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Abstract. We extend the Stochastic Subscriber Line Model by the introduction
of shortest-path trees which are obtained by splitting up the segment system of the
typical serving zone at its crossings and endings. Due to reasons in the complex
field of cost and capacity estimation in telecommunication networks, it is desir-
able to gain knowledge about distributional properties of the branches of these
trees. The present paper shows how to obtain parametric approximation formu-
las for the univariate density functions of the lengths of the two main branches in
shortest-path trees. Besides, we derive a joint bivariate distribution for the lengths
of these branches by means of copula functions, i.e., we give a parametric compo-
sition formula of the marginals. These approximative parametric representation
formulas can be used in order to prevent time consuming computer experiments.
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1 Introduction

In [4], [8] and [13], the Stochastic Subscriber Line Model (SSLM) has been developed
and extended, especially in order to model access networks in urban areas. So far, the
research focus has been put on so-called typical shortest-path lengths where engineers
are mainly interested in minimising the total length of the telecommunication network
in a city, see [4]. Besides this, also other cost functionals have to be considered for
reasonable optimising. Physical links, e.g., optical fibres emanating from several nodes
of lower order in the network are merged into thicker fibres at nodes of higher order.
For cost estimation of the network, knowledge of capacities in the network is an impor-
tant factor and so far, only preliminary results are available, see [12]. The idea in the
present paper is to extract the so-called shortest-path tree from the typical segment sys-
tem of a typical serving zone. Having information about this tree, research departments
of telecommunication companies such as Orange Labs can draw conclusions about ca-
pacity problems and cost estimation of communication networks. As the geometry of
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the shortest-path tree can become extremely complex, it is not clear how to describe its
structure in a simple way which can also be useful for engineers. A general roadmap
for attacking this problem is to build models of increasing complexity which are able to
describe the tree in greater and greater details. In the present paper, we therefore pro-
vide the first step towards this goal by deriving an analytical approximation formula for
the joint distribution of the two main branches of the shortest-path tree.
The paper is organised as follows. Section 2 briefly discusses the tools of stochastic
geometry and their properties which are used in the SSLM. Especially Palm calculus,
allowing to deal with typical cells of random tessellations as well as Cox processes
are described. Besides this, we explain how to extract the shortest-path tree from the
typical segment system in order to investigate capacity problems in telecommunication
networks. Then, in Section 3, a simulation algorithm for the main branches of shortest-
path trees is described. In particular, we provide approximation formulas for the density
functions of their lengths. Besides, as the lengths of these branches cannot be assumed
to be independent, a copula approach is used in order to model the correlation structure
between them. Finally, Section 4 concludes the paper and gives an outlook to possible
future research topics.

2 A stochastic model representing access networks

2.1 The SSLM for urban areas

The SSLM has been introduced as a spatial network model using tools of stochastic
geometry in each of its three parts, see [4]. These three parts are the geometrical support,
the network component part and the topological part. For the convenience of the reader,
we briefly discuss the model existing so far before we proceed to expand the SSLM by
shortest-path trees.

Geometrical support Cables and fibres in telecommunication networks are installed
along the road system of a city or town in order to reach as many customers as possible.
The whole network of main roads, side streets, dead ends, etc. is modelled in the SSLM
by stationary random geometric graphs. In the present paper, these graphs are restricted
to stationary random tessellations in the Euclidean space R2. We call a subdivision of
R2 into a sequence Ξ1,Ξ2, . . . of random convex and compact polygons a planar random
tessellation T if the following three conditions are fulfilled.

1.
⋃

∞
i=1 Ξi = R2,

2. int Ξi∩ int Ξ j = /0 for i 6= j,
3. #{i : Ξi∩B 6= /0}< ∞ for each bounded B⊂ R2.

Important examples of random tessellations considered in this paper are Poisson-Voronoi
tessellations, Poisson line tessellations and Poisson-Delaunay tessellations. For further
information on these random graphs, the reader can consult [10] and [11].



