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Polymer-based batteries represent a promising candidate for next-generation batteries due
to their high power densities, decent cyclability and environmentally friendly synthesis.
However, their performance essentially depends on the complex multi-scale morphology of
their electrodes, which can significantly affect the transport of ions and electrons within
the electrode structure. In this paper, we present a comprehensive investigation of the10

complex relationship between the three-dimensional (3D) morphology of polymer-based
battery electrodes and their effective transport properties. In particular, focused ion beam
scanning electron microscopy (FIB-SEM) is used to characterize the 3D morphology of
three polymer-based electrodes which differ in material composition. The subsequent seg-
mentation of FIB-SEM image data into active material, carbon-binder domain and pore15

space enables a comprehensive statistical analysis of the electrode structure and a quan-
titative morphological comparison of the electrode samples. Moreover, spatially resolved
numerical simulations allow for computing effective properties of ionic and electronic trans-
port. The obtained results are used for establishing analytical regression formulas which
describe quantitative relationships between the 3D morphology of the electrodes and their20

effective transport properties. To the best of our knowledge, this is the first time that
the 3D structure of polymer-based battery electrodes is quantitatively investigated at the
nanometer scale.
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1 Introduction

The recent technological progress regarding electric vehicles, portable devices and consumer electron-
ics leads to increasingly demanding requirements for state-of-the-art batteries. Nowadays, the most
commonly used type of batteries are lithium-ion batteries due to their low self-discharge rate, high30

power density and decent energy density [1, 2]. However, ecological and environmental aspects are of
major importance with regard to next-generation battery technologies. In particular, organic active
materials have the potential to overcome the disadvantages of classical lithium-ion batteries, namely a
limited availability of the raw materials, a high toxicity and detrimental effects on the environment [3–
5]. Moreover, polymer-based batteries with organic active materials exhibit high-rate capabilities [6]35

and can be realized in a flexible design [7], which enables the usage of polymer-based battery electrodes
for small portable devices with a low energy consumption. In particular, a Ragone plot can be used to
set the polymer-based thin film technology into context with other energy storage systems such as the
dominating lithium ion technology and supercapacitors [8, 9]. Comparing polymer-based batteries,
supercapacitors and the classical lithium-ion technology, the latter offers the highest energy density,40

whereas supercapacitors enable the highest power density. In view of the Ragone plot, polymer-based
batteries are situated in between those two technologies, which makes them - among others - favorable
for acting as dampening element in hybrid storage systems extenuating high charging rates with a
reasonable energy density.

In particular, poly(2,2,6,6-tetramethyl-4-piperinidyl-N -oxylmethacrylate) (PTMA) is one of the most45

investigated redox-active polymer since the early work at the beginning of the 2000s [10, 11]. This pio-
neering work set the basis for research into organic materials for energy storage solutions. The specific
properties of PTMA, such as its high redox activity and stability, attracted the attention of researchers
and industry to this technology and led to a growing interest in its commercial applications. In 2012
NEC tried to commercialize the first organic radical battery to power computers in case of power50

failure to prevent data loss [12]. Recently, Evonik sold their material technology TAeTTOOz® to
InnovationLab [13]. In general, the aim of these technologies is the development of a printable flexible
polymer battery. For this purpose, quantifying relationships between the morphology of polymer-
based battery electrodes and the resulting electrochemical performance is crucial. More precisely, a
quantitative analysis of ionic and electronic transport processes in battery electrodes based on organic55

materials is critical since these are likely to be a limiting factor for the cell performance as in the case
of classical lithium-ion batteries [14–21].

A first quantitative investigation of the 3D structure of polymer-based electrodes via synchrotron
tomography has shown a significant influence of the manufacturing processes on the resulting electrode
microstructure [22]. The present paper realizes a further step towards a systematic analysis of the60

3D morphology of polymer-based electrodes, using focused ion beam scanning electron microscopy
(FIB-SEM). To the best of our knowledge, this is the first time that the three-dimensional structure of
this kind of battery electrodes is quantitatively investigated with such a high resolution. In particular,
this goes far beyond the use of conventional 2D SEM as described in [23], since imaging via 2D SEM
only allows a qualitative morphological analysis, whereas the 3D FIB-SEM tomography as applied in65

the present study enables a detailed analysis of the three-dimensional electrode structure including a
precise depiction of the electronic transport network on the nanoscale as well as the paths within the
nanoporous network, which significantly influence ionic transport.

Note that the electrolyte in the porous electrodes serves as a reservoir for the ions required for the
redox-reaction that ensures charge neutrality. As far as electronic transport is concerned, a minimum70

amount of electronically conductive additives must be ensured to provide complete percolation through
the entire electrode thickness to guarantee the activation of all active material particles. Once this
amount is reached, no further conductive additives should be added to achieve an optimum specific
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capacity. More precisely, the percolation threshold is at 8 wt.-% SuperP according to [23], where
polymer-based electrodes with varying fractions of SuperP are investigated via conductivity impedance75

measurements. In particular, it has been shown that there is no electrochemical activity below this
percolation threshold, while a range of capacity utilization values can be achieved above the percolation
threshold. This can be interpreted as follows: A minimum percolation path is required to ensure
proper contact within the electronic transport network and to trigger electrochemical activities, but
the amount of SuperP is not sufficient to activate all PTMA particles. By increasing the amount of80

SuperP, the maximum achievable absolute capacity is increased until a saturation value is reached,
which is equals the amount of PTMA. For the purpose of investigating quantitative structure-property
relationships, three different electrode compositions with a content between 30 and 60 wt.-% of SuperP
have been chosen to ensure a well-percolated electrode that also exhibits a high capacity utilization
as shown in [23].85

