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Polymer-based batteries represent a promising candidate for next-generation batteries due
to their high power densities, decent cyclability and environmentally friendly synthesis.
However, their performance essentially depends on the complex multi-scale morphology of
their electrodes, which can significantly affect the transport of ions and electrons within
the electrode structure. In this paper, we present a comprehensive investigation of the10

complex relationship between the three-dimensional (3D) morphology of polymer-based
battery electrodes and their effective transport properties. In particular, focused ion beam
scanning electron microscopy (FIB-SEM) is used to characterize the 3D morphology of
three polymer-based electrodes which differ in material composition. The subsequent seg-
mentation of FIB-SEM image data into active material, carbon-binder domain and pore15

space enables a comprehensive statistical analysis of the electrode structure and a quan-
titative morphological comparison of the electrode samples. Moreover, spatially resolved
numerical simulations allow for computing effective properties of ionic and electronic trans-
port. The obtained results are used for establishing analytical regression formulas which
describe quantitative relationships between the 3D morphology of the electrodes and their20

effective transport properties. To the best of our knowledge, this is the first time that
the 3D structure of polymer-based battery electrodes is quantitatively investigated at the
nanometer scale.
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1 Introduction

The recent technological progress regarding electric vehicles, portable devices and consumer electron-
ics leads to increasingly demanding requirements for state-of-the-art batteries. Nowadays, the most
commonly used type of batteries are lithium-ion batteries due to their low self-discharge rate, high30

power density and decent energy density [1, 2]. However, ecological and environmental aspects are of
major importance with regard to next-generation battery technologies. In particular, organic active
materials have the potential to overcome the disadvantages of classical lithium-ion batteries, namely a
limited availability of the raw materials, a high toxicity and detrimental effects on the environment [3–
5]. Moreover, polymer-based batteries with organic active materials exhibit high-rate capabilities [6]35

and can be realized in a flexible design [7], which enables the usage of polymer-based battery electrodes
for small portable devices with a low energy consumption. In particular, a Ragone plot can be used to
set the polymer-based thin film technology into context with other energy storage systems such as the
dominating lithium ion technology and supercapacitors [8, 9]. Comparing polymer-based batteries,
supercapacitors and the classical lithium-ion technology, the latter offers the highest energy density,40

whereas supercapacitors enable the highest power density. In view of the Ragone plot, polymer-based
batteries are situated in between those two technologies, which makes them - among others - favorable
for acting as dampening element in hybrid storage systems extenuating high charging rates with a
reasonable energy density. In particular, poly(2,2,6,6-tetramethyl-4-piperinidyl-N -oxylmethacrylate)
(PTMA) is one of the most investigated redox-active polymer since the early work at the beginning45

of the 2000s [10, 11]. This pioneering work set the basis for research into organic materials for energy
storage solutions. The specific properties of PTMA, such as its high redox activity and stability,
attracted the attention of researchers and industry to this technology and led to a growing interest
in its commercial applications. In 2012 NEC tried to commercialize the first organic radical battery
to power computers in case of power failure to prevent data loss [12]. Recently, Evonik sold their50

material technology TAeTTOOz® to InnovationLab [13]. In general, the aim of these technologies is
the development of a printable flexible polymer battery. For this purpose, quantifying relationships
between the morphology of polymer-based battery electrodes and the resulting electrochemical per-
formance is crucial. More precisely, a quantitative analysis of ionic and electronic transport processes
in battery electrodes based on organic materials is critical since these are likely to be a limiting factor55

for the cell performance as in the case of classical lithium-ion batteries [14–21].

The PTMA-based electrodes discussed here are composed of PTMA, a binder material, and SuperP,
a conductive carbon black added to improve electronic conductivity (see Section 2.1 for more details
on the material composition). A recent quantitative analysis of the 3D structure of this type of
polymer-based electrode, conducted using synchrotron tomography, revealed a significant impact of60

the manufacturing processes on the resulting electrode microstructure [22]. The present paper realizes
a further step towards a systematic analysis of the 3D morphology of polymer-based electrodes, using
focused ion beam scanning electron microscopy (FIB-SEM). To the best of our knowledge, this is
the first time that the three-dimensional structure of this kind of battery electrodes is quantitatively
investigated with such a high resolution. In particular, this goes far beyond the use of conventional 2D65

SEM as described in [23], since imaging via 2D SEM only allows a qualitative morphological analysis,
whereas the 3D FIB-SEM tomography as applied in the present study enables a detailed analysis of
the three-dimensional electrode microstructure.

Transport processes of charged particles (ions and electrons) in the porous electrodes play a central
role in the overall electrochemical processes occurring in charging and discharging of the batteries.70

These processes take place at different spatial scales, each providing insights into the way ions and
electrons move through the electrode. These processes can be described at three different scales: at
the molecular level, where the interactions within the PTMA matrix are crucial; at the mesoscale,

2



where the porous microstructure of the electrode plays a central role; and at the macroscale, where
the effective transport properties determine the overall behavior of the battery.75

At the molecular level, transport is determined by interactions between ions, electrons, and the polymer
matrix. In PTMA, redox-active TEMPO units enable electron hopping in redox reactions, while ion
transport is influenced by factors such as polymerization and cross-linking. This scale is critical
to underst the fundamental interactions that determine the intrinsic electrochemical properties that
define the performance limits of the material. Although understanding the molecular scale is essential80

for optimizing ion mobility and electron conductivity, empirical measurements can determine key
parameters such as intrinsic ionic diffusivity, electronic conductivity, and reaction kinetics that can
be used to model the electrode behavior at the macroscopic scale. Techniques such as electrochemical
impedance spectroscopy (EIS) and galvanostatic cycling can be used to determine those parameters.

