∩ G̃γ}
and S̃oγ denotes the segment of G̃γ containing the origin. This implies that

lim
γ→0

P(C∗g ≤ x | X̃g
H,o ∈ B(o,Rγ)) = lim

γ→0
P(C∗e ≤ x | X̃e

H,o ∈ B(o,Rγ)) .

Thus, in the same way as done in [17] for Ce∗ and G being the edge set of a
stationary tessellation with convex cells, it can be shown that Ce∗ and Cg∗

converge in distribution to the random distance from o to the nearest point
of a stationary Poisson process on R with intensity λ`, which is Exp(2λ`)-
distributed.



On the distribution of typical shortest–path lengths 13

5.2 Asymptotic Weibull distribution for κ→∞

In this section we additionally assume that the stationary edge setG is isotropic
and mixing. Furthermore, we assume that G is fully connected, does not pos-
sess dead ends, i.e. G′ = G, and

E ν21(∂Ξ∗) <∞ , (16)

where ν1(∂Ξ∗) denotes the circumference of the typical cell Ξ∗ of G. Then,
it is not difficult to see that the proof of Theorem 3.2 in [17] regarding the
asymptotic behavior of Ce∗(γ, λ`) as κ→∞ remains true in the present case
of a random tessellation G with not necessarily convex cells. Our goal is to
show that the result derived in Theorem 3.2 of [17] also holds if we pass from
Ce∗(γ, λ`) to Cg∗(γ, λ`).

Theorem 5.2. If γ →∞ and λ` → 0 with λ`γ = λ fixed, then there exists a
constant ξ ≥ 1 such that

Ce∗(γ, λ`)
d→ ξZ and Cg∗(γ, λ`)

d→ ξZ , (17)

where ξZ ∼Wei(λπ/ξ2, 2).

In order to show Theorem 5.2, let us recall the idea behind the proof of
Theorem 3.2 in [17]. By an argument based on Kingman’s subadditive ergodic

theorem one can show that there exists ξ ≥ 1 such that Ce∗ − ξ|X̃e
H,o|

P−→ 0,

where
P−→ denotes convergence in probability. Since |X̃e

H,o|
d−→ Wei(λπ, 2), an

application of Slutsky’s lemma (see [6, Chapter 2, Exc. 2.10]) yields Ce∗
d−→

Wei(λπ/ξ2, 2). Moreover, this strategy proves to be flexible enough to handle
the current situation with respect to Cg∗ as well.

To show that Cg∗
d−→Wei(λπ/ξ2, 2) holds, we begin by proving an analogue

of Lemma 4.4 in [17].

Lemma 5.3. Let γ → ∞ and λ` → 0 such that λ`γ = λ is fixed. Then there

is a constant ξ ≥ 1 such that Cg∗(γ, λ`)− ξ|X̃g
H,o|

P→ 0.

Proof. Let ε, δ > 0 be arbitrary. We want to prove that there exists a ξ ≥ 1
(which in fact coincides with the ξ in Lemma 4.4 of [17]) such that for all γ

sufficiently large we have P
(∣∣Cg∗ − ξ|X̃g

H,o|
∣∣ > ε

)
≤ δ. Using

P
(∣∣Cg∗ − ξ|X̃g

H,o|
∣∣ > ε

)
= P

(∣∣Cg∗ − ξ|X̃g
H,o|

∣∣ > ε, |X̃g
H,o| ≤ r

)
+ P

(∣∣Cg∗ − ξ|X̃g
H,o|

∣∣ > ε, |X̃g
H,o| > r

)
,

it suffices to show that there exists r > 0 such that for all sufficiently large γ
we have

P
(∣∣Cg∗ − ξ|X̃g

H,o|
∣∣ > ε, |X̃g

H,o| ≤ r
)
< δ/2 and P

(
|X̃g

H,o| > r
)
< δ/2 .
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Using the elementary inequalities |X̃g
H,o| ≤ c(X̃

g
H,o) ≤ c(X̃e

H,o) and Lemma 4.2

of [17], i.e. |X̃e
H,o|

d−→Wei(λπ, 2), we can choose r > 0 such that

P
(
|X̃g

H,o| > r
)
≤ P

(
c(X̃e

H,o) > r
)

