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Abstract

The stability and breakage behavior of agglomerates is of interest in many ap-
plications. Since the internal microstructure is of great influence it is very
important to understand and quantify the relationship of structural properties
and mechanical behavior. In this paper, we consider a flexible stochastic model
to analyze the strength of spherical agglomerates consisting of spherical primary
particles, arranged as core and shell. Structural properties can be varied in core
and shell independently. Applying the bonded-particle model (BPM), we inves-
tigate the influence of the primary particle size distributions in core and shell on
the breakage behavior under uniaxial compressive load. Moreover we perform
numerical studies of the same agglomerate with different directions of force and
investigate the variation in breakage behavior.

Keywords: core-shell agglomerate, discrete element method, bonded-particle
model, stochastic microstructure model, compression experiment

1. Introduction

The mechanical stability of agglomerates consisting of spherical primary par-
ticles is of interest in various applications. As computational resources have
become cheap and readily available, many mechanical properties can be evalu-
ated using simulation methods. This has been done for several applications and5

agglomerate parameters. For instance, the effect of the agglomerate’s shape on
the mechanical behavior under impact load has been examined [1, 2].

The mechanical behavior under compressive load is of interest for many
applications [3, 4]. Different models [5, 6, 7, 8] have been proposed for the
description of forces occurring inside the agglomerate, when primary particles10

are in contact with each other. An overview of different models for the contact
force-displacement behavior can be found in [9].
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Often, this is computationally studied by applying the discrete element
method (DEM) extended with a bonded-particle model (BPM) [10, 11, 12],
where the investigated material is represented as a set of densely packed spheres15

connected with ideally elastic or viscoelastic [13, 14] bonds. Opposed to ex-
perimental measurements, computational studies can give detailed information
about stresses within the agglomerate. DEM simulations have been used to
investigate the agglomerate breakage under impact load [2, 15, 16, 17, 18] as
well as under compression [3, 19].20

In [14], a flexible stochastic microstructure model for the generation of ho-
mogeneous agglomerates consisting of primary particles of two different sizes has
been presented. This model has been applied to study the effect of the primary
particle size distribution on the breakage behavior. But for some applications,
agglomerates with a core-shell structure need to be examined [20, 21]. Current25

microstructure models do not cover this type of agglomerates. In this paper, we
therefore extend the model presented in [14] to core-shell scenarios and evaluate
the influence of spatial inhomogeneity on the breakage behavior by comparing
our results to previously obtained data. Moreover, we investigate the variation
of breakage behavior considering varied directions of compression. This is an30

important influencing factor since the investigated agglomerates are strongly
anisotropic.

We investigate spherical glass agglomerates with a diameter of 8 mm which
can be spatially divided into core and shell. Both, core and shell, consist of
spherical primary particles of two different sizes which are bonded with hydrox-35

ypropyl methylcellulose (HPMC) binder. Main material parameters, which are
used in the simulations, are listed in Table 1.

parameter value

primary particles (glass):
density 2500 kg/m3

Young’s modulus 6 · 1010 Pa
Poisson ratio 0.21
binder (HPMC):
Young’s modulus 4 · 108 Pa
normal and tangential strength 5 · 107 Pa

Table 1: Main material parameters of primary particles and bonds [14].

The overall packing density of primary particles is kept constant at 56 %
and the mixing ratio of small and large particles is varied in core and shell.
Cylindrical bonds consisting of binder material are placed between particles such40

that the total binder volume is 10 % of the total volume of primary particles
and the ratio of the bond radius to the radius of the smallest adjacent particle
is 0.4.

The rest of this paper is organized as follows. The stochastic model for
generating the core-shell agglomerates is explained in Section 2, whereas the45

compression experiments are described in Section 3. Breakage detection and
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statistical analysis of the results is done in Section 4. Section 5 concludes and
gives a short outlook to possible future research.

2. Stochastic microstructure model

In the following, we describe the stochastic model used to generate the mi-50

crostructure of core-shell agglomerates. Similarly to [14] the model is given
by an isotropic random set. It consists of non-overlapping spherical primary
particles which are fully connected by a network of cylindrical bonds.