A Parametric Copula Approach for Shortest-Path Trees 3

Placement of components Network nodes such as antennas, wire centre stations,
service area interfaces as well as the subscribers themselves are also assumed to be
located along the road system. We restrict our considerations to two-hierarchy-level
networks, i.e., we investigate path properties between higher level components (HLC)
and lower level components (LLC). Therefore, we model these nodes as point pro-
cesses located on the edge system of the underlying tessellation T . To be more pre-
cise, we use two stationary Cox point processes (for further information, see [11]), say
XH = {XH,n} and XL = {XL,n}. Their random intensity measures are concentrated on
the edge set T (1) =

⋃
∞
n=1 ∂Ξn of the underlying tessellation T and are proportional to

the 1-dimensional Hausdorff measure ν1 on T , i.e., EXH(B) = λ` Eν1(B∩ T (1)) and
EXL(B) = λ ′` Eν1(B∩T (1)) for each Borel set B⊂ R2 and linear intensities λ`,λ

′
` > 0.

The planar intensities are thus given by λH = λ`γ for HLC and λL = λ ′`γ for LLC, where
γ = Eν1([0,1]2∩T (1)).

Topology model and Palm calculus To define connection rules in the network, an LLC
is assumed to be linked with its nearest HLC in the Euclidean sense. In other words, we
consider the Voronoi tessellation TH = {ΞH,n}n≥1 which is generated by the Cox point
process XH = {XH,n} of high level components, i.e., the cell ΞH,n around its nucleus
XH,n is given by

ΞH,n = {x ∈ R2 : ‖x−XH,n‖ ≤ ‖x−XH,m‖ for all m 6= n},

where ‖ · ‖ denotes the Euclidean norm. Each LLC XL,i which is located within a so-
called serving zone ΞH,n is connected to the corresponding HLC XH,n along the edges of
the underlying tessellation T , i.e., via the cable system along the roads of the city. The
connection is arranged in a way such that the distance between LLC and corresponding
HLC measured along T (1) is the smallest, i.e., we consider shortest paths, see [8]. In
the present paper, we consider the Palm version X∗H of XH whose distribution can be
interpreted as conditional distribution of XH given that there is a HLC located at the
origin o = (0,0)> ∈ R2. To be more precise, the distribution of X∗H is given by the
representation formula

Eg(X∗H) =
1

λH
E ∑

i:XH,i∈[0,1]2
g({XH,n}−XH,i) ,

where g : L→ [0,∞) is an arbitrary measurable function and L denotes the family of
all locally finite sets of R2. Note that in particular, we have by definition that P(o ∈
X∗H) = 1. In addition, the typical Voronoi cell Ξ ∗H of XH is defined as the Voronoi cell
associated with the cell centre o in the Voronoi tessellation constructed from X∗H , i.e.,

Ξ
∗
H = {x ∈ R2 : ‖x‖ ≤ ‖x−X∗H, j‖ for all j ≥ 1} ,

Besides, let SH,i = ΞH,i ∩ T (1) denote the segment system of the serving zone ΞH,i
which belongs to the corresponding HLC XH,i. Then, the typical segment system S∗H is
defined as the typical mark of the Cox point process of the HLC XH,i marked with the
corresponding segment systems SH,i, see Figure 1 for an illustration. For further details
on marked point processes and Palm mark distribution, the reader is referred to [3]
and [11].
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2.2 Extracting shortest-path trees

In this part of the present paper, we want to extend the SSLM by a further, new compo-
nent, the so-called shortest-path tree G. Following any leaf, say v, in this tree towards
its root o corresponds to tracing the shortest path from v to o along T (1) in the typical
serving zone Ξ ∗H . An illustration of this situation can be found in Figure 2.

Fig. 1. Typical serving zone Ξ∗H
(dashed) and corresponding segment
system S∗H (solid)

Fig. 2. Extracted shortest-path tree G
with origin o as root

For cost estimation and capacity calculations in telecommunication networks, it is use-
ful to have knowledge of this tree with the lengths of its subparts, the number of links
etc. Focus is put on two main branches building the backbone and skeletal structure of
G. The first main branch is defined as the longest branch of the whole tree. It is called
the longest shortest path and denoted by LSP in the following. Its length, CLSP, is a well-
defined random variable as the supremum over all path lengths is actually a maximum
due to the fact that we have a random but finite number of endpoints in the tree. Observe
that with probability 1, the origin o has two emanating edges (see Figure 1). Thus, we
can subdivide the shortest-path tree G into two subtrees, a half-tree Gh

1 and a half-tree
Gh

2 as shown in Figure 3. The graph Gh
1 is defined as the half-tree which contains LSP.

The second main branch, denoted by LSP′, is now defined as the longest branch in the
second half-tree Gh

2, see also Figure 4. Its length will be denoted by CLSP′ . Note that
CLSP ≥CLSP′ holds, but LSP′ does not necessarily have to be the second longest branch
of G.