≤ P
(
ξ|X̃e

H,o| > r/2
)

+ P
(∣∣ξ|X̃e

H,o| − c(X̃e
H,o)

∣∣ > r/2
)

≤ δ

4
+
δ

4

for all γ > 0 sufficiently large. To prove the remaining estimate, we denote by
Ñ = X̃H(B(o, r)) be the number of points of X̃H in the ball B(o, r). Using
this notation, we may write

P
(∣∣Cg∗ − ξ|X̃g

H,o|
∣∣ > ε, |X̃g

H,o| ≤ r
)

≤ E
( ∞∑
k=1

P(Ñ = k | G̃γ) · E ( max
i=1,...,k

∣∣c(Yi)− ξ|Yi|∣∣ > ε | G̃γ , Ñ = k)
)
,

where the random vectors Y1, . . . , Yk are conditionally independent and uni-
formly distributed on G̃γ ∩ B(o, r) given G̃γ and Ñ . Then, in the next steps,
copying the corresponding part of the proof of Lemma 4.4 in [17] verbatim
yields the assertion.

As a second ingredient in the proof of Cg∗
d−→Wei(λπ/ξ2, 2), we still need

another auxiliary result.

Lemma 5.4. Let γ →∞ and λ` → 0 such that λ`γ = λ is fixed. Then,

|X̃g
H,o| − |X̃

e
H,o|

P−→ 0 (18)

and consequently,

|X̃g
H,o|

d−→Wei(λπ, 2) . (19)

Proof. Observe that |X̃g
H,o| − |X̃e

H,o| ≥ 0 holds by definition. Furthermore, for
any ξ > 0 we have

P
(
ξ|X̃g

H,o| − ξ|X̃
e
H,o| > ε

)
= P

(
(ξ|X̃g

H,o| − c(X̃
g
H,o)) + (c(X̃g

H,o)− c(X̃
e
H,o)) + (c(X̃e

H,o)− ξ|X̃e
H,o|) > ε

)
≤ P

(∣∣ξ|X̃g
H,o| − c(X̃

g
H,o)

∣∣ > ε/2
)

+ P
(∣∣c(X̃e

H,o)− ξ|X̃e
H,o|

∣∣ > ε/2
)
,

where in the last inequality we used that c(X̃g
H,o) − c(X̃e

H,o) ≤ 0. But, by
Lemma 4.4 of [17] and by Lemma 5.3, we know that both summands of the
latter bound converge to 0 as γ →∞. This proves (18) and, applying Slutsky’s

lemma, (19) follows by taking into account that |X̃e
H,o|

d−→Wei(λπ, 2).

Note that the convergence Cg∗(γ, λ`)
d→ ξZ stated in Theorem 5.2 is now

an immediate consequence of Lemmas 5.3 and 5.4, because

c(X̃g
H,o) = ξ|X̃g

H,o|+
(
c(X̃g

H,o)− ξ|X̃
g
H,o|

) d−→ ξZ ∼Wei(λπ/ξ2, 2) .
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5.3 Checking the conditions of Theorem 5.2

We now discuss some examples of G for which the conditions of Theorem 5.2
are satisfied. If G is the edge set of a PLT, PVT, and PDT, respectively,
then G is isotropic by definition and it is well known that G is mixing, see
Chapter 10.5 in [14]. Furthermore, it is not difficult to show in all these cases
that the integrability condition (16) is fulfilled, see [17].

Moreover, it turns out that the conditions of Theorem 5.2 are fulfilled if G
is the edge set of an PVAT introduced in Section 3.2. Then, by definition, G is
stationary and isotropic. In order to show that G is mixing, we can apply an
extended version of the arguments which have been used in Theorem 10.5.1 of
[14] for (non–aggregated) PVT.