As we want to investigate the influence of spatial heterogeneity in particle
sizes on the breakage behavior, we take into account two different sizes for55

spherical primary particles, namely large particles with radius r1 and small
particles with radius r2 < r1. Furthermore we split the volume of the spherical
agglomerate of radius r into a core with radius rC < r and a shell. For each
part of the agglomerate, a mixing ratio mC (mS) specifies the volume fraction
of large particles with respect to the overall particle volume in the core and60

shell, respectively. Furthermore we specify an overall packing density η.
The primary particles are generated by a packing algorithm described in

Section 2.1 and connected by a network of cylindrical bonds described in Section
2.2.

2.1. Core-shell primary particle model65

In this section, we extend the stochastic model introduced in [14] to generate
the primary particle’s structure.

Take an agglomerate radius r, a core radius rC < r, a core mixing ratio mc,
a shell mixing ratio mS , a large particle radius r1 and a small particle radius
r2. In the first step, we transform the volumetric mixing ratios mC and mS70

into ratios of particle numbers. If large particles contribute a fraction m to the
overall particle’s volume, the fraction a of large particles in the overall particle
count is given by

a =
m · r32

m · r32 + (1−m) · r31
,

see [14]. We use this formula to compute the ratios of large particle numbers
aC and aS for core and shell.75

In the following steps we describe the procedure of primary particle config-
uration.

Step 1 First, we generate an initial configuration of possibly overlapping pri-
mary particles for the core. We draw points from the uniform distri-
bution on the core and independently mark each point with a random80

radius RC where P(RC = r1) = aC and P(RC = r2) = 1 − aC . Each
marked point corresponds to one particle. When the total volume of
all particles divided by the core volume exceeds the packing density η,
we discard the last particle and proceed with step 2. This results in a
packing density slightly smaller than η.85
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Step 2 The force-biased packing algorithm [22, 23] is applied to transform the
initial particle configuration into a set of non-overlapping particles inside
the core.

Step 3 Similarly we generate an initial configuration of primary particles for the
shell where the particles’ positions are drawn from the uniform distribu-90

tion on the shell and the radii are drawn from RS with P(RS = r1) = aS
and P(RS = r2) = 1−aS . Again, we stop generating new particles when
the total volume of all particles in the shell divided by the shell volume
would exceed η.

Step 4 Then we combine the already packed core particles and the (not yet95

packed) shell particles and apply the force-biased packing algorithm to
all particles inside the agglomerate. This results in a random packing of
small and large particles where the mixing ratios in core and shell can
be specified separately.

An illustration of this procedure in 2D is shown in Figure 1.100

2r1

2r

2r2

2rC

(a) Initial arrangement
of core particles to-
gether with the radii
r, rC , r1, r2.

(b) Non-overlapping
core particles after
re-arrangement.

(c) Initial arrange-
ment of shell parti-
cles, core particles in
grey.

(d) Final configura-
tion of non-
overlapping par-
ticles.

Figure 1: Configuration of non-overlapping primary particles. Here, mC > 0.5 > mS , result-
ing in a large fraction of large particles in the core and, vice versa, in a small fraction of large
particles in the shell.

2.2. Bond network model

Performing the procedure described in Section 2.1 results in a set of n non-
overlapping primary particles given as sphere centers and radii P = {(xi, ri), i =
1, . . . , n}. In this section, we present a method for connecting the particles by
cylindrical bonds such that the total volume of all bonds matches a predeter-105

mined binder volume given as a fraction b of the total volume of all primary
particles. As the algorithm used in the present paper is identical to the one
proposed in [14], we only give a short summary and refer to [14] for further
details.

Using a threshold value l, we construct a graph G(l) = (V,E(l)) where the110

vertex set V represents the particles, i.e. V = P and the edge set E(l) represents
the bonds. Bonds are put between all pairs of particles with surface distance less
than or equal to l. Furthermore bonds required for complete connectivity are
put between particles such that the total length of all bonds remains minimal.
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Given the graph G(l), we assign each bond e ∈ E(l) a radius RB(e) given115

by a fraction rB of the radius of the smallest adjacent particle. Then we can
compute the overall volume (binder volume) of the bond network. Solving
an optimization problem, we get the optimal threshold value l? such that the
volume of the bond network is close to the targeted binder volume.

2.3. Model parameters120

Since we want to investigate the effect of spatial heterogeneity, we vary the
mixing ratios in core and shell while keeping the bond parameters, agglomerate
size, packing density, small particle radius, large particle radius, and overall
mixing ratio fixed.