In the present paper, the investigation of the electrodes considered in [23] is extended to charge trans-
port processes, which are typically characterized by so-called effective transport coefficients [24]. In
the context of porous electrodes, these characteristics are used to quantitatively describe the trans-
port of ions or electrons in the porous medium whose morphology varies at the microscopic level. In
particular, they represent the average/macroscopic behavior of transport phenomena and are essential90

for understanding and predicting the electrochemical performance of the electrodes. A key quantity
often exploited to determine effective transport coefficients is effective tortuosity [22, 25–27], which
is used as scaling factor for the ionic diffusion and electronic conductivity coefficients to obtain an
effective coefficient that can be applied in mesoscopic and macroscopic models. Note that effective
tortuosity is used in a similar way to scale both Fick’s diffusion processes and the electronic trans-95

port of charged particles. In addition, effective transport coefficients can be applied in homogenized,
physics-based electrochemical models like the pseudo two-dimensional (P2D) electrochemical model
used in the context of conventional lithium-ion batteries, which is based on the pioneering work of
Doyle, Fuller and Newman [28–32]. Recently, a modified Doyle-Fuller-Newman model has been de-
rived for PTMA-based battery electrodes to describe charge transport processes in a dual-ion battery100

[33, 34]. Furthermore, cell design for such polymer-based batteries has been experimentally studied
and supported by mathematical modeling [33, 34]. The present paper aims to provide a quantitative
understanding of effective transport properties and their dependence on the 3D morphology of the
electrode on the nano-scale. It will serve as basis for future research activities which make use of
mathematical modeling and simulations, supporting the design of polymer-based battery electrodes105

with improved electrochemical properties.

The rest of this paper is organized as follows. Section 2 explains materials and methods considered
in this paper, including a description of the manufacturing procedure of the three polymer-based
electrodes with PTMA as active material (Section 2.1), and the subsequent imaging via 3D FIB-
SEM tomography (Section 2.2). Then, in Section 2.3, the segmentation of the 3D image data into110

active material, carbon-binder domain (consisting of the conductive additive SuperP and the binder
CMC, also referred to as SuperP phase in the following) and pore space is described. Afterwards,
in Section 2.4, various geometrical descriptors are explained which are used to characterize the 3D
morphology of the electrodes, whereas Section 2.5 contains a description of spatially-resolved numerical
simulations of effective transport properties that are closely related to the electrochemical performance115

of the electrodes. Section 3 contains the results which have been obtained in the present paper. In
particular, in Section 3.1, the differences between the nanostructures of the three electrode samples are
statistically analyzed. Next, in Section 3.3, relationships between the 3D nanostructure of the polymer-
based battery electrodes and effective transport properties are investigated by means of analytical
regression formulas. Finally, Section 4 concludes and provides an outlook on possible future research.120
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2 Materials and methods

To begin with, we explain materials and methods considered in this paper. In particular, Section 2.1
describes the procedure which has been used for the manufacturing of three different polymer-based
battery electrodes. Next, Section 2.2 explains how these samples are imaged by means of 3D FIB-
SEM tomography. The segmentation of the resulting 3D image data into active material, carbon-125

binder domain and pore space is described in Section 2.3, whereas in Section 2.4, various geometrical
descriptors are presented which are used to characterize the 3D morphology of the electrodes. Finally,
Section 2.5 contains a description of numerical methods for computing effective charge transport
properties.

2.1 Material synthesis and electrode manufacturing130

Carbon black, Super P® Conductive, 99+% (metals basis) (Alfa Aesar, USA) and carboxymethyl
cellulose (CMC) (Sigma Aldrich, USA) were purchased and used without further purification. PTMA
was prepared via emulsion polymerization according to the synthesis procedure described in [35], where
in the present study the particle type P2 from [35] is considered, consisting of nanoparticles with a
mean particle size of 73 nm.135

Furthermore, the manufacturing process of the polymer-based electrodes considered in the present
paper is described in detail in [35]. A short summary of the main processing steps is provided here
for convenience. In particular, we consider three electrodes that differ with regard to their material
composition. The different ratios of PTMA, SuperP and CMC are listed in Table 1, where the sample
name corresponds to the weight percentage of SuperP. The materials with a total weight of 500mg140

for each fraction were dispersed in 5mL water at 1,500 revolutions per minute for one hour with a
disperser, Zentrimix 380 R (Andreas Hettich GmbH & Co, Germany). A doctor-blading setup of
BYK, byko-drive XL, was used for film manufacturing. For this purpose, the slurry was doctor-bladed
on aqueous KOH etched aluminum foil with a blade gap adjusted to 200 µm height at a casting speed
of 250mms−1. Coated films were annealed for 18 h at 80 ◦C under ambient atmosphere. The annealed145

electrodes exhibit thicknesses ranging from 70 µm to 150 µm, in consequence of the different slurry
viscosity values for the electrodes hereafter referred to as SP30, SP45 and SP60. Electrodes of 15mm
diameter were punched with an MTI Corporation crimper (electrode area: 1.76 cm2). Electrodes
exhibit a loading of 1 to 3mg after drying.

Material Sample SP30 SP45 SP60

PTMA / wt.−% 65 50 35
SuperP / wt.−% 30 45 60
CMC / wt.−% 5 5 5

Table 1: Material composition of three organic radical battery electrodes with different amounts of
active material PTMA and conductive additive SuperP.