Lemma 5.5. Let T (1) = {Ξ(1)
n } and T (2) = {Ξ(2)

n } be independent Poisson–
Voronoi tessellations. Then the edge set G =

⋃
n≥1 ∂Ξn of the PVAT T =

{Ξn} introduced in (3) is mixing.

Proof. To begin with, we recall the basic ideas of the proof of Theorem 10.5.1 in
[14], which have been developed there to show that any (non–aggregate) PVT
T = {Ξn} is mixing, where Ξn = {x ∈ R2 : |Xn− x| ≤ |Xi− x| for any i 6= n}
and X = {Xn} is a homogeneous Poisson process. That is, for any fixed ε > 0
and bounded B1, B2 ∈ B2 it holds that∣∣P(G∩B1 = ∅, G∩ (B2 + x) = ∅

)
− P(G∩B1 = ∅)P (G∩ (B2 + x) = ∅)

∣∣ < 6ε
(20)

for all x ∈ R2 such that |x| is sufficiently large, where G =
⋃
n≥1 ∂Ξn denotes

the edge set of T . In order to prove (20) the following truncation technique
has been used in [14]. For r > 0 and x ∈ R2, let Gx denote the edge set of the
Voronoi tessellation induced by the point process X ∩B(x, 15r). If |x| > 30r,
then the random sets Go and Gx are independent. This implies that

P(Go ∩B1 = ∅, Gx ∩ (B2 + x) = ∅) = P(Go ∩B1 = ∅)P(Gx ∩ (B2 + x) = ∅).

The next step in the proof of Theorem 10.5.1 given in [14], which yields (20),
is to show that one can choose r > 0 such that∣∣P(Go ∩B1 = ∅, Gx ∩ (B2 + x) = ∅)− P(G ∩B1 = ∅, G ∩ (B2 + x) = ∅)

∣∣ < 2ε∣∣P(Go ∩B1 = ∅)− P(G ∩B1 = ∅)
∣∣ < 2ε (21)∣∣P(Gx ∩ (B2 + x) = ∅)− P(G ∩ (B2 + x) = ∅)

∣∣ < 2ε

holds for all x ∈ R2 with |x| sufficiently large. To achieve this goal, one first
introduces the following family of events (parametrized by y ∈ R2 and r > 0)

Eyr = {ω ∈ Ω : Ξn(ω) ∩B(y, r) 6= ∅, Ξn(ω) 6⊂ B(y, 5r) for some n ≥ 1} .

It is not difficult to see that for r > 0 sufficiently large, we have P(Eyr ) =
P(Eor ) < ε for all y ∈ R2. This yields P(F x1,x2) ≥ 1 − 2ε for any x1, x2 ∈ R2,
where F x1,x2

r = (Ex1
r ∪ Ex2

r )c. The benefit of introducing the events Eyr and
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F x1,x2
r is as follows. First choose r > 0 large enough such that B1, B2 ⊂ B(o, r).

Now suppose that ω ∈ F x1,x2
r and Ξn(ω) ∩ (Bi + xi) 6= ∅ for some n ≥ 1 and

i ∈ {1, 2}. Then Ξn(ω) ⊂ B(xi, 5r). Using elementary geometry, it is easy to
see that this implies that the Voronoi cell Ξn(ω) is completely determined by
X ∩B(xi, 15r). Thus, G∩ (Bi+xi) = ∅ holds if and only if Gxi ∩ (Bi+xi) = ∅
implying the inequalities in (21). The basic ideas of this approach may also
be used in the case of PVAT. Denote by X(1) and X(2) independent Poisson

processes inducing the PVT T (1) = {Ξ(1)
n } and T (2) = {Ξ(2)

n }, respectively.
For y ∈ R2 and r > 0, let

Eyr = {ω ∈ Ω : Ξ(2)
n (ω) ∩B(y, r) 6= ∅, Ξ(2)

n (ω) 6⊂ B(y, 5r) for some n ≥ 1}
∪ {ω ∈ Ω : Ξ(1)

n (ω) ∩B(y, 5r) 6= ∅, Ξ(1)
n (ω) 6⊂ B(y, 25r) for some n ≥ 1}

∪ {ω ∈ Ω : Ξ(2)
n (ω) ∩B(y, 25r) 6= ∅, Ξ(2)

n (ω) 6⊂ B(y, 125r) for some n ≥ 1} .

