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Abstract

Colchicum autumnale are toxic autumn-blooming flowering plants, which 

often grow on extensive meadows and pastures. Thus, they pose a threat to 

farm animals especially in hay and silage. Intensive grassland management 

or the use of herbicides could reduce these weeds but environment 

protection requirements often prohibit these measures. For this reason, a 

non-chemical site- or plant-specific weed control is sought, which aims only 

at a small area around the Colchicum autumnale and with low impact on the

surrounding flora and fauna. For this purpose, however, the exact locations 

of the plants must be known.

In the present paper, a procedure to locate blooming Colchicum autumnale 

in high-resolution drone images in the visible light range is presented. This 

approach relies on convolutional neural networks to detect the flower 

positions. The training data, which is based on hand-labeled images, is 

further enhanced through image augmentation. The quality of the detection 

was evaluated in particular for grassland sites which were not included in 

the training to get an estimate for how well the detector works on 
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previously unseen sites. In this case, 88.6% of the flowers in the test dataset

were detected, which makes it suitable, e.g., for applications where the 

training is performed by the manufacturer of an automatic treatment tool 

and where the practitioners apply it to their previously unseen grassland 

sites.
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Introduction
Extensive grassland sites are mowed usually once or twice a year and are 

not or little fertilized. The typical late mowing dates in the middle of June 

for these sites help the proliferation of Colchicum autumnale on damp and 

clay soils. A change in the grassland management is often not possible, 

because of environment protection requirements. It excludes also the use of

herbicides. This is a problem for farmers who want to utilize the grassland 

to feed their animals as all parts of Colchicum autumnale are poisonous and

can lead to respiratory paralysis and death. In pastures, animals usually 

avoid the plants. However, leaves and seed in hay and silage cannot be 

detected by the animals and have to be avoided.

State of the art in control of Colchicum autumnale is area-wide mulching of 

the overall site. The studies of Seither and Elsäßer (2014) showed that the 

above ground population could be reduced by mulching in April or May, at 

the time of maximum depleted reserve of the onion. However, area-wide 

mulching contradicts the required extensive management of this kind of 

grassland. Furthermore, it also has a negative effect on the growth of the 

crop. It thus reduces the habitat for insects in spring and leads to less 

grassland yield in summer. Hay cuts in June or July, which are typical for 

these sites, did not contribute to the reduction of Colchicum autumnale. 

With regard to the fauna, flail mulchers in particular show the greatest 

damage (Lösch et al., 1997). Löbbert (2001) evaluated the technical 

procedures, with special reference to the invertebrate fauna. Especially the 

mulching processes harmed the invertebrates significantly. High damage 

rates with rotary mowers were demonstrated by Humbert et al. (2010), who

consequently recommend leaving uncut areas as a refuge for invertebrates. 

Braschler et al. (2009) investigated the effect of frequent mowing on 

population density and species diversity of orthopterans over 7 years. This 
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study considers frequent mowing one of the main threats to orthopteran 

communities.

Thus, there is a conflict between management requirements with late 

mowing dates, grassland yield and fauna protection when Colchicum 

autumnale has to be controlled on extensive grassland sites. The aim is to 

solve this conflict by non-chemical site- or plant-specific weed control with 

low impact on the grassland.

It is expected that the leaves of Colchicum autumnale will be difficult to 

distinguish in green grassland in spring with a computer vision system. This

problem can be addressed by creating an application map for an automated 

treatment tool in advance based on image data from a period when 

Colchicum autumnale can be easily distinguished. A further advantage of 

such a procedure is that areas with no or low density of Colchicum 

autumnale can be identified before, and must not be passed by, the tractor 

or unmanned vehicle. Resources like worktime and energy can be saved and

machine traffic on the grassland is reduced compared to an area-wide 

online inspection with a ground vehicle like a tractor. Colchicum autumnale 

shows purple flowers in autumn, which differ clearly from the surrounding 

grassland. Given a procedure to locate each Colchicum autumnale on the 

basis of the flowers, an application map can be created. This map is 

subsequently used in spring when the plants can be treated effectively with 

non-chemical tools.