2.2 Tomographic imaging150

In this section, we describe the sample preparation and imaging of the samples via 3D FIB-SEM
tomography [36, 37]. Each of the three polymer electrodes was first cut into 1× 3mm sections with a
scalpel and fixed to a standard aluminum SEM holder using a carbon adhesive pad. They were then
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sputtered with a layer of gold approximately 10 nm thick to further improve the electronic conductivity
at the sample surface. Infiltration with fillers such as resins or silicone was avoided. On the one hand,155

this was due to the concern that infiltration would significantly alter the structures to be measured.
On the other hand, the infiltration of polymers creates a contrast problem, which in turn makes it
difficult to distinguish between the sample and the infiltration material. Finally, without infiltration
it is possible to increase the speed of cutting the sample with the focus ion beam, which results in a
shorter measurement time. The samples were then transferred to the FIB-SEM, a ZEISS Crossbeam160

340 at the Centre for Correlative Microscopy and Spectroscopy (CCMS). The crossbeam has a Gemini I
electron column that was operated at a low voltage of 1 keV for the tomography imaging measurements.
The low voltage was chosen to minimize the penetration depth of the primary electrons, which avoids
the occurrence of artifacts. Moreover, the low voltage simplifies the segmentation of the resulting
image data since the shallow depth of field means that areas that are not in the slice plane quickly165

become blurred. The gallium ion gun of the crossbeam, mounted at an angle of 54◦ to the electron
column, was operated at an acceleration voltage of 30 keV. To obtain a good view of the area of
the sample that is to be imaged, an area of approximately 40 µm × 40 µm was first removed from
the sample using a gallium current of 30 nA. For sequential image acquisition, both the secondary
electron in-lens detector integrated in the electron column and the detector built into the side of the170

microscope chamber, which also detects secondary electrons, were used. After polishing the side of the
previously exposed area intended for tomography with a gallium current of 700 pA and setting the tilt
compensation and dynamic focus, the serial sectioning process of the tomography was started. The
cutting depth and pixel size were always chosen to be the same. More precisely, a pixel size of 15 nm
is used in case of the samples SP30 and SP45. Due to a new gallium source, allowing for a longer175

measurement, a pixel size of 10 nm was used for the sample SP60. The sizes in numbers of voxels in
each spatial direction of the three reconstructed samples are reported in Table 2.

Sample x [num. voxels] y [num. voxels] z [num. voxels]

SP30 1237 700 1891
SP45 1796 700 880
SP60 2924 2122 1397

Table 2: Sample size in x−, y− and z-direction, respectively. Note that the y-direction corresponds
to the direction from the current collector to the separator, which is the main direction of ionic and
electronic transport.

2.3 Image processing

In the following, we explain how the raw FIB-SEM image data is segmented into active material
(PTMA), the carbon-binder domain (consisting of SuperP and CMC, called SuperP phase) and pore180

space. After completing tomographic imaging described in Section 2.2, the raw data was prepared for
classification using the software Fiji [38]. First, the SIFT-based image drift correction was applied
[39]. The data was then denoised by applying a 2D non-local means filter [40]. Due to the non-
infiltrated nature of the measurement, the shine through artifacts, which represent the background
of the sample in areas with no material in the cutting plane, had to be detected and removed. A185

U-net based 3D neural network was used for this challenging post-processing step [41]. The network
was trained on many similar previous measurements not directly related to the present paper, which
were classified using a random forest approach [42]. The removal of shine through artifacts using
neural networks worked well for the samples SP45 and SP60. However, the sample SP30 showed many
charging artifacts that the network had not been previously trained on, causing the network to fail.190
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Therefore, the previously mentioned random forest approach was used. Here, both input channels,
the InLens detector signal and the angled chamber detector signal, were used to manually train a new
random forest classifier using the ilastik software package [43]. Although much slower than the neural
network approach, this ultimately resulted in a satisfactory removal of the shine through artifacts.

The resulting binary spatial information then had to be further classified into the active PTMA phase195

and the SuperP phase. For this purpose, a morphological approach was chosen, where we used the
fact that the SuperP phase consists of very small clustered particles, compared to the PTMA phase.
Based on this knowledge, a local thickness filter that is included in the Fiji software package was
applied [38]. The result was then thresholded into the two remaining phases [44]. The segmentation
procedure and the resulting segmented 3D images are visualized in Figures 1 and 2, respectively.200

Figure 1: Exemplary selected 2D slice of sample SP60. From left to right, a continuous transition is
shown from the grayscale SEM image to the segmentation into active material (red), SuperP phase
(blue) blue and pore space (black).

Figure 2: Visualization of the segmented 3D images. The PTMA phase is shown in red, the union of
SuperP and CMC phase is shown in blue, and the pore space is kept transparent. The axis scale is in
voxel, where the samples on the left (SP30) and in the middle (SP45) have a voxel size of 15 nm. The
sample displayed on the right (SP60) has a voxel size of 10 nm.
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2.4 Geometrical descriptors

In the following, several geometrical descriptors are briefly explained, which are used to characterize
the 3D morphology of the polymer-based battery electrodes. Note that a superscript is used to refer
to the phase for which the geometrical descriptor is computed. In particular, the superscripts AM205

(short for active material), SP (short for SuperP) and P (short for pore space) are used to refer to the
PTMA phase, the carbon-binder domain (i. e. the union of SuperP and CMC) and the pore space,
respectively. Furthermore, the superscript is omitted in case when the underlying phase is clear from
the context.

Volume fraction. One of the most fundamental geometrical descriptors is the volume fraction ε ∈210

[0, 1] of the phase under consideration. This quantity is estimated from 3D image data by the well-
known point-count method [45]. Besides the globally computed volume fraction ε, the heterogeneity of
the electrode nanostructures will be quantified by computing the volume fraction for non-overlapping
cutouts of size 100 µm× 100 µm× 100 µm.