Then, like in the case of a (non–aggregate) PVT mentioned above, it is easy to
see that for r > 0 sufficiently large, we have P(Eyr ) = P(Eor ) < ε for all y ∈ R2

and P(F x1,x2) ≥ 1 − 2ε for any x1, x2 ∈ R2, where F x1,x2
r = (Ex1

r ∪ Ex2
r )c.

Furthermore, if ω ∈ F x1,x2
r , then Ξn(ω) ∩ (Bi + xi) 6= ∅ for some n ≥ 1

and i ∈ {1, 2} implies that Ξn(ω) ⊂ B(xi, 125r), where T = {Ξn} is the
PVAT induced by X(1) and X(2). Thus, in this case, the cell Ξn is completely
determined by X(1) ∩B(xi, 375r) and X(2) ∩B(xi, 375r) and the proof can be
finished in the same way as indicated above for (non–aggregate) PVT.

Finally, we show that the integrability condition (16) is fulfilled if G is the
edge set of an PVAT.

Lemma 5.6. Let T (1) = {Ξ(1)
n } and T (2) = {Ξ(2)

n } be Voronoi tessellations

induced by the stationary and independent point processes X(1) = {X(1)
n } and

X(2) = {X(2)
n } with intensities λ(1) and λ(2). Assume that E(ν42(Ξ(1),∗)) <∞

and E(ν41(∂Ξ(2),∗)) <∞ holds, where Ξ(1),∗ and Ξ(2),∗ denotes the typical cell

of T (1) and T (2), respectively. If X(2) = {X(2)
n } is a homogeneous Poisson pro-

cess, then E(ν21(∂Ξ∗)) <∞ holds, where Ξ∗ is the typical cell of the aggregate
tessellation T = {Ξn} induced by X(1) and X(2).

Proof. Consider the marked point processes Y (1) = {(X(1)
n , Ξ

(1)
n −X(1)

n )} and

Y (2) = {(X(2)
n , Ξ

(2)
n − X(2)

n )}. Let Po1 denote the Palm mark distribution of
Y (1), see (1), and let C2 be the Campbell measure of Y (2), i.e.,

C2(B × E ×A) = E
(
#{n : X(2)

n ∈ B, Ξ(2)
n −X(2)

n ∈ E} 1IA(X(2))
)
,

where B ∈ B2, E ∈ BF , and A ∈ N . Then, using (1) and (3), we get that

E(ν21(∂Ξ∗) ≤ 1

λ(1)
E
( ∑
n:X

(1)
n ∈[0,1]2

( ∑
i:X

(2)
i ∈Ξ

(1)
n

ν1(∂Ξ
(2)
i )
)2)

≤ 1

λ(1)
E
( ∑
n:X

(1)
n ∈[0,1]2

X(2)(Ξ(1)
n )

∑
i:X

(2)
i ∈Ξ

(1)
n

ν21(∂Ξ
(2)
i )
)
.
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Thus, using Campbell’s theorem for stationary marked point processes (see
e.g. [5,15]), this gives

E(ν21(∂Ξ∗) ≤
∫
[0,1]2

∫
F

∫
R2×F×N

1m1+x(y)ϕ(m1 + x)ν21(∂m2)C2(dy, dm2, dϕ)

Po1(dm1) dx

≤
∫
[0,1]2

∫
F

(∫
R2×F×N

1m1+x(y)ϕ2(m1 + x)C2(dy, dm2, dϕ)
)1/2

×
(∫

R2×F×N
1m1+x(y)ν41(∂m2)C2(dy, dm2, dϕ)

)1/2
Po1(dm1) dx .