To the best of the authors’ knowledge, no previous articles about the 

automated detection of Colchicum autumnale have been published. When it 

comes to identifying individual plants on grassland, however, a lot of work 

has been done for the location of Rumex obtusifolius. For a review see, e.g., 

Binch and Fox (2017). While most of those techniques rely on close range 

images, there are also first attempts to apply deep learning to classify drone

images as to whether they show the plant or not (Valente et al., 2019). But 
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the direct location of Rumex obtusifolius in the images was not discussed in 

the latter study. By processing possibly overlapping cutouts of a larger 

image individually (sliding window), it is still possible to create maps which 

show where the plants are located in the original image. However, in order 

to achieve a high resolution of these maps, it is necessary to evaluate the 

same areas of the input image several times, which makes direct location 

techniques, which process the input images only once, more efficient.

The main objective of the present paper is to develop a method for the 

detection of Colchicum autumnale flowers with the help of drone images 

from a standard RGB camera carried by a multicopter. Moreover, it should 

perform well in the field under real world conditions.

Materials and Methods
The presented detector solved this problem using a machine learning 

approach and instead of predicting only the locations, an image 

segmentation technique was applied to identify pixels in the drone images 

which belonged to the flowers. The reason for this is that the detector had 

to be able to handle large drone images coming from different cameras with

different resolutions. To deal with this, the drone images were divided into 

smaller image tiles with a consistent size, on which the flowers were then 

detected by a neural network. Since the results were maps with values in

[ 0,1 ] and could thus be interpreted as probabilities that a pixel belonged to a 

flower, it was necessary to apply a threshold to arrive at binary 

segmentation masks which classified each input pixel of the image tiles to 

either being part of a Colchicum autumnale flower or of the background. It 

was then very easy to recombine these masks to end up with segmentation 

masks of the same size as the original drone image. This recombination 

would have been much harder if the detection had been based on points or 

bounding boxes because, in this case, boundary effects like flowers which 
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were cut in half would have made the recombination much more error-

prone. The individual steps of the detector are illustrated in Figure 1.

In order to evaluate how well the proposed detector performed, two 

different testing regimes were employed. Under the first one, the test 

images were selected at random from the ground truth dataset. This 

resembles the standard testing appraoch in machine learning. Under the 

second one, for each grassland site a separate model was trained on the 

images from the remaining grassland sites, and used the selected one only 

for testing. The purpose of this regime is to evaluate the scenario where a 

detection model is trained by the manufacturer of an automated treatment 

tool and then applied by practitioners on their grasslands that are unknown 

to the manufacturer. Without the need to acquire additional labeled images 

of their specific fields and fine-tune the model, the treatment tool is much 

easier to adopt.
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Data Description
The images used in this investigation were taken in the period from August 

21st to October 1st, 2018. The extensive grassland fields with a size of 1000 

to 4000 m2 were located in different regions in 

Baden-Württemberg/Southern Germany. The vegetation was approximately 

100 mm high with purple Colchicum autumnale flowers. In total, three 

different sites (near Konstanz, Beuren and Nürtingen) provided by LEVKN 

(Landscape Conservation Association Constance County) were 

photographed with a Sony (Tokyo, Japan) alpha 7 RII. The camera has a 

CMOS full-frame image sensor with 42.4 MP. The focal length of the lens 

was 24 mm. This camera was mounted on a HiSystems (Moormerland, 

Germany) MK ARF-OktoXL 4S12 octocopter and triggerd by the copter. The 

payload was 2.5 kg and the maximum take-off weight was 5 kg. During the 
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flight, the camera aligned itself vertically to the ground with a 2-axis 

gimbal. The copter was equipped with a lithium polymer accumulator 

having a capacity of 6600 mAh, which allows an operation time of 

approximately 10 to 15 min. The route planning was performed with a 

specific software: The area of interest is defined on the map and based on 

the given camera properties and the desired image overlap, the software 

calculates the flight route and the trigger points of the camera 

automatically. Finally, the flight route is transferred to the copter by a 

telemetry link. The images used in the present paper were taken at 10 m 

height over ground.