Specific surface area. In addition to porosity, we consider the specific surface area, which will be215

denoted by S. It is defined as the surface area between the considered phase and its complement divided
by the volume of the sampling window. This quantity is estimated from voxelized 3D image data using
an approach presented in [46], which is based on a convolution of the image with a 2 × 2 × 2 kernel.
Moreover, the specific surface areas of the different phases will be used to define more sophisticated
geometrical descriptors as described in the next paragraph.220

Interfaces. Besides the specific surface areas of the three phases, we consider the specific area of
the interface between active material and the carbon-binder domain, denoted by SAM∩SP, which is of
importance with regard to electronic transport. Analogously, the specific area of the interface between
active material and the pore space, denoted by SAM∩P, is considered since a sufficiently large interface
is required to ensure an ionic flux into the active material.225

Mean chord length. A further geometrical descriptor is the chord length distribution [47, 48], where
a chord is a line segment that is completely contained in a predefined phase and can not be extended
further without intersecting the complementary phase. In general, the probability distribution of chord
lengths depends on the orientation of the line segments. We compute the chord length distribution
for the three Cartesian axes directions. In particular, for each of these three directions, we compute230

the mean value of the corresponding chord length distribution. In the following, the average of these
three mean values, denoted by µ(C), is used.

Constrictivity. In order to explain the notion of constrictivity, we first recall the concepts of the con-
tinuous phase size distribution (CPSD) and simulated mercury intrusion porosimetry (SMIP). Namely,
CPSD : [0,∞) → [0, 1] is a function, where the value CPSD(r) is given by the volume fraction of the235

phase under consideration, which can be covered by (possibly overlapping) spheres with radius r ≥ 0
such that the spheres are completely contained in the considered phase [48, 49]. Furthermore, by
rmax the maximum radius r > 0 is denoted such that CPSD(r) ≥ ε/2 where ε is the volume fraction
of the considered phase. The concept of SMIP is similar to that of CPSD, with the only difference
that the value SMIP(r) of SMIP : [0,∞) → [0, 1] is given by the volume fraction of the phase under240

consideration, which can be covered by (potentially overlapping) spheres with radius r forming an
intrusion from a predefined direction. Analogously to rmax, by rmin the maximum radius r > 0 is
denoted such that SMIP(r) ≥ ε/2. In general, rmin depends on the direction of the intrusion. Thus,
rmin is computed for each of the three axes directions separately and, subsequently, the average of the
three obtained values is used. The constrictivity β of the phase under consideration is then defined245

as β = (rmin/rmax)
2. It is a measure for the strength of bottleneck effects and has been originally
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introduced in [50]. Since rmin ≤ rmax by definition, it holds that β ∈ [0, 1], where β = 1 corresponds
to the situation that there are no constrictions within the considered phase. In [51–53], it has been
shown that the constrictivity β of the pore space has a significant impact on effective macroscopic
properties of porous media such as effective diffusivity or permeability.250

Mean value and standard deviation of geodesic tortuosity. A further transport-relevant geometrical
descriptor is the so-called geodesic tortuosity. Besides geodesic tortuosity, there exist several other
concepts of tortuosity in the literature, see e.g., [24, 54] for a comprehensive overview. According to
the nomenclature proposed in [24], the geodesic tortuosity considered in the present paper corresponds
to τdir geodesic. It will be denoted by τg in the following. This purely geometrical descriptor captures the255

windedness of transport paths, which are completely contained in a predefined phase. From 3D image
data, the distribution of τg is determined by computing the lengths of shortest paths from randomly
selected voxels within the considered phase, which belong to a predefined starting plane, to a parallel
target plane, divided by the distance between those two planes, where shortest paths are computed
using Dijkstra’s algorithm [55]. Usually, the starting and target planes are chosen orthogonal to the260

relevant transport direction. For the image data considered in the present paper, we compute the
distribution of τg with respect to each of the three Cartesian axes directions. The mean value µ(τg) of
τg is then determined by averaging over all shortest path lengths divided by the distance between the
starting and target planes. Furthermore, the empirical standard deviation σ(τg) of these normalized
path lengths is considered.265

Local variants of geometrical descriptors. The computation of the geometrical descriptors stated
above allows us to capture “global” morphological features of the electrodes. However, in case of
lithium-ion batteries, it is well known that local heterogeneity of electrodes has a strong influence
on the resulting electrochemical performance [56–59]. This is also expected to hold for polymer-
based batteries, which motivates the computation of local variants of geometrical descriptors. For270

this purpose, the sampling window of each of the three material samples SP30, SP45 and SP60 is
partitioned into non-overlapping cutouts of size 1 µm×1 µm×1 µm. Next, the geometrical descriptors
considered in the present paper are computed separately on each of these cutouts, which results in
probability distributions of these local descriptors. In particular, Section 3.1 contains results regarding
the distribution of local volume fraction as well as of the local specific surface area of interfaces.275

2.5 Numerical simulation of effective transport properties

In this paper, we consider the transport of ions within the pore space and of electrons within the SuperP
phase. For this purpose, we use the notion of effective tortuosity as defined in [24]. In particular, we
compute the effective tortuosity as proposed in [22], which will be denoted in the following by τSPeff
for the SuperP phase, and by τPeff for the pore space. To compute the effective tortuosities τSPeff and280

τPeff we use the segmented image data described in Section 2.3, solving the Laplace equation on either
the SuperP phase or the pore space. More precisely, the Laplace problem is solved with Dirichlet
boundary conditions on the top and bottom surfaces and zero flux on the side surfaces, which is a
well-known computational procedure, see [60] for further details. The imposed boundary conditions
determine a gradient of the solution in the main direction of electronic and ionic transport that is285

visualized in Figure 3.

Given the total dimensions of the samples SP30, SP45 and SP60 , see Table 2, subsamples have been
considered of size not larger than 1024 × 1024 × 1024 voxels, i.e., a box with a maximum length of
1024 along each axis. A list of all subsamples is given in Table 3. The FEM simulations have been
performed on each of these subsamples only for the main transport direction along the y-axis (from290
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the current collector to the separator). These computations have been performed on the HPC-cluster
HSUper (see Acknowledgments) by a finite element code based on the deal.II library [61].