For this we investigate the relationship between mixing ratios in core and125

shell and the core size. If we take a fixed core radius rC , agglomerate radius
r and fixed volumetric mixing ratios mC and mS in core and shell, the overall
volumetric mixing ratio m is given by

m =
r3C ·mC + (r3 − r3C) ·mS

r3
.

Solving this equation for rC , we obtain

rC = r ·
(
m−mS

mC −mS

)1/3

, (1)

which only makes sense if mC 6= mS and m−mS

mC−mS
> 0. For mC = mS we can130

generate a particle only if mC = mS = m. In this case, the core radius can be
chosen arbitrarily. For m−mS

mC−mS
< 0 there exists no core radius such that the

desired mixing ratios can be obtained.
For a given agglomerate radius and a valid choice of parameters m, mC , mS ,

we compute the core radius rC by Formula (1) and use these parameters along135

with the particle sizes and bond network parameters to generate a core-shell
agglomerate using the model proposed in Sections 2.1 and 2.2.

3. Simulation of breakage behavior

For statistical analysis of breakage behavior we generate agglomerates with
varied internal structures using the model introduced in Section 2. We choose140

the following values for the parameters of the microstructure model.
Choosing mS = 1−mC and m = 0.5 ensures that a valid core radius can be

found for each core mixing ratio. In fact, except for mC = 0.5,

m−mS

mC −mS
=

1

2

is constant. So we have rC ≈ 3.175 mm for all core mixing ratios. For mC =
mS = m = 0.5, we can choose any core radius, since there is no difference in145
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parameter value

agglomerate:
agglomerate radius r = 4 mm
packing density η = 0.56
primary particles:
large particle radius r1 = 0.5 mm
small particle radius r2 = 0.25 mm
overall mixing ratio m = 0.5
core mixing ratio mC ∈ {0, 0.1, 0.2, . . . , 1}
shell mixing ratio mS = 1−mC

binder:
relative binder volume b = 0.1
relative bond radius rB = 0.4

Table 2: Numerical specification of model parameters.

(a) Low core mixing ratio, high
shell mixing ratio.

(b) High core mixing ratio, low
shell mixing ratio.

Figure 2: Schematic representation of primary particles of agglomerates with different core
and shell mixing ratios.

core and shell. In Figure 2, agglomerates with different core mixing ratios are
visualized.

We generate 10 agglomerates for each core mixing ratio in {0, 0.1, 0.2, . . . , 1}.
Then we rotate each agglomerate according to 20 different angles distributed
(almost) evenly on the sphere and for each rotated version, an uniaxial com-150

pression experiment is simulated using the DEM method.
The DEM calculations are performed with the simulation framework MUSEN

[24]. The agglomerate is compressed between two walls, one of which is lowered
with a constant speed. The DEM simulations are performed until the defor-
mation of the agglomerate is 35 %. For a detailed description of the employed155

simulation models and parameters, see [14], Section 2.2. Simulation data such
as displacement of the particles, forces applied to the particles and walls as well
as breakage of bonds are recorded. Figure 3 shows the wall force for an example
of a simulation run, whereas the corresponding agglomerate microstructure is
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shown in Figure 4.160
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Figure 3: Wall force with respect to the deformation of a sample agglomerate with core mixing
ratio 0.7.

(a) 0 % deformation (b) 12.5 % deformation (c) 20.5 % deformation

Figure 4: Planar cut through agglomerate structure during DEM simulation for the same
agglomerate as in Figure 3.

4. Statistical analysis

4.1. Breakage analysis

Every compression experiment gives us a force-displacement curve and the
time-resolved agglomerate microstructure. Using this data we can determine
the deformation at which the agglomerate breaks. As in [14] we refer to an165

agglomerate as broken if it consists of at least two fragments and the largest
fragment comprises at most 90% of the agglomerate’s volume. Debris (fragments
consisting of less than 4 particles) is excluded from this analysis.

This gives us the deformation at breakage and the maximum force applied
before breakage for each rotated version of each agglomerate. Furthermore, we170

obtain the breakage energy by integration.
The breakage characteristics for each agglomerate vary for different rotated

versions. This will be discussed in Section 4.2. When comparing agglomerates
to each other, it is useful to calculate the average of each characteristic over all
rotated versions of one agglomerate.175

Figure 5 shows the (mean) breakage characteristics for all agglomerates with
different core mixing ratios. We can see that the breakage energy and defor-
mation strongly depend on the mixing ratios in core and shell. Agglomerates
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(a) Breakage energy for different core mixing
ratios.
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(b) Deformation at breakage for different
core mixing ratios.
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(c) Breakage force for different core mixing
ratios.