From the given drone images, 56 of them—the maximum number of images 

that could be labeled in a reasonable time—were selected in such a way that

they did not overlap. It was thus impossible that an image used for training 

depicted the same area of the grassland sites as an image used for 

validation or testing, and vice versa, which would have nullified the test 

results. All Colchicum autumnale flowers were then labeled by visual 

inspection. In order to keep the workload feasible, bounding boxes were 

used instead of more precise pixel-based annotations, which would have 

been more work intensive to create. In total, the ground truth dataset 

comprised 8100 Colchicum autumnale flowers marked with bounding boxes.

To evaluate how the presented procedure would generalize to previously 

unseen situations, such as different grassland sites, several different splits 

into training, validation and test datasets were performed, which are 

described below, in the section entitled Results.

Note that areas of the drone images which were clearly not and never 

would be part of the grassland were manually excluded. These included 

roads, creeks and houses, but not inconstant objects like fences or trees 

which were also present in some drone images. The argument for this 

procedure was that identifying these areas is a process that a practitioner 
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has to do only once and can be reused in the following years without 

alterations. Furthermore, defining these areas might be necessary for 

creating an application map of an automatic weed control tool anyway.

Because the presented method is an image segmentation technique, it was 

necessary to process the ground truth dataset to get segmentation masks 

for the training of the detector. For that, as a first step, the segmentation 

mask of a given drone image was completely colored in black (background). 

After that each annotated bounding box in the drone image was considered 

and each pixel within the bounding box that did not have a green color was 

assigned to the foreground (white color). More precisely, a pixel was 

considered to be green if the hue value in the HSV (hue, saturation, value) 

color space (see, e.g., Hughes et al. (2013)) was between 60∘ and 180∘. If, 

under this condition, a bounding box was still colored completely in black, 

the whole bounding box was filled with white to ensure that no flowers were

dropped. This process was designed to only remove pixels which are 

obviously not part of a flower and to let the neural network learn more 

sophisticated rules which pixels actually are flower. In summary, the ground

truth dataset consisted of 56 drone images together with their 

corresponding annotations in the form of bounding boxes, which were 

mostly intended for the evaluation of the detector, and in the form of 

segmentation masks, which were mostly intended to train the neural 

network. Note that the dataset splits determined which subsets of the 

ground truth dataset were actually used for training and evaluation.

Flower Detector
Since the neural network required consistent image sizes, the drone images

and their corresponding segmentation masks were divided into smaller

256×256-pixel tiles. In cases where the drone image dimensions were not 

multiples of 256, black pixels were used as padding.
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(a) (b)

(c) (d)
Figure 2: Original input image tile with its corresponding segmentation mask (a) and three 
different augmentations (b-d).

Image augmentation was employed in order to artificially enlarge the 

available training dataset for an improvement of the performance of the 

neural network, see, e.g., Goodfellow et al. (2017). For this, each input 

image tile and corresponding segmentation mask were subjected to random

transformations—i.e., flipping, cropping, Gaussian blurring, contrast 

adjustments, additive Gaussian noise, changes in the brightness and affine 

transformations each with random parameters. It was decided at random 

which of these transformations were applied to each sample. Examples of 

this process can be seen in Figure 2.

The task of locating the Colchicum autumnale can be formulated as a 

semantic segmentation problem. That is, for each pixel of a given input 

image, it is predicted whether it shows a flower (foreground) or something 

else (background). In the present paper, this problem was solved by means 

of a deep convolutional neural network, see, e.g., Goodfellow et al. (2017) 
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for more information about this topic. More precisely, the employed 

architecture was a modification of the U-Net architecture introduced in 

Ronneberger et al. (2015).

In Figure 3 an illustration of the architecture of the neural network can be 

seen. It could be split into a contracting part and an expansive part. The 

first one consisted of repeating two 3×3 convolutional layers (with zero-

padded boundaries and rectified linear unit (ReLU) activation functions), 

batch normalization (Goodfellow et al., 2017) and max-pooling layers (with 

stride 2). In each of the four repetitions, the sizes of the feature maps were 

cut in half while the number of filters was doubled. The number of filters in 

the first convolutional layers lc was determined by hyper-parameter tuning. 
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Figure 3: Architecture of the neural network which takes 256×256 RGB image tiles and 
predicts for each pixel whether it is part of a Colchicum autumnale flower or of the 
background.