Figure 3: Visualization of the finite element solution of the transport problem to compute the effective
transport coefficients in the three phases (PTMA, SuperP, pores), where the transport direction is
from top to bottom, i.e. in the main direction of transport. The common color scale is shown at the
right-hand side of the third row of images, where the red color corresponds to the value 1, and the
blue color to 0. The gray color is used to indicate all parts that are neither connected to the top
nor to the bottom surface and, therefore, do not contribute to the transport process. The electrolyte
concentration in the pore space is shown in the left column, the electric potential distribution within
the SuperP phase in the middle column, and the ionic concentration within PTMA in the right column.
Note that the different rows correspond to the subsamples SP30.1, SP45.2 and SP60.2 (from top to
bottom). In particular, the PTMA phase is not connected from top to bottom, i.e. is not percolating,
in case ofsubsamples SP45.2 and SP60.2.

Homogenization of porous media uses the effective tortuosity in homogenized models to simulate the
complicated transport mechanisms in these media. The broader concept of homogenization involves
the transfer of microscopic processes into a macroscopic framework. In order to characterize transport
phenomena in porous media using a uniform medium, adjustments to the intrinsic transport coefficients
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are required. Within the context of the present paper, this adjustment is essential to account for the
presence of the nano-porous structure and to ensure a more accurate representation of the transport
process. In particular, effective transport coefficients Deff and σeff of pore space and SuperP phase,
respectively, are computed from the corresponding intrinsic coefficients as follows:

Deff =
εP

τPeff
D, (1)

and

σeff =
εSP

τSPeff
σ, (2)

where ε is the volume fraction of the phase, on which the transport is considered. Moreover, the
intrinsic diffusion coefficient and intrinsic electrical conductivity are denoted by D and σ, respectively.
Note that the effective tortuosities τeffP and τeffSP are bounded from below by 1. Furthermore, a larger295

value of effective tortuosity corresponds to a more pronounced the hindering effect of the structure on
the transport process. We also remark that the effective transport coefficients Deff and σeff considered
in Equations (1) and (2) are called M-factor in the literature [24, 51, 60]. Therefore, in the following,
we will use the notations MP

sim and MSP
sim instead of Deff and σeff .

Subsample Size in x-direction Size in y-direction Size in z-direction Position Symbol

SP30.1 1024 700 1024 106,1,1 ×
SP30.2 1024 700 1024 106,1,868 ×
SP45.1 1024 700 880 1,1,1 •
SP45.2 1024 700 880 773,1,1 •
SP60.1 1024 1024 1024 1,1,186 ■
SP60.2 1024 1024 1024 950,1,186 ■
SP60.3 1024 1024 1024 1901,1,186 ■
SP60.4 1024 1024 1024 1,1099,186 ■
SP60.5 1024 1024 1024 950,1099,186 ■
SP60.6 1024 1024 1024 1901,1099,186 ■

Table 3: Information regarding the subsamples containing (from left to right): Name of the subsample,
size of the subsample in x-, y- and z-direction (in number of voxels), the position of the lower left voxel
of the subsample with respect to the corresponding sample, and a unique symbol as visual identifier.

3 Results and discussion300

This section covers the quantitative comparison of the three polymer-based electrode samples SP30,
SP45 and SP60 with regard to their 3D morphology in Section 3.1, with special emphasis on the
anaslysis of local heterogeneity in Section 3.2, as well as the investigation of microstructure-property
relationships in Section 3.3, where geometrical descriptors are used to predict effective transport
properties by means of analytical regression formulas.305

3.1 Statistical analysis of nanostructure via subsamples

To quantitatively compare the electrode samples SP30, SP45 and SP60, the geometrical descriptors
stated in Section 2.4 are computed for all subsamples (see Table 3 for further information regarding
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the subsamples). The obtained results are shown in Figure 4. In particular, it turned out that the
volume fractions εP and εSP of pore space and SuperP phase are in the ranges of [0.70, 0.81] and310

[0.10, 0.23], respectively. Notably, the analyzed subsamples extracted from the three FIB-SEM images
exhibit a large variability with regard to the porosity, even within the subsamples corresponding to a
given sample. This effect is even more pronounced with respect to the volume fraction of the SuperP
phase. In general, this kind of behavior is also observed with regard to other geometrical descriptors
and the M-factor as well, which indicates a pronounced heterogeneity of the nanostructure of the315

electrode samples SP30, SP45 and SP60.

Furthermore, the specific surface area of the pore space (SP) as well as the SuperP phase (SSP) is
significantly higher for the sample SP60 compared to the other two samples as shown in the second
column of Figure 4. This is surprising, since there is no significant difference in specific surface area
when comparing SP30 and SP45 despite these two samples differ with regard to their weight percentage320

of SuperP just as much as the samples SP45 and SP60.

The mean chord length (µ(C)), as depicted in the third column of Figure 4, exhibits a strong correlation
with the volume fraction of the respective phase, indicated by correlation coefficients of 0.77 (pore
space) and 0.96 (SuperP phase), respectively. Moreover, this characteristic also - similar to the specific
surface area - indicates a finer structure of the pore space as well as the SuperP phase in case of SP60325

compared to SP30 and SP45.
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Figure 4: Morphological characterization of subsamples of the polymer-based electrodes SP30, SP45
and SP60. The columns correspond to the geometrical descriptors stated in Section 2.4. The results
shown in the upper row concern the pore space, whereas the lower row refers to the SuperP phase.
The shapes and colors relate to the sample and subsample symbols as given in Table 3, respectively.