At the mesoscale, the electrode is treated as a porous medium with transport processes occurring85

within its microstructure. Charged particles move through it, with ions diffusing through the elec-
trolyte and electrons conducting through the solid phase. The electronic conduction is dominated by
the transport through the conductive additives since the PTMA has a lower intrinsic conductivity.
The mesoscale provides an understanding of how factors such as pore size, tortuosity and phase con-
nectivity influence transport efficiency. The concept of tortuosity generally refers to the complexity90

and length of the paths that ions and electrons must travel through the porous structure [24]. These
structural features determine how easily ions can diffuse through the electrolyte-filled pores and how
well electrons can pass through the solid phase. This scale is critical to how effectively the electrode
can support electrochemical reactions and how well it balances ion and electron transport, which ul-
timately affects the overall performance and current output of the battery. Mesoscale analysis plays95

a key role in optimizing microstructures to enhance battery efficiency and performance, often using
physics-based models like the pseudo two-dimensional (P2D) electrochemical model, widely applied
in conventional lithium-ion batteries following the foundational work of Doyle, Fuller, and Newman
[25–31]. More recently, a modified Doyle-Fuller-Newman model has been developed for PTMA-based
battery electrodes to describe charge transport processes in dual-ion batteries [32, 33].100

At the macroscale, the electrode’s microstructure is homogenized, and transport properties are de-
scribed using effective parameters. This scale treats the electrode as a continuous medium using aver-
aged properties like effective ionic and electronic conductivity to predict overall battery performance.
The macroscale approach simplifies the complexity of the microstructure into usable parameters for
large-scale simulations, aiding in the design and optimization of PTMA-based batteries.105

In this contribution, we focus on the mesoscale because it is crucial for the behavior at the macroscopic
scale, where most experimental measurements are performed to investigate battery performance under
different operating conditions. One such critical observation is the battery’s capacity, which does not
solely depend on the theoretical capacity derived from the intrinsic material properties at the molecular
level. Instead, it is also strongly influenced by the electrode’s microstructure at the mesoscale. Note110

that the electrolyte in the porous electrodes serves as a reservoir for the ions required for the redox-
reaction that ensures charge neutrality. As far as electronic transport is concerned, a minimum
amount of electronically conductive additives must be ensured to provide complete percolation through
the entire electrode thickness to guarantee the activation of all active material particles. Once this
amount is reached, no further conductive additives should be added to achieve an optimum specific115

capacity. More precisely, the percolation threshold is at 8 wt.-% SuperP according to [23], where
polymer-based electrodes with varying fractions of SuperP are investigated via conductivity impedance
measurements. In particular, it has been shown that there is no electrochemical activity below this
percolation threshold, while a range of capacity utilization values can be achieved above the percolation
threshold. This can be interpreted as follows: A minimum percolation path is required to ensure120
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proper contact within the electronic transport network and to trigger electrochemical activities, but
the amount of conducting additives is not sufficient to activate all PTMA particles. By increasing the
amount of SuperP, the maximum achievable absolute capacity is increased until a saturation value is
reached, determined by the amount of PTMA. For the purpose of investigating quantitative structure-
property relationships, three different electrode compositions with a content between 30 and 60 wt.-%125

of SuperP have been chosen to ensure a well-percolated electrode that also exhibits a high capacity
utilization as shown in [23].

The aim of this study is to investigate the connection between the mesoscopic and macroscopic de-
scriptions of transport phenomena in porous electrodes, specifically focusing on how the morphological
characteristics of the electrodes influence effective transport properties. To make this relationship ex-130

plicit, analytical formulas are derived that express the effective transport parameters in terms of
geometrical descriptors. To validate these formulas, we compare their predictions with results from
direct simulations performed on the microstructures.

The rest of the paper is organized as follows. Section 2 explains materials and methods considered
in this contribution, including a description of the manufacturing procedure of the three polymer-135

based electrodes with PTMA as active material (Section 2.1), and the subsequent imaging via 3D
FIB-SEM tomography (Section 2.2). Then, in Section 2.3, the segmentation of the 3D image data
into active material, carbon-binder domain and pore space is described. Afterwards, in Section 2.4,
various geometrical descriptors are explained which are used to characterize the 3D morphology of
the electrodes, whereas Section 2.5 contains a description of spatially-resolved numerical simulations140

of effective transport properties that are closely related to the electrochemical performance of the
electrodes. Section 3 contains the results which have been obtained in the present paper. In particular,
in Section 3.1, the differences between the nanostructures of the three electrode samples are statistically
analyzed. Next, in Section 3.3, relationships between the 3D nanostructure of the polymer-based
battery electrodes and effective transport properties are investigated by means of analytical regression145

formulas. Finally, Section 4 concludes and provides an outlook on possible future research.

2 Materials and methods

2.1 Material synthesis and electrode manufacturing

The electrodes considered in the present paper contain SuperP (specifically Super P® Conductive,
99+%, metals basis, manufactured by Alfa Aesar, USA) as the conductive additive. Carboxymethyl150

cellulose (CMC, Sigma Aldrich, USA) is used as the binder. Both SuperP and CMC were used
as received, without any additional purification. The active material, PTMA, was synthesized via
emulsion polymerization following the procedure described in [34]. In this study the particle type P2
from [34] is considered, consisting of nanoparticles with a mean particle size of 73 nm.