In the second part, the contracting part, the reverse happened and the 

feature maps were enlarged to the same size as the input image. For this, 

the output of an up-convolution layer, i.e., upsampling combined with a 2×2 

convolutional layer, was concatenated with the corresponding feature map 

from the contracting part and subsequently inserted into two 3×3 

convolutional layers (with zero-padded boundaries and ReLU activation 

functions) followed by a batch normalization layer. These steps were 

repeated four times. To reduce the number of filters to the number of 

classes (that is two, one for the foreground and one for the background), a 

further convolutional layer was added, which was followed by a 1×1 

convolutional layer (with sigmoid activation functions). The output was a

256×256 image with one channel where each pixel value is in [ 0,1 ]. Here, 

values close to 1 signified Colchicum autumnale flowers, while values close 

to 0 corresponded to background pixels. The neural network was 

implemented in Tensorflow, see Abadi et al. (2015).

The pixels of the output images of the neural network had continuous values

in [ 0,1 ] and had to be post-processed in order to end up with binary 

predictions. For this, a global decision threshold t p∈ [ 0,1 ] was applied as 

binarization. Furthermore, morphological closing (see, e.g., Burger and 

Burge (2016)) with a disk of radius rc>0 aggregates clusters of white pixels, 

and clusters which were still to small to be flowers, i.e., those comprised of 

fewer than k s pixels, were removed in the final step.

Training
Consider a split of the ground truth dataset into training, validation and test

datasets. For each hyper-parameter configuration, a model of the detector 

was trained relying only on the training dataset. The best model was 

selected based on the validation dataset and its performance was evaluated 

on the test dataset. In the following, the training and the model selection 
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will be described in more detail.

To train the weights of the neural network, it is important to measure the 

quality of each prediction. This was done by considering each pixel and 

assigning a positive loss value if the prediction did not match the 

corresponding pixel type in the ground truth segmentation masks, and a 

loss value equal to zero otherwise. More precisely, for the i-th pixel with

i=1 ,…,M  and M  the number of pixels used for training, denote the ground 

truth pixel label by y (i )∈ {0,1 } and the corresponding prediction of the neural 

network by p(i )∈ [ 0,1 ]. Moreover, to simplify the notation let

~p (i)=~p (i) ( y (i ))={ p (i ) ,  if y (i )
=1 ,

1− p (i) ,  if y (i )=0.
                    (1)

Obviously, a good prediction aims to always keep ~p (i) close to 1, and thus loss

functions penalize small values of ~p (i). With this, the classical cross-entropy 

loss (CE) is given by

l (CE ) (~p(i ) )=− log (~p (i ))={ − log ( p( i) ) ,  if y (i)=1 ,

−log (1− p(i ) ) ,  if y (i)
=0 ,

       (2)

see, e.g., Goodfellow et al. (2017).

One challenge when training the proposed neural network is that the 

number of background pixels exceeded the number of foreground pixels by 

far. The reason for this is that the trivial prediction which assigns 

background to all pixels already achieves a very small cross-entropy loss 

value and the features of the Colchicum autumnale flowers are thus not 

learned. This can be solved by introducing a weighting factor α>0 and 

defining the α-weighted cross-entropy loss, see e.g. Ronneberger et al. 

(2015), as

lα
(CE ) (~p(i ) )=−~α log (~p( i) )          (3)
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where ~α=α 1y (i )=1+(1−α ) 1y (i )=0. The weight α  is usually either chosen through 

hyper-parameter tuning or directly based on the training dataset. In the 

present paper, it was set to

α=
np
−1

np
− 1

+nn
−1                    (4)

with

np=# {i∈ {1,…, M }: y ( i)
=1}  and nn=# {i∈ {1 ,…,M }: y (i )

=0} .     (5)

Another option that was investigated is a generalization of the cross-entropy

loss, the focal loss (FL) introduced in Lin et al. (2017). For the focusing 

parameter γ ≥0, the α -balanced focal loss is given by

lα
(FL ) (~p(i ) )=−~α (1−~p( i) )

γ
log (~p (i) )     (6)

It can easily be seen that for γ=0 the focal loss is equal to the cross-entropy 

loss. However, for γ>0 the focal loss introduces a multiplicative weight, 

which reduces the loss for easily classifiable pixels, i.e., where ~p (i) is 

vanishing. The training thus concentrates on the misclassified samples, 

which are downscaled far less. The value γ=2, which is suggested in Lin et 

al. (2017), was used in the experiments presented. The best loss function 

was determined through hyper-parameter optimization.