With regard to the SuperP phase, there is a high variation of constrictivity within the considered
subsamples only in case of sample SP60, see Figure 4. Compared to the mean chord length, the
constrictivity of the respective phases is less correlated with the volume fraction. More precisely, the
values of these two descriptors have a correlation coefficient of 0.58 for the pore phase and 0.55 in case330

of the SuperP phase. Therefore, a multi-parameter formula for predicting the M-factor in Section 3.3
that incorporates both ε and β is considered more promising than a formula based solely on ε.
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With regard to the mean geodesic tortuosity of the pore space, there is no significant difference between
the samples. In particular, note the small range of values in the corresponding plots shown in Figure 4.
This is likely to be caused by the high porosity values, which typically ensure almost straight transport335

paths for ions. With regard to the SuperP phase, the situation is different. More precisely, due to the
volume fractions of SuperP between 10% and 23%, the normalized lengths of shortest transport paths
within the SuperP phase are significantly larger than one and differ both with regard to the three
samples as well as between individual subsamples. The latter effect is most pronounced with regard
to both subsamples of SP45. Besides mean geodesic tortuosity, the standard deviation of geodesic340

tortuosity is also considered as one possible descriptor that quantifies the local heterogeneity of the
nanostructure. For example, the two subsamples of SP30 have a similar value of µ(τg), but show a
clear difference with regard to σ(τg). Moreover, the low correlation between σ(τg) and µ(τg) as well
as ε indicates that a combination of these three quantities is well suited for predicting the M-factor,
see Equation (6) below.345

3.2 Analysis of local heterogeneity

Besides the computation of geometrical descriptors on each subsample, we also consider the distribu-
tion of local volume fraction for each of the three phases (PTMA, SuperP, pores) to quantify the local
heterogeneity of electrodes. For this purpose, non-overlapping cutouts with a size of 1 µm×1 µm×1 µm
are used as described in Section 2.4. The results obtained for the distribution of local volume fraction350

are shown in Figure 5. In particular, the three electrodes (SP30, SP45, SP60) exhibit clearly different
distributions of local porosity with regard to the mean porosity, which is expected due to the different
material compositions, as well as with regard to the shape of the distribution. For example, in case
of SP30 there exists a significant amount of cutouts with a porosity between 50% and 60%, whereas
SP45 consists mainly of regions with porosity values larger than 70%. The center plot of Figure 5355

shows that for each of the three samples, there exists several cutouts that do not consist of SuperP
at all, which is most pronounced in case of sample SP30. Furthermore, the spatial distribution of
the active material is far from homogeneous, indicated by the plot on the right-hand side of Figure 5.
More precisely, the vast majority of cutouts lack any active material when considering the samples
SP45 and SP60, while those containing it can exhibit volume fractions up to 100%. In particular, the360

nanoparticles used for synthesizing the active material via emulsion polymerization agglomerate to
large clusters, which correspond to local PTMA volume fractions close to 100% [35].

0.0 0.2 0.4 0.6 0.8 1.0
P

0

2

4

6

a)
SP30
SP45
SP60

0.0 0.2 0.4 0.6 0.8 1.0
SP

0

2

4

6

8

10

12
b)

SP30
SP45
SP60

0.0 0.2 0.4 0.6 0.8 1.0
AM

0

5

10

15

20

c)
SP30
SP45
SP60

Figure 5: Distribution of local volume fraction of pore space (left), SuperP (center) and active material
(right).

In case of SP30, the amount of cutouts without active material is significantly lower. More precisely,
the fraction of cutouts that do not contain any active material equals 13% (SP30), 56% (SP45) and
52% (SP60), respectively.365
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The interface area between PTMA and the other two phases is of great importance with regard to
electrochemical performance, see the plot on the left-hand side of Figure 6. Notably, a majority of
the active material surface is covered by the pore space. In particular, in case of sample SP30, the
interface area between active material and the SuperP phase is - in absolute numbers - the largest
compared to the other two samples, even though SP30 is the sample that contains the least amount370

of SuperP. Moreover, the plot on the right-hand side of Figure 6 shows the distribution of the (local)
ratio of the specific interface area between active material and pore space (SAM∩P) divided by the
(entire) specific surface area of active material (SAM). More precisely, this ratio is computed for each
of the non-overlapping cutouts with a size of 1 µm×1 µm×1 µm to investigate the spatial distribution
of interfaces. However, there are almost no local volumes (except in the case of SP30) where there375

is no contact between the active material phase and the SuperP phase at all, a crucial property for
a proper functioning of the electrode. Moreover, sample SP60 exhibits a non-negligible amount of
regions, where the interface between pore space and active material only makes up for 40 to 70% of
the (entire) specific surface area of active material, which in turn results in a comparatively large
contact area between SuperP and active material.380
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Figure 6: Left: Specific surface area of active material including the contribution of the interface
between PTMA and the SuperP phase (filled part) and the interface between PTMA and the pore
space (shaded part). Right: Distribution of the local ratio of the specific interface area between active
material and pore space divided by the (entire) specific surface area of active material.

Finally, we consider the geodesic tortuosity of the three electrode phases in more detail, see Figure 7
which depicts the distribution of local geodesic tortuosity of the different phases and samples. In
particular, it can be observed that there is no path within the active material phase between the two
opposing planes in case of samples SP45 and SP60, which is not necessarily required for a proper
functioning of the electrode. Furthermore, in terms of pore space and SuperP phase, SP30 and SP60385

exhibit a high degree of similarity. However, with regard to SP45, the shortest paths in the pore space
tend to be slightly shorter, while in the SuperP phase, they tend to be slightly longer compared to
the other samples.