Furthermore, the manufacturing process of the polymer-based electrodes considered in this study is155

described in detail in [34]. For convenience, a brief summary of the main processing steps is provided
here. In particular, we consider three electrodes that differ in their material composition. The different
ratios of PTMA, SuperP and CMC are listed in Table 1, where the sample name corresponds to the
weight percentage of SuperP. For each sample, 500mg of active material were dispersed in 5mL water
using a Zentrimix 380R disperser (Andreas Hettich GmbH & Co, Germany) at 1,500 revolutions per160

minute for one hour. The electrode films were manufactured using a BYK byko-drive XL doctor-
blading setup, where the slurry was applied to KOH-etched aluminum foil with a blade gap set
to 200 µm and a casting speed of 250mms−1. The coated films were annealed for 18 h at 80 ◦C
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under ambient atmosphere. The resulting electrodes had thicknesses ranging from 70 µm to 150 µm,
depending on the slurry viscosity, and are referred to as SP30, SP45, and SP60. The electrodes were165

then punched into 15mm diameter discs using an MTI Corporation crimper, with a final electrode
area of 1.76 cm2 and a loading of 1 to 3mg after drying.

Material Sample SP30 SP45 SP60

PTMA / wt.−% 65 50 35
SuperP / wt.−% 30 45 60
CMC / wt.−% 5 5 5

Table 1: Material composition of three organic radical battery electrodes with different amounts of
active material PTMA and conductive additive SuperP, where the weight percentage of the CMC
binder is kept constant.

2.2 Tomographic imaging

In this section, we describe the sample preparation and imaging of the samples via 3D FIB-SEM
tomography [35, 36]. Each of the three polymer electrodes was first cut into 1× 3mm sections with a170

scalpel and fixed to a standard aluminum SEM holder using a carbon adhesive pad. They were then
sputtered with a layer of gold approximately 10 nm thick to further improve the electronic conductivity
at the sample surface. Infiltration with fillers such as resins or silicone was avoided. On the one hand,
this was due to the concern that infiltration would significantly alter the structures to be measured.
On the other hand, the infiltration of polymers creates a contrast problem, which in turn makes it175

difficult to distinguish between the sample and the infiltration material. Finally, without infiltration
it is possible to increase the speed of cutting the sample with the focus ion beam, which results in a
shorter measurement time. The samples were then transferred to the FIB-SEM, a ZEISS Crossbeam
340 at the Centre for Correlative Microscopy and Spectroscopy (CCMS). The crossbeam has a Gemini I
electron column that was operated at a low voltage of 1 keV for the tomography imaging measurements.180

The low voltage was chosen to minimize the penetration depth of the primary electrons, which avoids
the occurrence of artifacts. Moreover, the low voltage simplifies the segmentation of the resulting
image data since the shallow depth of field means that areas that are not in the slice plane quickly
become blurred. The gallium ion gun of the crossbeam, mounted at an angle of 54◦ to the electron
column, was operated at an acceleration voltage of 30 keV. To obtain a good view of the area of185

the sample that is to be imaged, an area of approximately 40 µm × 40 µm was first removed from
the sample using a gallium current of 30 nA. For sequential image acquisition, both the secondary
electron in-lens detector integrated in the electron column and the detector built into the side of the
microscope chamber, which also detects secondary electrons, were used. After polishing the side of the
previously exposed area intended for tomography with a gallium current of 700 pA and setting the tilt190

compensation and dynamic focus, the serial sectioning process of the tomography was started. The
cutting depth and pixel size were always chosen to be the same. More precisely, a pixel size of 15 nm
is used in case of the samples SP30 and SP45. Due to a new gallium source, allowing for a longer
measurement, a pixel size of 10 nm was used for the sample SP60. The sizes in numbers of voxels in
each spatial direction of the three reconstructed samples are reported in Table 2.195
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Sample x [num. voxels] y [num. voxels] z [num. voxels]

SP30 1237 700 1891
SP45 1796 700 880
SP60 2924 2122 1397

Table 2: Sample size in x−, y− and z-direction, respectively. Note that the y-direction corresponds
to the direction from the current collector to the separator, which is the main direction of ionic and
electronic transport.

2.3 Image processing

In the following, we describe the process of segmenting the raw FIB-SEM image data into three
components: active material (PTMA), carbon-binder domain (CBD), which consists of SuperP and
CMC, and pore space. After completing tomographic imaging described in Section 2.2, the raw data
was prepared for classification using the software Fiji [37]. First, the SIFT-based image drift correction200

was applied [38]. The data was then denoised by applying a 2D non-local means filter [39]. Due to the
non-infiltrated nature of the measurement, the shine through artifacts, which represent the background
of the sample in areas with no material in the cutting plane, had to be detected and removed. A U-
net based 3D neural network was used for this challenging post-processing step [40]. The network
was trained on many similar previous measurements not directly related to the present paper, which205

were classified using a random forest approach [41]. The removal of shine through artifacts using
neural networks worked well for the samples SP45 and SP60. However, the sample SP30 showed many
charging artifacts that the network had not been previously trained on, causing the network to fail.
Therefore, the previously mentioned random forest approach was used. Here, both input channels,
the InLens detector signal and the angled chamber detector signal, were used to manually train a new210

random forest classifier using the ilastik software package [42]. Although much slower than the neural
network approach, this ultimately resulted in a satisfactory removal of the shine through artifacts.

The resulting binary image was further classified into the active PTMA phase and the carbon-binder
domain. For this purpose, a morphological approach was used that exploits the fact that the carbon-
binder domain consists of much smaller, clustered particles compared to the PTMA phase. Based on215

this knowledge, a local thickness filter that is included in the Fiji software package was applied [37].
The result was then thresholded into the two remaining phases [43]. The segmentation procedure and
the resulting segmented 3D images are visualized in Figures 1 and 2, respectively.
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Figure 1: Exemplary selected 2D slice of sample SP60. From left to right, a continuous transition is
shown from the grayscale SEM image to the segmentation into active material (red), carbon-binder
domain (blue) blue and pore space (black).

Figure 2: Visualization of the segmented 3D images. The PTMA phase is shown in red, the carbon-
binder domain is shown in blue and the pore space is kept transparent. The axis scale is in voxel,
where the samples on the left (SP30) and in the middle (SP45) have a voxel size of 15 nm. The sample
displayed on the right (SP60) has a voxel size of 10 nm.