Furthermore, by the definition of the typical cell Ξ(2),∗, we have∫
R2×F×N

1m1+x(y)ν41(∂m2)C2(dy, dm2, dϕ) = λ(2)ν2(m1)Eν41(∂Ξ(2),∗) ,

and applying Slivnyak’s theorem (see [5,15]) to the homogeneous Poisson pro-
cess X(2) gives that∫

R2×F×N
1m1+x(y)ϕ2(m1 + x)C2(dy, dm2, dϕ)

=
(
λ(2)

)2
ν32(m1) + 3λ(2)ν22(m1) + ν2(m1) .

Thus, we get that

E(ν21(∂Ξ∗) ≤
(
λ(2) Eν41(∂Ξ(2),∗)

)1/2 ∫
F

((
λ(2)

)2
ν42(m1) + 3λ(2)ν23(m1)

+ ν22(m1)
)1/2

Po1(dm1)

≤
(
λ(2) Eν41(∂Ξ(2),∗)

)1/2(
E(ν22(Ξ(1),∗)) + 3λ(2)E(ν32(Ξ(1),∗))

+ (λ(2))2E(ν42(Ξ(1),∗))
)1/2

,

where the latter bound is finite, because we assumed that E(ν42(Ξ(1),∗)) <∞
and E(ν41(∂Ξ(2),∗)) <∞.

Corollary 5.7. If both X(1) and X(2) are homogeneous Poisson processes,
then E(ν21(∂Ξ∗)) < ∞ holds, where Ξ∗ is the typical cell of the PVAT T =
{Ξn} induced by X(1) and X(2).

Proof. Let B ∈ B2 be bounded and convex, and denote by R(B) the radius of
the smallest ball containing B. By the convexity of B it holds that ν1(∂B) ≤
2πR(B) and ν2(B) ≤ πR2(B). Thus, by the result of Lemma 5.6, it is sufficient
to show that all moments of R(Ξ(i),∗) are finite, where Ξ(i),∗ denotes the
typical cell of the PVT T (i) for i ∈ {1, 2}. But this follows from a result
derived in [7] (see also [4]), where it is shown that R(Ξ(i),∗) has exponential
tails.
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6 Numerical results

6.1 Simulation–based density estimators

The aim of this section is to consider simulation–based estimators for the
densities of the typical shortest–path lengths Ce∗ and Cg∗. In particular, we
construct an estimator for the density fCg∗(x) of Cg∗ based on n independent
and identically distributed samples of the typical segment system Sg∗H , similar

to the estimator f̂Ce∗(x;n) for the density of Ce∗ introduced in [18].

To achieve this goal it is useful to decompose the typical segment system
Sg∗H , i.e., we subdivide Sg∗H into N parts, its segments e1, . . . , eI , and denote
by Ai and Bi, i ∈ {1, ..., I}, the endpoints of these segments (see Figure 6),
such that it holds:

– S∗,gH =
⋃I
i=1 ei

– ν1(ei ∩ ej) = 0 for i 6= j and
– c(Ai) < c(Bi) = c(Ai) + ν1(ei).

Note that it can sometimes happen that so-called distance peaks occur. A point
xdp is called distance peak if there exist two different shortest paths from o
to xdp. Therefore, some segments are subdivided into two parts at xdp (see
Figure 6).

Fig. 6 Typical segment system and its subdivision
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In the same way as done in Theorem 1 of [18] for the density of Ce∗, the
following result is obtained.

Proposition 6.1. The typical shortest–path length Cg∗ is an absolutely con-
tinuous random variable and its density fCg∗(x) is given by

fCg∗(x) =

{
λ`E(

∑I
i=1 1[c(Ai),c(Bi))(x)) if x ≥ 0,

0 otherwise.
(22)

Proof. For B ∈ B and h(x) = 1B(x), we get from (11) that

PCg∗(B) = λ`E
I∑
i=1

∫ c(Bi)

c(Ai)

1B(x)dx

=

∫
B

λ`E
I∑
i=1

1[c(Ai),c(Bi))(x)dx .

This is equivalent with (22).