3 Modelling shortest-path trees via copulas

The goal in this section is to find suitable two-dimensional (joint) distribution functions
for the lengths CLSP and CLSP′ of the two main branches LSP and LSP′. In general, it
cannot be assumed that these lengths are independent random variables. Indeed, both
lengths certainly depend on the size of the typical serving zone in a sense that the
lengths of both LSP and LSP′ are positively correlated with the size of Ξ ∗H . As a conse-
quence, the bivariate joint distribution function cannot be written as product of the two
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Fig. 3. Half-trees Gh
1 (solid) and Gh

2
(dashed) of G emanating from the root

Fig. 4. Main branches LSP (dashed) and
LSP′ (dot-dashed) of the corresponding
half-trees

univariate marginal distribution functions, i.e.,

F(CLSP,CLSP′ )
(x,y) 6= FCLSP(x) ·FCLSP′ (y).

A first attempt could be to consider a non-parametric approach for the fitting of a mul-
tivariate density function. Although a good fit can be achieved for a specific choice of
parameters λ` and γ , it is not suitable for our goals, as we want to obtain a parsimonious
parametric model which applies for any values of λ` and γ . A second attempt could be
to fit a well-known parametric multivariate distribution function to the data, such as
e.g. a multivariate normal or t-distribution. However, as we will see in Section 3.1,
the univariate distribution of CLSP′ can be closely approximated by a mixed gamma-
distribution and we are not aware of any commonly used multivariate distribution with
mixed-gamma marginals. Both types of problems mentioned above can be avoided by
using a family of parametric copulas.
A copula function, roughly speaking, combines marginal distributions to a joint dis-
tribution by adding some correlation structure in a way which has to be precised. In
general, a function K : [0,1]2→ [0,1] is called a 2-dimensional copula if there exists a
probability space (Ω ,F ,P) supporting a random vector U = (U1,U2)

> such that

K(u1,u2) = P(U1 ≤ u1,U2 ≤ u2), u1,u2 ∈ [0,1],

and Ui ∼U [0,1] for i ∈ {1,2}. Note that Sklar’s theorem (see [7]) guarantees the ex-
istence of a (not necessarily parametric) copula function KC : [0,1]2→ [0,1] such that
the bivariate joint distribution function of the random vector C = (CLSP,CLSP′)

> can be
written as

FC(c) = KC(FCLSP(c1),FCLSP′ (c2)),

where c = (c1,c2)
>, c1,c2 > 0. Note that the density of C is given by

fC(c) = fCLSP(c1) fCLSP′ (c2) · kC(FCLSP(c1),FCLSP′ (c2)), (1)

where kC(u1,u2) =
∂ 2

∂u1∂u2
KC(u1,u2) denotes the density function of the copula KC and

fCLSP and fCLSP′ are the density functions of FCLSP and FCLSP′ , respectively.
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A well-known tool in order to fit parametric models to data is the maximum-likelihood
method. Suppose that we have parametric models FCLSP(· | η1), FCLSP′ (· | η2) and KC(· |
η) with parameter vectors η1, η2 and η for the marginals as well as for the copula,
respectively, and assume that we have an i.i.d. sample Ci =(CLSP,i,CLSP′,i)

>, i= 1, . . . ,n
where n denotes the sample size. Considering (1), one obtains for the log-likelihood
function logL the following representation

logL(η1 η2,η)

=
n

∑
i=1

(
log fCLSP(CLSP,i | η1)+ log fCLSP′ (CLSP′,i | η2)

+ log
[
kC(FCLSP(CLSP,i | η1),FCLSP′ (CLSP′,i | η2) | η)

])
.

(2)

A quite annoying handicap of the maximum-likelihood method is the fact that maximis-
ing the log-likelihood function is a challenging numerical problem if we have several
parameters in the model. One way out of this unpleasant situation is the usage of the so-
called parametric pseudo-maximum-likelihood-method in order to fit a suitable model,
see [9]. More precisely, we follow a similar way as we do in maximum-likelihood esti-
mation but this time, we have an optimisation process in two steps. First, the marginal
distributions are estimated and represented by parametric families using the common
maximum-likelihood method, each on its own. Second, we have to determine the best
copula in a way which still has to be defined. Note that by estimating parameters of
the marginal distributions and the copula separately, the pseudo-maximum likelihood
approach avoids a higher-dimensional optimisation.
In the following, we precisely describe the two optimisation steps for the marginals and
copula cases and provide the numerical results.