2.4 Geometrical descriptors220

The following section provides a brief explanation of several geometrical descriptors used to charac-
terize the 3D morphology of the polymer-based battery electrodes. Superscripts are used to indicate
the specific phase for which each descriptor is calculated. Specifically, the superscripts AM (active
material), CBD (carbon-binder domain) and P (pore space) are used to refer to the PTMA phase,
the carbon-binder domain, which includes both SuperP and CMC, and the pore space, respectively.225

Furthermore, the superscript is omitted in case when the underlying phase is clear from the context.

Volume fraction. One of the primary geometrical descriptors is the volume fraction ε ∈ [0, 1] of
the phase under consideration. This quantity is estimated from 3D image data using the well-known
point-count method [44]. Besides the globally computed volume fraction ε, the heterogeneity of the
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electrode nanostructures will be quantified by computing the volume fraction for non-overlapping230

cutouts of size 100 µm× 100 µm× 100 µm.

Specific surface area. In addition to volume fraction, we consider the specific surface area, which will
be denoted by S. It is defined as the surface area between the considered phase and its complement
divided by the volume of the sampling window. This quantity is estimated from voxelized 3D image
data using an approach presented in [45], which is based on a convolution of the image with a 2 ×235

2 × 2 kernel. Moreover, the specific surface areas of the different phases will be used to define more
sophisticated geometrical descriptors as described in the next paragraph.

Interfaces. In addition to the specific surface areas of the three phases, we consider the specific area
of the interface between active material and the carbon-binder domain, denoted by SAM∩CBD, which
is of importance with regard to electronic transport. Analogously, the specific area of the interface240

between active material and the pore space, denoted by SAM∩P, is considered since a sufficiently large
interface is required to ensure an ionic flux into the active material.

Mean chord length. A further geometrical descriptor is the chord length distribution [46, 47], where
a chord is a line segment that is completely contained in a predefined phase and can not be extended
further without intersecting the complementary phase. In general, the probability distribution of chord245

lengths depends on the orientation of the line segments. We compute the chord length distribution
for the three Cartesian axes directions. In particular, for each of these three directions, we compute
the mean value of the corresponding chord length distribution. In the following, the average of these
three mean values, denoted by µ(C), is used.

Constrictivity. In order to explain the notion of constrictivity, we first recall the concepts of the con-250

tinuous phase size distribution (CPSD) and simulated mercury intrusion porosimetry (SMIP). Namely,
CPSD : [0,∞) → [0, 1] is a function, where the value CPSD(r) is given by the volume fraction of the
phase under consideration, which can be covered by (possibly overlapping) spheres with radius r ≥ 0
such that the spheres are completely contained in the considered phase [47, 48]. Furthermore, by
rmax the maximum radius r > 0 is denoted such that CPSD(r) ≥ ε/2 where ε is the volume fraction255

of the considered phase. The concept of SMIP is similar to that of CPSD, with the only difference
that the value SMIP(r) of SMIP : [0,∞) → [0, 1] is given by the volume fraction of the phase under
consideration, which can be covered by (potentially overlapping) spheres with radius r forming an
intrusion from a predefined direction. Analogously to rmax, by rmin the maximum radius r > 0 is
denoted such that SMIP(r) ≥ ε/2. In general, rmin depends on the direction of the intrusion. Thus,260

rmin is computed for each of the three axes directions separately and, subsequently, the average of the
three obtained values is used. The constrictivity β of the phase under consideration is then defined
as β = (rmin/rmax)

2. It is a measure for the strength of bottleneck effects and has been originally
introduced in [49]. Since rmin ≤ rmax by definition, it holds that β ∈ [0, 1], where β = 1 corresponds
to the situation that there are no constrictions within the considered phase. In [50–52], it has been265

shown that the constrictivity β of the pore space has a significant impact on effective macroscopic
properties of porous media such as effective diffusivity or permeability.

Mean value and standard deviation of geodesic tortuosity. A further transport-relevant geometrical
descriptor is the so-called geodesic tortuosity. Besides geodesic tortuosity, there exist several other
concepts of tortuosity in the literature, see e.g., [24, 53] for a comprehensive overview. According to270

the nomenclature proposed in [24], the geodesic tortuosity considered in the present paper corresponds
to τdir geodesic. It will be denoted by τg in the following. This purely geometrical descriptor captures the
windedness of transport paths, which are completely contained in a predefined phase. From 3D image
data, the distribution of τg is determined by computing the lengths of shortest paths from randomly
selected voxels within the considered phase, which belong to a predefined starting plane, to a parallel275
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target plane, divided by the distance between those two planes, where shortest paths are computed
using Dijkstra’s algorithm [54]. Usually, the starting and target planes are chosen orthogonal to the
relevant transport direction. For the image data considered in the present paper, we compute the
distribution of τg with respect to each of the three Cartesian axes directions. The mean value µ(τg) of
τg is then determined by averaging over all shortest path lengths divided by the distance between the280

starting and target planes. Furthermore, the empirical standard deviation σ(τg) of these normalized
path lengths is considered.

Local variants of geometrical descriptors. The computation of the geometrical descriptors stated
above allows us to capture “global” morphological features of the electrodes. However, in case of
lithium-ion batteries, it is well known that local heterogeneity of electrodes has a strong influence285

on the resulting electrochemical performance [55–58]. This is also expected to hold for polymer-
based batteries, which motivates the computation of local variants of geometrical descriptors. For
this purpose, the sampling window of each of the three material samples SP30, SP45 and SP60 is
partitioned into non-overlapping cutouts of size 1 µm×1 µm×1 µm. Next, the geometrical descriptors
considered in the present paper are computed separately on each of these cutouts, which results in290

probability distributions of these local descriptors. In particular, Section 3.1 contains results regarding
the distribution of local volume fraction as well as of the local specific surface area of interfaces.