The weights of the neural network were trained with the Adam optimization

method (Goodfellow et al., 2017) with a batch size of 32 and the learning 

rate λ lr=0.0001, which determines to what extent the newly acquired gradient

information in an iteration of the optimization overrides the old information.

In order to reduce the runtime, only samples with foreground pixels were 

used. The training was stopped after 100 optimization iterations through 

the whole training dataset (so-called epochs) or three days of runtime on an 

Intel Xeon E5-2670, whichever happened first.

Consider the binary classification problem of assigning each pixel to the 
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correct class (foreground or background). For the number of true positives

ntp, false positives n fp, and false negatives n fn, the precision, recall and Fβ-

score are given by

sprec=
ntp

ntp+n fp
, srec=

ntp
ntp+nfn

 and sF β=
(β2

+1 ) sprec srec

β2 sprec+srec

    (7)

respectively, where β≥0 is some weighting parameter. Note that the Fβ-score

is a generalization of the well-known F1-score, where by sFβ precision and 

recall are weighted differently depending on the value of β. For the 

purposes of weed control, it is beneficial to put a higher emphasis on the 

recall since it is better to have a higher number of false positives than to 

miss any Colchicum autumnale. Hence, the F2-score was used in the 

experiments. In cases where this assertion does not hold, other values of β 

can be used. For more information on performance metrics for classification

problems see, e.g., Goodfellow et al. (2017) and Manning et al. (2008). With 

this in mind, the parameters for the postprocessing were chosen based on 

the training data as follows. The decision threshold t p, as defined above, was

determined by applying different threshold values and maximizing the 

resulting F2-score. Because it was assumed that the shapes of the flowers 

did not exhibit anisotropy, the radius rc for the morphological closing was 

set to the mean length of both sides of all bounding boxes. Finally, the 

threshold k s, which identifies small foreground clusters, was determined by 

the 0.1%-quantile of the volumes of all bounding boxes.

Model Selection
From a practitioner’s point of view, the crucial question is not about how 

precise the predicted segmentation masks are, but rather how well the 

individual Colchicum autumnale flowers are found. For this reason, the 

binary predictions were also analyzed using a cluster-based approach. For 

that, each annotated bounding box of a drone image was considered and it 
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was checked whether there was a foreground cluster in the predicted 

segmentation mask that had a non-empty intersection with that bounding 

box. In this case, it was marked as true positive. If there was no 

corresponding foreground cluster, it was characterized as false negative. 

After that, every foreground cluster which could not be assigned to a 

bounding box was marked as false positive. Note that with this procedure, it

is not possible to get true negatives and that a foreground cluster can be 

associated with more than one bounding box. Based on this data, it was 

possible to compute the precision, the recall and the F2-score to evaluate 

how well the detection models were able to predict the flowers.

Recall that the considered hyper-parameters were the base number of 

convolutional filters lc∈ {8,16,32 }, and which loss function, either the cross-

entropy or the focal loss, should be utilized for the neural network. For each

possible configuration of hyper-parameters, a model was trained on the 

training data and the best values were then determined by maximizing the

F2-score of the cluster-based evaluation on the validation dataset.

Results
In this section, the test results of the best trained detection models are 

presented. For that, different splits of the ground truth dataset were used. 

First, all grassland sites were considered and each drone image was 

assigned at random to either be part of the training, the validation or the 

test dataset. The intention of this dataset split is to do an in-depth analysis 

for the use case where there are training labels for all grassland sites. On 

the other hand, one might be interested in how well the predictive quality of

the detector is for grassland sites which are not part of the training and 

validation dataset. That is why three further splits of the ground truth 

dataset were considered where in each one grassland site was selected that

is solely used for testing. The two remaining sites formed the training and 
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validation datasets. Because the model selection was performed in the same

way for each of the four dataset splits, all of them were independent of each

other and there was no information leakage.