1.00 1.02 1.04 1.06 1.08
P
g

0

10

20

30

40

50

a)
SP30
SP45
SP60

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
SP
g

0.0

2.5

5.0

7.5

10.0

12.5

b)
SP30
SP45
SP60

1.25 1.50 1.75 2.00 2.25 2.50 2.75
AM
g

0.0

0.5

1.0

1.5

2.0

2.5
c)

SP30

Figure 7: Distribution of local geodesic tortuosity of pore space (left), SuperP (center) and active
material (right). Note that in case of the active material phase, there are no shortest paths from the
starting plane to the opposite plane in case of SP45 and SP60.
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3.3 Microstructure-property relationships

In addition to the computation of geometrical descriptors, FEM simulations have been performed, as390

stated in Section 2.5, in order to determine the effective tortuosity and the M-factor of SuperP phase
and pore space for all subsamples considered in the present paper, see Table 4.

Subsample εP τPeff MP
sim εSP τSPeff MSP

sim Symbol

SP30.1 0.71 1.19 0.60 0.10 6.14 0.02 ×
SP30.2 0.70 1.21 0.58 0.12 5.38 0.02 ×
SP45.1 0.81 1.12 0.72 0.15 3.75 0.04 •
SP45.2 0.80 1.13 0.70 0.10 7.03 0.01 •
SP60.1 0.78 1.21 0.65 0.16 6.06 0.03 ■
SP60.2 0.76 1.23 0.62 0.12 6.02 0.02 ■
SP60.3 0.77 1.22 0.63 0.13 6.09 0.02 ■
SP60.4 0.70 1.36 0.51 0.22 3.64 0.06 ■
SP60.5 0.72 1.33 0.54 0.23 3.40 0.07 ■
SP60.6 0.71 1.34 0.20 0.20 4.03 0.05 ■

Table 4: Effective tortuosity and M-factor of pore space and SuperP phase obtained by FEM simula-
tions, together with the volume fraction of the corresponding phase.

We now investigate the relationship between various geometrical descriptors and the M-factor of the
SuperP phase and the pore space, respectively. Note that in the literature, many formulas have been
considered for predicting the M-factor of various materials and different modes of transport from
geometrical descriptors [53, 62, 63]. In the present paper, we discuss four of these formulas, which
have demonstrated significant predictive power for both the pore space and SuperP phase with respect
to the deviation measures MAPE and R2. Recall that the mean absolute percentage error (MAPE)
is given by

MAPE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|
|yi|

where ŷ = (ŷ1, . . . , ŷn) is an n-dimensional vector of predictions of some “ground truth” data y =
(y1, . . . , yn). A further deviation measure is the coefficient of determination (R2) which is defined as

R2(y, ŷ) = 1−
1
n

∑n
i=1(yi − ŷi)

2

1
n

∑n
i=1(yi − y)2

, where y = 1
n

∑n
i=1 yi.

The first formula for predicting the M-factor relies solely on the volume fraction ε of the respective
phase, i.e., we consider the predictor M̂1 given by

M̂1 = εc1 , (3)

where c1 > 1 is some constant. In the literature, various numerical values have been proposed for
c1, ranging from 1.5 (Marshall formula) to 2 (Buckingham formula) [64–66]. The value of c1 = 1.71
proposed in [62] achieved the best results for the data considered in the present paper, in terms of395

both MAPE and R2, and will therefore be used in the following.
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The second formula provides the predictor M̂2 which depends not only on the volume fraction ε of
the respective phase, but also takes into account its mean geodesic tortuosity µ(τg) and constrictivity
β, in order to capture geometric bottleneck effects and relative path lengths. It is is given by

M̂2 = εc1βc2µ(τg)
c3 , (4)

where c1 > 0, c2, c3 ≥ 0 are some constants. The formula given in Equation (4) was originally
proposed in [63] with (c1, c2, c3) = (1.15, 0.37,−4.39). However, the vector of constants (c1, c2, c3) =
(1, 0,−8.45), which was later proposed in [51], turned out to be a better choice for predicting the
M-factor of the data considered in the present paper and will therefore be used later on.400

A modified version of the formula given in Equation (4) can be found in [53]. It provides the predictor

M̂3 of the M-factor, where the constrictivity β appears in the exponent of the volume fraction ε as
follows:

M̂3 = εc1+c2βµ(τg)
c3 , (5)

with some constants c1, c2, c3 such that c1+ c2 ≥ 0, c3 ≤ 0. In the following we consider the numerical
values (c1, c2, c3) = (1.25,−1.25,−7.82) which have been proposed in [51].

Finally, a formula is considered which has been introduced in [67] and provides a further predictor

(denoted by M̂4) for the M-factor. It assesses the impact of the pore structure on the M-factor by
considering the standard deviation of the geodesic tortuosity σ(τg) instead of the constrictivity β.

More precisely, the predictor M̂4 is given by

M̂4 = c1µ(τg)
c2σ(τg)

c3εc4 , (6)

where the choice (c1, c2, c3, c4) = (1.18,−9.17, 0.03, 1.02) of the constants c1, c2, c3, c4 proposed in [51]
yields an improved fit of the M-factor for the data considered in the present paper, compared to the
numerical values of c1, c2, c3, c4 derived in [67].405

3.4 Evaluation of prediction power

Using the formulas given in Equations (3) to (6) for predicting the M-factor, with values for the
constants c1, c2, c3, c4 taken from literature as stated above, leads to the results shown in Figure 8.
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Figure 8: Prediction of M-factor via analytical regression formulas. The upper row contains the results
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and color codings refer to the individual subsamples as stated in Table 3.
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A quantitative evaluation of the results shown in Figure 8 in terms of MAPE and R2 is given in Table 5.
In general, one can observe an improved accuracy of the predictors of the M-factor as the number of410

geometrical descriptors considered in Equations (3) to (6) increases, despite the constants c1, c2, c3, c4
in these formulas being fitted in the literature to different materials and length scales. The predictors
which yield the highest prediction accuracy for the data considered in the present paper, as measured
by MAPE and R2, are M̂3 in case of the SuperP phase, and M̂4 in case of the pore space, see Table 5.
In particular with regard to the SuperP phase, M̂3 clearly outperforms one of the most widely used415

types of predictors [51, 62, 64–66], namely M̂1, which relies solely on ε. This can be explained by the
fact that two material phases with a similar volume fraction can still differ significantly with regard
to further (more sophisticated) geometrical descriptors as shown in Section 3.1.