2.5 Numerical simulation of effective transport properties

As discussed in the introduction, the primary objective of this study is to explore how electrode
morphology affects the effective transport coefficients. To establish a quantitative link between mi-295

crostructural features and transport behavior, we derive analytical expressions that relate the effective
transport properties — such as ionic and electronic conductivity — to specific geometrical descriptors
of the electrode as listed in the previous section.

The intrinsic transport coefficient D reflects the ideal transport properties of a uniform material, while
the effective transport coefficient Deff incorporates the effects of obstacles and phase connectivity. The300

latter is a scaled version of the intrinsic coefficient that accounts for the complexity of the 3D porous
microstructure and is crucial for macroscopic or multiscale simulations. It incorporates the influence
of the real microstructure geometry, enabling more accurate predictions of transport phenomena.

To quantify the influence of morphology on transport processes, we use the M-factor, which is defined
as the ratio between the effective transport coefficient and the intrinsic transport coefficient:305

M =
Deff

D
. (1)

To quantify this relationship, we derive analytical formulas to represent the M-factor as a function of
key geometrical descriptors. To validate these formulas, we compare the analytically derived M-factor
with one derived by direct simulations on the 3D microstructures. The notion of the M-factor is closely
related to the effective tortuosity ([59–62]) τeff, which is defined in the literature as:

τeff = ε
D

Deff
, (2)

where ϵ represents the volume fraction of the phase of interest (e.g., the solid phase for electronic310

conduction or the pore space for ionic diffusion). Thus it holds M = ε
τeff

.

For a general simulation of transport processes, the effective tortuosity must be computed in all three
spatial directions — x, y, and z. However, the primary transport direction in batteries is usually
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orthogonal to the current collector. Therefore, in this study, we focus solely on the effective tortuosity
in the main transport direction. Depending on the homogeneity of the electrodes and the scale of315

the simulation (e.g., in full-cell simulations), the effective tortuosity in the other directions may be
important, but here we limit our characterization of effective transport coefficients to the primary
transport direction, which is along the y-axis as indicated in Figure 2.

The effective tortuosity in this main direction is computed via finite element simulations by solving
the steady-state diffusion equation within the 3D microstructure:320

∇ · (D∇u) = 0, (3)

where u represents the concentration or potential field, and D is the intrinsic transport coefficient.
Dirichlet boundary conditions are applied along the main transport direction, while no-flux boundary
conditions are used on the remaining boundaries. The flux from this simulation is compared to the flux
in a corresponding homogenized domain with no microstructural features, allowing us to compute the
effective transport coefficient Deff. Further details on the computation of τeff are provided in [62].325

The imposed boundary conditions create a gradient in the solution along the main direction of elec-
tronic and ionic transport, as shown in Figure 3, where the transport is predominantly from top to
bottom. The ionic transport through the electrolyte is shown in the left column of the figure, while
the center column illustrates the electronic transport pathways within the SuperP phase. The right-
hand column displays transport within the PTMA phase, which does not form a fully percolating330

network. However, full percolation of PTMA is not required, as ions are delivered to the PTMA
particles through the surrounding electrolyte, rather than through direct transport from one PTMA
particle to another. The simulations also show localized 3D effects that illustrate the influence of the
microstructure on the transport process.

Given the total dimensions of the samples SP30, SP45 and SP60 , see Table 2, subsamples have been335

considered of size not larger than 1024 × 1024 × 1024 voxels, i.e., a box with a maximum length of
1024 along each axis. A list of all subsamples is given in Table 3. The FEM simulations have been
performed on each of these subsamples. These computations have been performed on the HPC-cluster
HSUper (see Acknowledgments) by a finite element code based on the deal.II library [63].
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Figure 3: Visualization of the finite element solution of the transport problem to compute the effective
transport coefficients in the three phases (PTMA, CBD, pores), where the transport direction is from
top to bottom, i.e. in the main direction of transport. The common color scale is shown at the right-
hand side of the third row of images, where the red color corresponds to the value 1, and the blue
color to 0. The gray color is used to indicate all parts that are neither connected to the top nor
to the bottom surface and, therefore, do not contribute to the transport process. The electrolyte
concentration in the pore space is shown in the left column, the electric potential distribution within
the carbon-binder domain in the middle column, and the ionic concentration within PTMA in the
right column. Note that the different rows correspond to the subsamples SP30.1, SP45.2 and SP60.2
(from top to bottom). In particular, the PTMA phase is not connected from top to bottom, i.e. is not
percolating, in case of subsamples SP45.2 and SP60.2.
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Subsample Size in x-direction Size in y-direction Size in z-direction Position Symbol

SP30.1 1024 700 1024 106,1,1 ×
SP30.2 1024 700 1024 106,1,868 ×
SP45.1 1024 700 880 1,1,1 •
SP45.2 1024 700 880 773,1,1 •
SP60.1 1024 1024 1024 1,1,186 ■
SP60.2 1024 1024 1024 950,1,186 ■
SP60.3 1024 1024 1024 1901,1,186 ■
SP60.4 1024 1024 1024 1,1099,186 ■
SP60.5 1024 1024 1024 950,1099,186 ■
SP60.6 1024 1024 1024 1901,1099,186 ■

Table 3: Information regarding the subsamples containing (from left to right): Name of the subsample,
size of the subsample in x-, y- and z-direction (in number of voxels), the position of the lower left voxel
of the subsample with respect to the corresponding sample, and a unique symbol as visual identifier.