Figure 5: Breakage characteristics for agglomerates with different core mixing ratios. Each
point corresponds to the mean characteristic of all rotated versions of one agglomerate.

with large particles in the core and small particles in the shell (high core mixing
ratio) tend to be more stable than agglomerates with small particles in the core180

and large particles in the shell (low core mixing ratio).
The breakage characteristics which have been obtained in [14] for homoge-

neous agglomerates with different overall mixing ratios are shown in Figure 6.
As expected, the breakage characteristics of core-shell agglomerates with core
mixing ratio 0.5 coincide with the breakage characteristics obtained in [14] for185

overall mixing ratio 0.5. This is due to the fact that for mC = 0.5, we have
mS = 0.5 as well and the resulting microstructure model has no spatial inho-
mogeneity.

We observe that the effect of core mixing ratio on breakage energy is very
similar that of (overall) mixing ratio on breakage energy obtained in [14]. This190

suggests that for our construction of core-shell scenarios, the microstructure of
the shell does not play a significant role for the required breakage energy.

Figure 5 reveals that the breakage force for core-shell agglomerates is higher
if the agglomerate has less (local) inhomogeneity in structure. This agrees with
the observation in [14]. Homogeneous agglomerates have less inhomogeneity195

if the mixing ratio is near to 0 or 1. For core-shell agglomerates the local
inhomogeneity decreases for core mixing ratios (and shell mixing ratios) near to
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0 or 1, as well. Then, core and shell consist only of one sort of particles each.
Local homogeneity seems to be more important than global homogeneity (i.e.
core and shell are similar).200

The relative deformation increases for higher core mixing ratios, i.e. for more
large particles in the core. For homogeneous agglomerates, the relative defor-
mation is highest for a mixing ratio near 0.6 and decreases for both higher and
lower mixing ratios. Thus the relative deformation of core shell agglomerates
seems to depend on both core and shell structure.205
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(a) Breakage energy for different mixing ra-
tios.
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(c) Breakage force for different mixing ratios.

Figure 6: Breakage characteristics for homogeneous agglomerates with different mixing ratios.
Reprinted from [14] with permission from Elsevier.

4.2. Analysis of material anisotropy

In Section 4.1, we computed a mean breakage energy for every agglomerate
by performing several DEM simulations with different rotations. In this section,
we investigate how different stressing directions influence the breakage energy.
For the analysis of the dependence of breakage characteristics on the rotation210

of agglomerates, we performed 100 compression experiments for a sample ag-
glomerate with core mixing ratio mC = 0.3 which has been rotated by 100
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rotation angles evenly distributed on the sphere. This results in breakage char-
acteristics for different directions of compression. These directions are shown in
Figure 7 together with the corresponding breakage energies. Since we perform215

uniaxial quasi-static compression experiments, the breakage characteristics do
not change if we rotate the agglomerate by π in any direction. Thus, we only
consider compression directions on a half sphere and copy the results for the
other half by reflecting the direction through the agglomerate’s center.
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Figure 7: Distribution of the directions of compression, visualized on the half sphere. The
sizes of dots correspond to the breakage energy for the corresponding rotated version of the
agglomerate with core mixing ratio 0.3.

We can clearly see that the breakage energy depends on the compression220

direction and there seem to be clustering effects as one would expect: A small
deviation in the direction of compression does result in only a small change in
breakage characteristics. Thus, points corresponding to similar stressing direc-
tions have a similar size, i.e. the breakage energy is similar.