Deviation measure Phase M̂1 M̂2 M̂3 M̂4

MAPE pore space 0.04181 0.04622 0.03616 0.03518

R2 pore space 0.83729 0.66458 0.80182 0.87475

MAPE SuperP phase 0.29574 0.16464 0.13955 0.16089

R2 SuperP phase 0.68055 0.89553 0.91235 0.87457

Involved geometr. descriptors ε ε, β, µ(τg) ε, β, µ(τg) ε, µ(τg), σ(τg)

Table 5: Quantitative comparison of prediction power of M̂1, M̂2, M̂3, M̂4. In each row, the highest
accuracy is highlighted.

Moreover, due to the high porosity of samples SP30, SP45 and SP60, the prediction of the M-factor via
M̂2 and M̂3, which both contain the constrictivity β, performs worse compared to M̂4 since bottleneck420

effects within the pore space seem to be not a limiting factor. With regard to the SuperP phase,
using the standard deviation of geodesic tortuosity σ(τg) instead of the constrictivity β leads to a

significant improvement of the prediction accuracy. In particular, the predictor M̂4 given by the
analytical regression formula in Equation (6) is also the best performing predictor in [62], even though
diffusion in loam and sand is considered in [62] at a much larger scale. This indicates that not only425

the mean length of shortest transport paths, but also the variability of these lengths is a well-suited
geometrical descriptor for predicting diffusive properties of multi-phase materials, where the volume
fraction of the transport phase is between 10 and 40%.

Furthermore, the benefit of including the standard deviation of geodesic tortuosity σ(τg) motivates the
following consideration. A strong negative correlation between the error of the analytical regression430

formulas for predicting the M-factor and σ(τg) can be observed, i.e., we obtain a value of < −0.85
for the pore space and < −0.55 for the SuperP phase. This indicates that using this geometrical
descriptor in a different manner for predicting the M-factor has the potential to further improve the
prediction accuracy, which might be an interesting subject of future research.

4 Conclusions and outlook435

In the present paper, three polymer-based battery electrodes (using PTMA as active material, SuperP
as conductive additive and CMC as binder) are investigated by means of 3D FIB-SEM tomography,
where the samples differ with regard to their material composition. To the best of our knowledge, this
is the first time that the three-dimensional morphology of polymer-based batteries is quantitatively
investigated in such high-resolution.440

The resulting 3D image data has been segmented into active material, the union of SuperP and
CMC, and the pore space. This phase-based segmentation has been then used to quantitatively
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characterize the 3D morphology of the electrodes by means of geometrical descriptors. By doing
so, it has been shown that there is a pronounced local heterogeneity of the electrode structure. In
particular, the active material is synthesized via emulsion-polymerization resulting in nanoparticles445

which seem to agglomerate in the course of electrode processing from slurries. It turned out that the
surface area of the active material is mostly covered by the pore space, which might result in hindered
electron transport due to the comparatively low interface area between PTMA and the SuperP phase.
Morevorer, the electrode sample with the highest amount of SuperP has the finest structure among
the three electrodes as indicated by large surface areas and low mean chord lengths of the pore space450

as well as the SuperP phase.

Besides the morphological characterization of the polymer-based electrodes, effective transport prop-
erties for the ionic transport in the pore space and electronic transport in the SuperP phase have
been investigated. Namely, the effective tortuosity and the effective transport coefficient, also called
M-factor in the literature, have been computed for both phases and for several reference volumes. Like455

in the case of geometrical descriptors, a strong local variation within the electrode is observed with
regard to descriptors of effective transport properties. Moreover, quantitative microstructure-property
relationships are investigated to link t 3D morphology and resulting effective properties. In case of
the SuperP phase, an analytical regression formula that includes the volume fraction, mean length
of shortest transport paths and a bottleneck factor allows for accurate predictions of the M-factor.460

When considering ionic transport within the pore space instead, the porosity, the mean length of
shortest transport paths and the standard deviation of geodesic tortuosity, which quantifies the local
variability of the electrode structure, is able to reliably predict the M-factor. Regarding the prediction
of effective electronic tortuosity of the SuperP phase, the mean absolute percentage error can more
than halved by considering these more sophisticated geometrical descriptors instead of using the most465

widely used prediction formula that is solely based on the volume fraction.

In a forthcoming research paper, data-driven stochastic 3D microstructure modeling will be used to
generate a large number of virtual, but realistic electrode structures to perform virtual materials testing
for polymer-based battery electrodes. In particular, the 3D FIB-SEM data considered in the present
paper allows to take the morphology of nanopores into account. Moreover, synchrotron tomography470

will be used to quantify spatial distribution of PTMA on a larger scale to investigate whether the
regions without any active material can be considered as an outlier or are frequently occurring. The
effective transport properties determined in the present paper can then be used to perform electro-
chemical simulations. Besides, future investigations will focus on the C-rate dependent power density,
which will – similar to the energy density – be significantly affected by the electrode morphology. A475

further possible topic for future research is the investigation of electrodes after electrolyte filling as
well as after cycling. To conclude, future research activities are required to exploit the full potential
of polymer-based batteries with tailor-made microstructure as cheap, environmentally friendly energy
storage technology.
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ducci, J. C. Brendel, and U. S. Schubert, “Emulsion polymerizations for a sustainable preparation
of efficient TEMPO-based electrodes” ChemSusChem, 14, 449–455, 2021.

[36] J. Banhart, Advanced Tomographic Methods in Materials Research and Engineering. Oxford
University Press, 2008.
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