3 Results and discussion340

3.1 Statistical analysis of nanostructure via subsamples

To quantitatively compare the electrode samples SP30, SP45 and SP60, the geometrical descriptors
detailed in Section 2.4 are computed for all subsamples (see Table 3 for further information regarding
the subsamples). The results are shown in Figure 4. In particular, the volume fractions εP and εCBD of
pore space and the carbon-binder domain lie in the ranges of [0.70, 0.81] and [0.10, 0.23], respectively.345

Notably, there is significant variability in porosity within the subsamples of SP60. This variability is
even more pronounced with respect to the volume fraction of the carbon-binder domain. A similar
behavior is also observed with regard to other geometrical descriptors and the M-factor.

Furthermore, the specific surface area of the pore space (SP) as well as the carbon-binder domain
(SCBD) is significantly higher for the sample SP60 compared to the other two samples as shown in the350

second column of Figure 4. This finding is unexpected, as there is no significant difference in specific
surface area when comparing SP30 and SP45 despite the fact that the weight percentage of SuperP
differs between SP30 and SP45 by the same amount as between SP45 and SP60.

The mean chord length (µ(C)), as depicted in the third column of Figure 4, exhibits a strong correlation
with the volume fraction of the respective phase, with correlation coefficients of 0.77 for the pore355

space and 0.96 for the carbon-binder domain. Moreover, similar to the specific surface area, this
characteristic also indicates a finer structure of both the pore space and the CBD for SP60 compared
to SP30 and SP45.
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Figure 4: Morphological characterization of subsamples of the polymer-based electrodes SP30, SP45
and SP60. The columns correspond to the geometrical descriptors stated in Section 2.4. The results
shown in the upper row concern the pore space, whereas the lower row refers to the CBD. The shapes
and colors relate to the sample and subsample symbols as given in Table 3, respectively.

With regard to the carbon-binder domain, there is a high variation of constrictivity within the con-
sidered subsamples only in case of sample SP60, see Figure 4. Compared to the mean chord length,360

the constrictivity of the respective phases is less correlated with the volume fraction. More precisely,
the values of these two descriptors have a correlation coefficient of 0.58 for the pore phase and 0.55
in case of the CBD. Therefore, a multi-parameter formula for predicting the M-factor in Section 3.3
that incorporates both ε and β is considered more promising than a formula based solely on ε.

Regarding the mean geodesic tortuosity of the pore space, no significant difference are observed be-365

tween the samples, as indicated by the small range of values in the corresponding plots shown in
Figure 4. This is likely due to the high porosity values, which typically ensure almost straight trans-
port paths for ions. However, the situation is different for the CBD. With volume fractions of CBD
ranging between 10% and 23%, the normalized lengths of shortest transport paths within the CBD
are significantly larger than one, with variations both between the three samples and within individual370

subsamples. The sample with the largest variation between the corresponding subsamples is SP45.
Besides mean geodesic tortuosity, the standard deviation of geodesic tortuosity is also considered as
one possible descriptor that quantifies the local heterogeneity of the nanostructure. For example, the
two subsamples of SP30 have a similar value of µ(τg), but show a clear difference in σ(τg). Moreover,
the low correlation between σ(τg) and µ(τg) as well as ε indicates that a combination of these three375

quantities is well suited for predicting the M-factor, see Equation (7) below.

3.2 Analysis of local heterogeneity

Besides the computation of geometrical descriptors on each subsample, we also consider the distribu-
tion of local volume fraction for each of the three phases (PTMA, CBD, pores) to quantify the local
heterogeneity of electrodes. For this purpose, non-overlapping cutouts with a size of 1 µm×1 µm×1 µm380

are used as described in Section 2.4. The results obtained for the distribution of local volume fraction
are shown in Figure 5. In particular, the three electrodes (SP30, SP45, SP60) exhibit clearly different
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distributions of local porosity not only in the mean porosity – expected due to the different material
compositions – but also in the shape of the distribution. For example, in case of SP30 a significant
amount of cutouts exhibit a porosity between 50% and 60%, whereas SP45 primarily consists of re-385

gions with porosity values larger than 70%. The center plot of Figure 5 shows that for all three
samples, several cutouts contain no CBD at all, which is most pronounced in SP30. Furthermore,
the spatial distribution of the active material is far from homogeneous, indicated by the plot on the
right-hand side of Figure 5. More precisely, the vast majority of cutouts in SP45 and SP60 lack any
active material, while those containing it can exhibit volume fractions up to 100%. This is due to390

the nanoparticles used for synthesizing the active material via emulsion polymerization, which tend
to agglomerate to large clusters, resulting in local PTMA volume fractions close to 100% [34].
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Figure 5: Distribution of local volume fraction of pore space (left), CBD (center) and active material
(right).

For SP30, the amount of cutouts without active material is significantly lower. More precisely, the
fraction of cutouts that do not contain any active material is 13% for SP30 compared to 56% for SP45
and 52% for SP60.395

The interface area between PTMA and the other two phases is crucial for the electrochemical perfor-
mance, as shown in the left-hand plot of Figure 6. Notably, the majority of the active material surface
is in contact with the pore space. In particular, SP30 has the largest interface area between active
material and the CBD, even though SP30 is the sample that contains the least amount of SuperP.
Moreover, the right-hand plot of Figure 6 shows the distribution of the (local) ratio of the specific400

interface area between active material and pore space (SAM∩P) relative to the (entire) specific surface
area of active material (SAM). This ratio is computed for each non-overlapping cutout with a size
of 1 µm × 1 µm × 1 µm to investigate the spatial distribution of interfaces. Almost all local volumes
(except for SP30) show some degree of contact between the active material phase and the CBD, a
crucial property for the proper electrode function. Moreover, sample SP60 exhibits a non-negligible405

amount of regions, where the interface between pore space and active material only makes up for 40
to 70% of the (entire) specific surface area of active material, which in turn results in a comparatively
large contact area between CBD and active material.
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between PTMA and the CBD (filled part) and the interface between PTMA and the pore space
(shaded part). Right: Distribution of the local ratio of the specific interface area between active
material and pore space divided by the (entire) specific surface area of active material.