Let Sg∗H,1,...,Sg∗H,n be n independent and identically distributed samples of

the typical segment system Sg∗H and consider the segments e
(j)
1 , ..., e

(j)
Ij

and the

shortest–path lengths c(A
(j)
1 ), c(B

(j)
1 ), ..., c(A

(j)
Ij

), c(B
(j)
Ij

) from their endpoints

to o; j = 1, . . . , n. Then, in view of (22), a suitable estimator f̂Cg∗(x;n) for
the density fCg∗(x) of Cg∗ can be defined by

f̂Cg∗(x;n) = λ`
1

n

n∑
j=1

Ij∑
i=1

1
[c(A

(j)
i ),c(B

(j)
i ))

(x) .

Note the following statistical properties of f̂Cg∗(x;n) which can be easily
proven, see also [18]:

1) Ef̂Cg∗(x;n) = fCg∗(x) for each x ∈ R,

2) P
(

lim
n→∞

sup
x∈R
|f̂Cg∗(x;n)− fCg∗(x)|

)
= 1,

3) Eh(Cg∗) = E
[∫

R h(x)f̂Cg∗(x;n)dx
]

for each measurable h : R 7→ [0,∞).

6.2 Empirical distributions of Ce∗ and Cg∗

As mentioned in Section 4, it is natural to conjecture that the typical shortest–
path lengths Ce∗ = Ce∗(γ, λ`, λ

′
`) are stochastically decreasing in λ`. In Fig-

ure 7, we have plotted densities and distribution functions of the estimated
typical shortest–path length Ce∗ for the case of e-closeness, where G is the
edge set of a PVT and the estimator f̂Ce∗(x;n) for the density of Ce∗ intro-
duced in [18] has been used. The four plots correspond to κ = 10, 20, 50, 100,
respectively (where we fixed γ = 1 and n = 2000 iterations). It is clearly
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Fig. 7 Densities (left) and distribution functions (right) of Ce∗ for PVT where κ = 10
(solid), κ = 20 (dashed), κ = 50 (dotted), κ = 100 (dotdashed).
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Fig. 8 Densities of Ce∗ (dashed) and Cg∗ (solid) for PVT (left) and PLT (right) where
κ = 10
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Fig. 9 Densities of Ce∗ (dashed) and Cg∗ (solid) for PVT (left) and PLT (right) where
κ = 20
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Fig. 10 Densities of Ce∗ (dashed) and Cg∗ (solid) for PVT (left) and PLT (right) where
κ = 100

κ ECe∗ ECg∗

10 2.117 1.966
20 2.930 2.788
100 6.235 6.169

κ ECe∗ ECg∗

10 2.155 1.866
20 2.914 2.710
100 6.208 5.855

Table 1 Expectations of Ce∗ and Cg∗ for PVT (left) and PLT (right)

visible that the distribution functions on the right–hand side of Figure 7 do
not intersect and that each pair of density functions on the left–hand side of
Figure 7 intersect only once. These two observations provide strong indica-
tions for the stochastic monotonicity of the respective typical shortest–path
lengths Ce∗. Similar results have been obtained for other classes of station-
ary tessellations with convex cells, see also [17,18] for PLT and PDT. But
we were not able to provide a proof of this monotonicity property. However,
recall that in contrast to this situation for e-closeness, stochastic monotonicity
of Cg∗ = Cg∗(γ, λ`, λ

′
`) can formally be shown, see Proposition 4.4.

Furthermore, recall that in Proposition 4.2 we showed that Ce∗ is always
stochastically larger than Cg∗. We evaluated the simulation–based density
estimators f̂Cg∗(x;n) and f̂Ce∗(x;n) mentioned in Section 6.1 for n = 2000
simulations, in order to find out how much larger Ce∗ is than Cg∗ for given
specifications of the parameter vector (γ, λ`, λ

′
`). From Figures 8 and 9 we see

that the empirical densities f̂Cg∗(x;n) and f̂Ce∗(x;n) are quite different from
each other for κ = 10 and κ = 20, whereas for κ = 100 this is not the case
(at least not for PVT), see Figure 10. Note that the latter phenomenon is in
accordance with the result of Theorem 5.2, which states that the distributions
of Ce∗ and Cg∗ converge to the same limit as κ→∞.