3.1 Fitting parametric marginal distributions

Parametric density function for CLSP The distribution of CLSP depends both on the
linear intensity λ` of the HLC and the length intensity γ of T . For Poisson-Voronoi
tessellations (PVT), Poisson line tessellations (PLT) and Poisson-Delaunay tessellations
(PDT) it was shown in [13] that we have a certain scaling invariance in our model and
therefore it suffices to investigate the dependence of the distribution of CLSP on the
ratio κ = γ

λ`
called scaling parameter. In contrast to the situation observed for the limit

cases where κ → 0 or κ → ∞ (see [5]), for general values of κ it is hardly possible
to derive an explicit formula for the distribution of CLSP. In this section, we therefore
aim at finding a suitable parametric representation formula for the density function
fCLSP of CLSP which approximates fCLSP sufficiently well. For three different types of
random tessellations (PVT, PDT, PLT) and for various values of the scaling parameter
κ , we run a sufficiently large number n of realisations of the typical segment system
S∗H via Monte Carlo simulation and extract the shortest-path tree G. According to the
obtained histograms, we fit a suitable family of parametric distributions which can be
characterised by just a few parameters. This can be achieved by manual choice of an
eligible class of distributions and via subsequent maximum-likelihood estimation. It
turns out that a suitable class of parametric distributions for CLSP is the family of scaled
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Gamma distributions. To be more precise, it approximately holds that CLSP ∼ Γ (k,λ )
with density function

fΓ (k,λ )(x;k,λ ) =
1

λ kΓ (k)
xk−1 exp(− x

λ
)1[0,∞)(x), (3)

for some shape parameter k > 0 and scale parameter λ > 0. This class of distributions
is applicable to all three types (PVT, PDT, PLT) of underlying tessellations representing
the infrastructure of the city, see Figure 5. Note that the parameters k and λ depend on
the type of the underlying tessellation and on κ .

Histogram of LSP_PLT_20$V1

LSP_PLT_20$V1
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Histogram of LSP_PDT_120$V1
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Fig. 5. Parametric densities of the scaled Gamma distribution for CLSP where the underlying
tessellation is a PLT with κ = 20 (left) and PDT with κ = 120 (right)

Parametric density function for CLSP′ Next, we want to proceed in an analogous way
as above and derive a parametric approximation formula for the density of CLSP′ . Look-
ing at the histogram in Figure 6, the mindful reader may observe that, in contrast to the
distribution of CLSP (see Figure 5), we now have a bimodal type of distribution. In order
to cope with this situation, the usage of a mixture of two scaled Gamma distributions is
reasonable (note that this type of distribution indeed fulfills the necessary bimodality).
To be more precise, we get that approximately CLSP′ ∼ Γ

α,k,λ ,`,θ
mix with density function

f
Γ

α,k,λ ,`,θ
mix

(x;α,k,λ , `,θ)

=

[
α ·
(

1
λ kΓ (k)

xk−1 exp(− x
λ
)

)
+ (1−α) ·

(
1

θ `Γ (`)
x`−1 exp(− x

θ
)

)]
·1[0,∞)(x),

for some mixing parameter α ∈ [0,1], shape parameters k, ` > 0 and scale parameters
λ ,θ > 0. It turns out that this class of distributions is applicable to all three types of
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underlying tessellations which have been considered so far, i.e., PVT, PDT, PLT. Note
that the parameters α , k, λ , ` and θ depend on the type of the underlying tessellation
and on κ . Formally, we can also consider the distribution of CLSP as a mixture of gamma
distributions (indeed, with mixing parameter α ∈ {0,1}).

Histogram of LSP_prime_PDT_25$V1

LSP_prime_PDT_25$V1

D
en

si
ty

0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Histogram of LSP_prime_PVT_50$V1
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Fig. 6. Parametric densities of the mixture of two scaled Gamma distributions for CLSP′ where the
underlying tessellation is a PDT with κ = 25 (left) and PV T with κ = 50 (right)

3.2 Choosing a suitable copula type

Now having information about the (marginal) distributions of the lengths of the two
main branches each considered on its own, the remaining task is to find a suitable ap-
proximative model for correlation structure between them. Similar as in the univariate
case, some asymptotic results on the joint distribution of C can be obtained for the limit
cases where κ → 0 or κ → ∞ (see [6]). However, for general values of κ it is hardly
possible to derive an explicit formula for the joint distribution of C. In order to achieve
a good approximation formula for this distribution, we choose a copula approach, i.e.,
we consider several common parametric copulas and investigate which of them repre-
sents the correlation structure best, in a way which still has to be defined. Choosing a
suitable type of copula is essential as the several types differ notably from each other,
e.g., some have tail dependance while others have not, some allow negative correlation
and others not, etc.