Finally, we consider the geodesic tortuosity of the three electrode phases in more detail, see Figure 7
which depicts the distribution of local geodesic tortuosity of the different phases and samples. In410

particular, it can be observed that there is no path within the active material phase between the two
opposing planes in case of samples SP45 and SP60, which is not necessarily required for a proper
functioning of the electrode. Furthermore, in terms of pore space and CBD, SP30 and SP60 exhibit a
high degree of similarity. However, with regard to SP45, the shortest paths in the pore space tend to
be slightly shorter, while in the CBD, they tend to be slightly longer compared to the other samples.415
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Figure 7: Distribution of local geodesic tortuosity of pore space (left), CBD (center) and active material
(right). Note that in case of the active material phase, there are no shortest paths from the starting
plane to the opposite plane in case of SP45 and SP60.

3.3 Microstructure-property relationships

In addition to the computation of geometrical descriptors, FEM simulations have been performed, as
stated in Section 2.5, in order to determine the effective tortuosity and the M-factor of the CBD and
pore space for all subsamples considered in the present paper, see Table 4.
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Subsample εP τPeff MP
sim εCBD τCBDeff MCBD

sim Symbol

SP30.1 0.71 1.19 0.60 0.10 6.14 0.02 ×
SP30.2 0.70 1.21 0.58 0.12 5.38 0.02 ×
SP45.1 0.81 1.12 0.72 0.15 3.75 0.04 •
SP45.2 0.80 1.13 0.70 0.10 7.03 0.01 •
SP60.1 0.78 1.21 0.65 0.16 6.06 0.03 ■
SP60.2 0.76 1.23 0.62 0.12 6.02 0.02 ■
SP60.3 0.77 1.22 0.63 0.13 6.09 0.02 ■
SP60.4 0.70 1.36 0.51 0.22 3.64 0.06 ■
SP60.5 0.72 1.33 0.54 0.23 3.40 0.07 ■
SP60.6 0.71 1.34 0.20 0.20 4.03 0.05 ■

Table 4: Effective tortuosity and M-factor of pore space and CBD obtained by FEM simulations,
together with the volume fraction of the corresponding phase.

We now investigate the relationship between various geometrical descriptors and the M-factor of the
CBD and the pore space, respectively. Many formulas have been proposed in literature for predicting
the M-factor of various materials and different transport modes from geometrical descriptors [52, 64,
65]. In the present paper, we discuss four of these formulas, which have demonstrated significant
prediction accuracy for both the pore space and CBD, as quantified by the deviation measures MAPE
and R2. Recall that the mean absolute percentage error (MAPE) is given by

MAPE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|
|yi|

where ŷ = (ŷ1, . . . , ŷn) is an n-dimensional vector of predictions of some “ground truth” data y =
(y1, . . . , yn). A further deviation measure is the coefficient of determination (R2) which is defined as

R2(y, ŷ) = 1−
1
n

∑n
i=1(yi − ŷi)

2

1
n

∑n
i=1(yi − y)2

, where y = 1
n

∑n
i=1 yi.

The first formula for predicting the M-factor relies solely on the volume fraction ε of the respective
phase, i.e., we consider the predictor M̂1 given by

M̂1 = εc1 , (4)

where c1 > 1 is some constant. Various numerical values have been proposed in literature for c1,420

ranging from 1.5 (Marshall formula) to 2 (Buckingham formula) [66–68]. For the data considered in
this study, the value c1 = 1.71 as proposed in [64] provided the best results in terms of both MAPE
and R2, and will be used in the following analysis.

The second formula provides the predictor M̂2 which not only accounts for the volume fraction ε of the
phase, but also incorporates the mean geodesic tortuosity µ(τg) and constrictivity β. This captures
both geometric bottleneck effects and the relative path lengths. The formula is expressed as

M̂2 = εc1βc2µ(τg)
c3 , (5)

where c1 > 0, c2, c3 ≥ 0 are some constants. The formula in Equation (5) was originally proposed in [65]
with the constants (c1, c2, c3) = (1.15, 0.37,−4.39). However, the vector of constants (c1, c2, c3) =425
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(1, 0,−8.45), proposed later in [50], proved to be more effective for predicting the M-factor of the data
considered in the this paper and will therefore be used in the subsequent analysis.

A modified version of the formula given in Equation (5) can be found in [52]. It provides the predictor

M̂3 of the M-factor, where the constrictivity β appears in the exponent of the volume fraction ε as
follows:

M̂3 = εc1+c2βµ(τg)
c3 , (6)

with some constants c1, c2, c3 such that c1+ c2 ≥ 0, c3 ≤ 0. In the following we consider the numerical
values (c1, c2, c3) = (1.25,−1.25,−7.82) which have been proposed in [50].

Finally, a formula is considered which has been introduced in [69] and provides a further predictor

(denoted by M̂4) for the M-factor. It assesses the impact of the pore structure on the M-factor by
considering the standard deviation of the geodesic tortuosity σ(τg) instead of the constrictivity β.

More precisely, the predictor M̂4 is given by

M̂4 = c1µ(τg)
c2σ(τg)

c3εc4 , (7)

where the choice (c1, c2, c3, c4) = (1.18,−9.17, 0.03, 1.02) of the constants c1, c2, c3, c4 proposed in [50]430

yields an improved fit of the M-factor for the data considered in the present paper, compared to the
numerical values of c1, c2, c3, c4 derived in [69].

3.4 Evaluation of prediction power

Using the formulas given in Equations (4) to (7) for predicting the M-factor, using the constants
c1, c2, c3, c4 as specified above, leads to the results shown in Figure 8.435
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Figure 8: Prediction of M-factor via analytical regression formulas. The upper row contains the results
which have been obtained for the pore space, the lower one those for the CBD. The shape and color
codings refer to the individual subsamples as stated in Table 3.