We estimate the mark correlation function for the marked point pattern225

{(Si, Li), i = 1, . . . , 100} given by the compression directions Si and the break-
age energies Li as marks, applying the smallest angle between two points as
distance function d : (Si, Sj) 7→ [0, π]. For the definition of the mark correlation
function see [25]. The estimated mark correlation function θ(r) of the given
marked point pattern {(Si, Li)} can be understood as the empirical correlation230

between pairs of marks whose positions have distance r. This is, we compute
the correlation coefficient of

{(Li, Lj) : d(Si, Sj) = r}

which is

θ(r) =

∑
(Li − L̄)(Lj − L̄)√∑

(Li − L̄)2
∑

(Lj − L̄)2

=

∑
LiLj −KL̄2∣∣∑L2

i −KL̄2
∣∣
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where all sums extend over all indices (i, j) ∈ {1, . . . , 100}2 such that d(Si, Sj) =
r and K = |{(Li, Lj) : d(Si, Sj) = r}|. If, in general, the marks of points with
distance r were independent, we would have θ(r) = 0.235

Since we chose the points {Si} (compression directions) randomly, there
exist almost surely no pairs of points with distance r. Thus, the value of θ(r)
is approximated using an Epanechnikov kernel ki,j(r) = k(d(Si − Sj)− r):

θ̂(r) =

∑
ki,j(r)LiLj∑

ki,j(r)
−
(∑

ki,j(r)Li∑
ki,j(r)

)2∣∣∣∣∑ ki,j(r)L2
i∑

ki,j(r)
−
(∑

ki,j(r)Li∑
ki,j(r)

)2∣∣∣∣ ,
where the sums extend over all pairs of indices (i, j) ∈ {1, . . . , 100}2.

The estimated mark correlation function (see Figure 8) confirms the visually240

observed clustering effects. For small differences between pairs of angles there
is a significant positive correlation in the breakage energy whereas for larger
differences between pairs of angles the correlation tends to 0. Thus, the breakage
energy for one direction of compression can be used to predict the breakage
energies for neighboring directions well but may not be a good estimate for245

distant directions.
For an agglomerate with a completely isotropic core and shell, we would

expect the breakage energy not to depend on the direction of compression.
As anisotropy decreases for larger agglomerates the differences of the relative
breakage energy for different directions of force should decrease if we enlarge250

the agglomerate. Table 3 confirms this behavior.
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Figure 8: Estimated mark correlation function. The distance is measured in radian. For
reasons of symmetry we limit the distance to π/2.

From the obtained results the conclusion can be drawn that, due to high
material anisotropy, material strength strongly depends on stressing direction.
Thus, in order to obtain representative information about agglomerate strength
sets of simulations with varied stressing direction should be performed. For255

simplicity it is useful to calculate mean breakage characteristics for each ag-
glomerate and perform the analysis on the mean values.
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radius minimum maximum variance
3 mm 0.253 2.054 0.327
4 mm 0.227 2.524 0.277
5 mm 0.123 2.372 0.201

Table 3: Statistics for relative breakage energy for agglomerates with different radii. Minimum
and maximum are given relative to the mean breakage energy for each agglomerate.

5. Conclusion/outlook

In this paper, we extended a recently proposed model for the generation of
agglomerate microstructures to core-shell scenarios while preserving the ability260

to control the structural properties easily. We realized a large number of compa-
rable agglomerates with the same diameter, primary particle volume and binder
volume but different primary particle radii distributions in core and shell. For
simplicity we confined ourselves on special configurations of particle radii dis-
tributions. We numerically analyzed the breakage behavior for all agglomerates265

using the MUSEN software and applying the material properties of glass to the
primary particles and HPMC to the binder. For each agglomerate we simu-
lated several compression experiments with varied stressing directions. Finally,
we analyzed the breakage behavior with respect to the primary particle mixing
ratios in core and shell. The breakage energy strongly depends on the mixing270

ratios and increases for coarser particles in the core and finer particles in the
shell. Breakage forces are higher for agglomerates with only one type of particles
in each core and shell. Furthermore the breakage energy for a given agglomerate
varies for different directions of force. This effect is due to inhomogeneity in
small agglomerates and decreases for larger agglomerates.275

These results show that breakage behavior of core-shell agglomerates can be
investigated using a flexible stochastic model and DEM simulation. The primary
particle size distributions in core and shell clearly affect the breakage behavior
of the whole agglomerate, which differs from the behavior of the corresponding
homogeneous agglomerate. Thus, even better understanding of the effects of280

core-shell properties to the agglomerates breakage behavior would be desirable.
For this, applying the core-shell model to more complex primary particle size
distributions is required. Moreover the presented methods can be extended to
spatial gradients in particle size distribution and particle density which offers
the possibility for the simulation of a larger range of materials.285
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