Preprocessing of data Before we can start to find an appropriate copula KC adding
information about the correlation of CLSP and CLSP′ when combining its marginal dis-
tributions in a joint distribution, we have to manage some difficulties resulting from
special properties of our data. More precisely, our data is completely asymmetric in
terms of the fact that for each shortest-path tree G, we have CLSP ≥CLSP′ . This means
that the scatterplot of a sample Ci, 1≤ i≤ n, where n denotes the sample size, is com-
pletely located beneath the first angle bisector, see the left-hand side of Figure 7.
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Fig. 7. Scatterplots of original and symmetrized data

Scatterplots of data which was sampled from the vast majority of commonly used bi-
variate copula types are however more or less some kind of symmetric, i.e., the corre-
sponding point pairs are located beneath as well as above the first angle bisector. This
is due to the fact that for many copulas K : [0,1]2 → [0,1] it holds that K(u1,u2) =
K(u2,u1) for any u1,u2 ∈ [0,1]. In order to manage this problem, each point pair Ci =
(CLSP,i,CLSP′,i)

> will be associated with an independent U [0,1] distributed mark Ui. If
Ui < 0.5, we put C̃i =(CLSP,i,CLSP′,i)

>, and if Ui≥ 0.5, then we put C̃i =(CLSP′,i,CLSP,i)
>.

The effect of the transformation Ci 7→ C̃i can be seen on the right-hand side of Figure 7.
In order to obtain the bivariate distribution of Ci, we proceed now in the following way.
First, we determine the distribution of C̃i by using copulas. Then, we put

C(1)
i = max{C̃(1)

i , C̃(2)
i }

and
C(2)

i = min{C̃(1)
i , C̃(2)

i }.

Here, C( j)
i and C̃( j)

i denote the j-th component of Ci and C̃i, respectively, where j ∈
{1,2}.
Another possibility to bypass this problem would be to avoid the explicit ordering in
C, so that both branch lengths are identically distributed. Note that this would lead to
a representation of the marginals as a mixture of CLSP and CLSP′ . However, for certain
values of κ , the branch lengths CLSP and CLSP′ can be dramatically different which
makes a separate consideration of CLSP and CLSP′ necessary for capacity analysis of
real-world telecommunication networks.
Note that the endpoints of LSP and LSP′ are either located on the boundary of the typical
cell Ξ ∗H or they form a so-called distance-peak, i.e., there is a point in the interior of the
typical segment system S∗H for which the shortest path to the origin is not unique (see [8]
for further explanations). The point P7 in Figure 1 illustrates that distance-peaks can
occur with positive probability. Note however that in this example the point P6 (and not
the distance-peak P7) is the endpoint of LSP, see also Figure 4. Another problem occurs
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if LSP and LSP′ share the same distance-peak as endpoint (i.e., CLSP,i = CLSP′,i). Then
the distribution of C cannot be modelled by commonly used parametric copulas (since
these are absolutely continuous with respect to 2-dimensional Lebesgue measure). In
order to prevent this unsatisfying situation, we (temporarily) remove distance-peaks and
treat them separately.

Gumbel copula Recall that we already determined parameters for the marginal distri-
butions by using a pseudo-maximum-likelihood approach, see Section 3.1. Therefore,
only the parameters of the copula model remain to be estimated. Copula types which
are considered in the present paper are the Archimedean copulas of Clayton, Gumbel,
and Frank type as well as the Gaussian and the t-copula. In order to find a suitable cop-
ula type and to prevent overfitting due to too many parameters, a reasonable decision
tool in this context is Akaike’s information criterion (AIC) which is defined as

AIC = 2(p− logL(η̂)) ,

where p denotes the number of parameters in the model and logL(η̂) is the maximised
log-likelihood where the log-likelihood function is given by

logL(η) =
n

∑
i=1

log
[
kC
(
F̂CLSP(CLSP,i), F̂CLSP′ (CLSP′,i) | η

)]
. (4)