A quantitative evaluation of the results shown in Figure 8 in terms of MAPE and R2 is given in Table 5.
Overall, one can observe an improved accuracy of the predictors of the M-factor as the number of
geometrical descriptors included in Equations (4) to (7) increases, despite the constants c1, c2, c3, c4

17



in these formulas being fitted in the literature for different materials and length scales. The most
accurate predictors for the data in this study, as measured by MAPE and R2, are M̂3 for the CBD, and440

M̂4 for the pore space, see Table 5. Notably, for the CBD, M̂3 significantly outperforms the widely
used predictor M̂1, which relies solely on ε [50, 64, 66–68]. This is because two material phases with
a similar volume fraction can still differ significantly in more sophisticated geometrical descriptors as
shown in Section 3.1.

Deviation measure Phase M̂1 M̂2 M̂3 M̂4

MAPE pore space 0.04181 0.04622 0.03616 0.03518

R2 pore space 0.83729 0.66458 0.80182 0.87475

MAPE CBD 0.29574 0.16464 0.13955 0.16089

R2 CBD 0.68055 0.89553 0.91235 0.87457

Involved geometr. descriptors ε ε, β, µ(τg) ε, β, µ(τg) ε, µ(τg), σ(τg)

Table 5: Quantitative comparison of prediction power of M̂1, M̂2, M̂3, M̂4. In each row, the highest
accuracy is highlighted.

Moreover, due to the high porosity of samples SP30, SP45 and SP60, the prediction of the M-factor445

via M̂2 and M̂3, which both contain the constrictivity β, performs worse compared to M̂4 since
bottleneck effects within the pore space seem not to be a limiting factor. For the CBD, using the
standard deviation of geodesic tortuosity σ(τg) instead of the constrictivity β leads to a significant

improvement of the prediction accuracy. Notably, the predictor M̂4 given by the analytical regression
formula in Equation (7) is also the best predictor in [64], despite the study focusing on diffusion in450

loam and sand is considered at a much larger scale. This indicates that both the mean length of
shortest transport paths and the variability of these lengths are suitable geometrical descriptors for
predicting diffusive properties of multi-phase materials, where the volume fraction of the transport
phase is between 10 and 40%.

4 Conclusions and outlook455

In this contribution, we investigate three polymer-based battery electrodes, consisting of PTMA as
active material, SuperP as the conductive additive and CMC as the binder, using 3D FIB-SEM
tomography. The samples differ in material composition and, to the best of our knowledge, this
is the first quantitative analysis of the three-dimensional morphology of polymer-based batteries at
such a high-resolution. Our analysis shows a significant local heterogeneity within the electrode460

structure. The active material, synthesized via emulsion-polymerization, forms nanoparticles that
tend to agglomerate during electrode processing from slurries. It turned out that the surface area
of the active material is predominantly in contact with the pore space, which may hinder electron
transport due to the comparatively low interface area between PTMA and the CBD, potentially
reducing electrochemical performance. Among the three electrodes, the sample with the highest465

content of conductive additives has the finest structure as indicated by large surface areas and low mean
chord lengths for both the pore space and the CBD. As in case of the geometrical descriptors, a strong
local variation within the electrode is observed in the effective transport properties, which depend on
microstructural features and influence electronic transport within the CBD and ionic transport through
the pore space. Moreover, quantitative microstructure-property relationships are investigated. For470

the CBD, an analytical regression formula that includes the volume fraction, mean length of shortest
transport paths and a bottleneck factor accurately predicts the M-factor. In particular, it is shown
that the volume fraction of the CBD alone is not sufficient to predict the transport properties. In
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case of ionic transport within the pore space, the combination of porosity, mean length of shortest
transport paths and the standard deviation of geodesic tortuosity, which quantifies the electrode’s475

local structural variability, allows reliable predictions of the M-factor. Regarding the prediction of
effective electronic tortuosity of the CBD phase, the mean absolute percentage error is reduced by
more than half by considering these more sophisticated geometrical descriptors instead of using the
most widely used prediction formula that is solely based on the volume fraction. This highlights the
importance of the electrode’s complex 3D geometry in influencing ionic transport.480

In a forthcoming research paper, we aim to apply data-driven stochastic 3D microstructure modeling
to generate a wide range of realistic virtual electrode structures, enabling virtual materials testing
for polymer-based battery electrodes. In particular, the 3D FIB-SEM data considered in the present
paper allows to take the morphology of nanopores into account, while synchrotron tomography will
be used to quantify the large-scale spatial distribution of PTMA. The effective transport properties485

determined in this study can then be used to perform electrochemical simulations at the macroscopic
scale. This will enable model-based investigations of the C-rate dependent power density, which - like
the energy density - can be significantly affected by the electrode morphology. Another possible topic
for future research is the investigation of the electrodes’s morphology after electrolyte filling and after
cycling. To conclude, future research activities are required to exploit the full potential of polymer-490

based batteries with tailor-made microstructure as cost-effective and environmentally friendly energy
storage technology.
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J. R. Binder, I. Manke, T. Carraro, and V. Schmidt, “A data-driven modeling approach to quan-
tify morphology effects on transport properties in nanostructured NMC particles” International
Journal of Solids and Structures, 280, 112394, 2023.

[63] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz, T. Heister, L. Heltai,
M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, B. Turcksin, D. Wells, and S. Zampini, “The685

deal.II library, version 9.5” Journal of Numerical Mathematics, 31, 231–246, 2023.

[64] B. Prifling, M. Weber, N. Ray, A. Prechtel, M. Phalempin, S. Schlüter, D. Vetterlein, and
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