Besides this, we compared the expectations of Ce∗ and Cg∗ for PVT and
PLT, see Table 1. In both cases, we can observe that the estimated values of
ECe∗ are larger than those obtained for ECg∗, where the differences are much
larger for PLT than for PVT. Furthermore, it is interesting to see that if we
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pass from the PVT to the PLT case, the estimated expectation of Cg∗ always
decreases while for Ce∗ this remains no longer true.

7 Conclusions

We have developed two different approaches to the problem of connecting
high–level and low–level components in hierarchical network models, where
two different meanings of ’closeness’ are considered: either with respect to the
Euclidean distance (e-closeness), or in a graph–theoretic sense, i.e., along the
edges of the network (g-closeness). Furthermore, we extended the class of sta-
tionary graph models describing the infrastructure of the network, admitting
e.g. tessellations with non–convex cells and graphs with dead ends. We proved
stochastic comparability and monotonicity properties of typical shortest–path
lengths between the locations of high–level and low–level network components
and we determined their asymptotic limit distributions for unboundedly sparse
and dense networks, respectively.

However, some open problems remain to be solved. This will be the subject
of future research. For example, it would be interesting to prove (or disprove)
that the typical shortest–path length Ce∗(γ, λ`, λ

′
`) stochastically decreases in

λ` for a large class of stationary random geometric graphs G. Another inter-
esting problem would be to find out whether (resp. under which conditions)
the asymptotic behavior considered in Theorem 5.2 remains true if G is the
edge set of an aggregate tessellation induced by non–Poissonian point pro-
cesses, e.g., by Poisson cluster processes or Cox processes. Furthermore, the
same problem could be investigated in the case that G = G(β,X) is a β-
skeleton induced by a stationary (non–Poissonian) point process X. Finally,
for practical applications of Theorem 5.2 to real network data, it would be
useful to determine the constant ξ appearing in this theorem nmuerically, e.g.,
for aggregate tessellations and for other classes of stationary and connected
random geometric graphs.

Acknowlegdements The authors would like to thank the two anonymous
referees for their careful reading of an earlier version of the manuscript. Their
suggestions helped to improve the presentation of the material. This work has
been supported by Orange Labs through Research grant No. 46146063-9241.
Christian Hirsch has been supported by a research grant from DFG Research
Training Group 1100 at Ulm University.

References

1. D. Aldous and J. Shun. Connected spatial networks over random points and a route-
length statistic. Statistical Science 25 (2010), 275-288.

2. F. Baccelli, G. Gloaguen, and S. Zuyev. Superposition of planar Voronoi tessellations.
Stochastic Models 16 (2000), 69–98.



On the distribution of typical shortest–path lengths 23

3. P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick. On the spanning ratio of gabriel
graphs and β-skeletons. In: Proceedings of the 5th Latin American Symposium on The-
oretical Informatics (LATIN’02), Lecture Notes in Computer Science 2286, Springer,
Berlin, 2002, 479–493.

4. P. Calka. The distributions of the smallest disks containing the Poisson-Voronoi typical
cell and the crofton cell in the plane. Advances in Applied Probability 34 (2002), 702–
717.

5. D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Vol.
I/II, Springer, New York, 2005/08.

6. R. Durrett Probability: Theory and Examples. 2nd edition, Duxbury Press, Belmont,
1996.

7. S.G. Foss and S.A. Zuyev. On a Voronoi aggregative process related to a bivariate
Poisson process. Advances in Applied Probability 28 (1996), 965–981.

8. C. Gloaguen, F. Voss, and V. Schmidt. Parametric distributions of connection lengths
for the efficient analysis of fixed access network. Annals of Telecommunications 66
(2011), 103–118.

9. J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Statistical Analysis and Modelling of
Spatial Point Patterns. J. Wiley & Sons, Chichester, 2008.

10. D.G. Kirkpatrick and J.D. Radke. A framework for computational morphology. In:
G.T. Toussaint (ed.) Computational Geometry. North Holland, Amsterdam 1985, 217–
248.

11. I.S. Molchanov. Theory of Random Sets. Springer, London, 2005.
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