Note that (4) is obtained from (2) by replacing the marginal distribution functions by
their estimators (which are in fact nothing else than the empirical distribution functions
F̂CLSP and F̂CLSP′ ) and omitting summands which do not depend on the parameter vector
η of the copula. The type of copula which has the smallest AIC value is now chosen
to work with. This seems quite reasonable as maximising logL(η) and minimising the
number of parameters p is the goal we aim at. It turned out that for all three underlying
tessellation models (PVT,PLT,PDT) we can use the same family of copulas since the
Gumbel copula minimises AIC among the five considered copula models for PVT, PDT
and PLT. To be more precise, we use the copula

KC(u,v) = exp
(
−((− logu)η +(− logv)η)

1/η
)
,

where we obtain η ≈ 1.21 for each κ and for each type of the considered tessellations.
This means that neither the type of the copula nor the value of its parameter η depend
on the type of the underlying tessellation and the scaling parameter κ which is a quite
surprising result.

Distance peaks In this section, we describe how to handle the distance peaks men-
tioned before, i.e., we suggest a model for those point pairs Ci = (CLSP,i,CLSP′,i)

>,
where CLSP,i = CLSP′,i. Due to the fact that those points are located along the first an-
gle bisector f (x) = x, it suffices to consider the (conditional) univariate distribution of
CLSP given that LSP and LSP′ have the same length. It turns out that we can model
the distance peaks Ci = (CLSP,i,CLSP′,i)

> by again using a scaled gamma distribution.
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Note that the parameters are different from those obtained in Section 3.1, but neverthe-
less also depend on the underlying tessellation T as well as the scaling parameter κ . In
particular, we sample from a density function with representation formula

f (x;k,λ ) =
1

λ kΓ (k)
xk−1 exp(− x

λ
)1[0,∞)(x).

Putting a realisation x of a random variable X ∼ Γ (k,λ ) into both components of Ci,
i.e., Ci = (X ,X)>, yields the desired quantity. The probability ρ of distance-peaks can
be easily estimated by the ratio

ρ̂ =
# distance-peaks in empirical data

n
,

where n denotes the sample size.

Combining simulated data Finally, we join data sampled from the Gumbel copula and
from the scaled Gamma distribution of the distance peaks. To be more precise, for some
large integer N ≥ 1, we generate b(1− ρ̂)Nc points from the copula model and bρ̂Nc
points from the distance-peak model and consider the union of these data. In Figures 8,
9 and 10, the reader can compare symmetrised empirical data which has already been
extracted from the shortest-path tree G, to data which has been directly sampled by the
copula approach presented above. For each type of tessellation and a wide range of κ ,
we obtain quite good results. For example, see Figure 8 for κ = 375 in the PVT case,
Figure 9 for κ = 20 in the PDT case and Figure 10 for κ = 120 in the PLT case.

Fig. 8. Scatterplots of empirical data
(left) and directly simulated data (right)
where κ = 375 and T is a PVT

Fig. 9. Scatterplots of empirical data
(left) and directly simulated data (right)
where κ = 20 and T is a PDT
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Fig. 10. Scatterplots of empirical data (left) and directly simulated data (right) where κ = 120
and T is a PLT

Note that with increasing values of κ , the number of distance peaks (grey points) com-
pared to non-distance-peaks (black points) decreases for each of the three types of un-
derlying tessellations.

4 Conclusions and Outlook

We extended the SSLM by a further component, the shortest-path tree G which can be
extracted out of the typical segment system S∗H . In order to simulate structural charac-
teristics of G directly instead of simulating Ξ ∗H respectively S∗H and extracting the tree,
we developed a method how to obtain the skeletal backbone – the main branches –
of G. We used a pseudo-maximum-likelihood approach to achieve this. Parametric ap-
proximation formulas for the (marginal) density functions of the longest shortest-path-
lengths CLSP and CLSP′ were derived as well as a parametric copula type representing
the (joint) distribution of C = (CLSP,CLSP′). In our future research, we will investigate
further structural characteristics of the shortest-path tree G using the copula approach
developed in the present paper. Moreover, other possible topics for future research could
be the investigation of shortest-path trees with other types of underlying tessellations,
e.g., iterated tessellations, or even completely different types of stationary random ge-
ometric graphs as β -skeletons (see [1]). Besides, further types of copulas used for the
joint bivariate distribution for C can be investigated in order to examine if they yield
even better results for directly simulated characteristics of shortest-path trees compared
to those ones obtained in the present paper.
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