(a) (b)

(c) (d)
Figure 4: Cutouts of the drone images from the test dataset of the random dataset split 
overlaid with the predicted segmentation masks of the detection model and the ground 
truth bounding boxes. On the grassland, most predictions are correct, even in mixed 
lighting. However, objects like a marker cross (b), tree branches (c) or fences (d) can lead 
to false positives.
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Random Dataset Split
For the first dataset split of the ground truth data, each drone image was 

assigned at random to the training (34 images), the validation (8 images) 

and the test dataset (14 images). The best performing model on the 

validation set turned out to be the one with lc=16 and the cross-entropy loss 

function. For the test images, the cluster-based evaluation yielded ntp=1397 

true positives, n fp=1048 false positives, and n fn=20 false negatives which, in 

turn, resulted in a precision of 0.571, a recall of 0.986 and a F2-score of 

0.861. Example cutouts of the drone images, their annotated bounding 

boxes and the corresponding predictions of the detection model can be seen

in Figure 4.

In grassy areas, the prediction was very good (Figure 4a,d), even in deep 

shadow (Figure 4b). While some false positives were visible, many of them 

were the result of interfering objects with a light reddish color like tree 

branches (Figure 4c) or fences (Figure 4d). Other objects like brown apples 

(Figure 4c) were not wrongly detected. No influence of the dryness of the 

grass on the predictive performance could be observed.
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Site-specific Dataset Split

Site 1 Site 2 Site 3 Overall
Precision 0.160 0.845 0.488 0.692
Recall 0.897 0.869 0.965 0.886
F2-score 0.468 0.864 0.807 0.839
ntp 140 5651 1341 7132
n fn 16 851 48 915
n fp 733 1033 1408 3174
# test images 16 29 11 -
# training images 35 15 31 -
# test flowers 171 6531 1398 -
# training flowers 7608 749 4907 -
Loss function CE FL CE -
lc 16 32 16 -

Table 1: Classification metrics of the predicted foreground clusters for drone images of the 
given grassland site and their aggregated values together with characteristics of the test 
and training datasets and the best hyper-parameter configuration. The imbalanced 
numbers of test flowers of the grassland sites were accounted for by first collecting the 
results of all sites and then based on these the overall precision, recall and F2-score were 
computed (so-called micro-averaging).

Another important question is how well the detector works for previously 

unseen grassland sites. In order to investigate this, three detection models 

were trained only on two of the three grassland sites. The remaining one 

was used for testing. The results of the evaluation are summarized in 

Table 1.

Site 1 had, compared to the other sites, a high number of other objects, like 

fences or trees, on the drone images. As discussed above, these were more 

likely to produce false positives (cf. Figure 4), which, when combined with 

the low number of flowers in the dataset (cf. Table 1), led to the low 

precision. Site 2, on the other hand, was comprised mostly of grassy areas. 

Here the best precision was observed even though the number of flowers in 

the training dataset was the lowest. Finally, the third grassland site also 

contained some interfering objects, but the higher number of flowers meant

that the precision was not so sensitive to false positives.
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Discussion
The detector showed very good results for pure grassland. With recall 

values between 0.869 and 0.986, a very large portion of the Colchicum 

autumnale flowers were found. Note that about four out of ten predicted 

locations of a flower were false positives. Many of these were the result of 

interfering objects like trees and fences, and it is therefore advised to 

remove these if possible when taking the drone images.

When analyzing the detection models on previously unseen grassland sites, 

the recall remained stable on high values. The precision varied much more 

which was mainly caused by interfering objects. However, when applying 

the detector under real world conditions, a much larger area is imaged and 

analyzed, most of which will show only grassy areas and only very few parts

contain something else. In this case, interfering objects have relatively little

impact on the overall precision. Moreover, detections with a low precision 

lead to a reduced crop yield when the predicted areas are mulched, but not 

to a deterioration of the weed control results which is more important in the

long run. In cases where a higher precision at cost of a lower recall is 

desired, using, e.g., the F1-score instead of the F2-score for the parameter 

estimation would be possible.

With only one exception, the best hyper-parameter configuration turned out 

to be lc=16 and the cross-entropy loss function. It is thus recommended to 

use these values when applying the detector and no separate hyper-

parameter tuning must be performed.

The proposed detector is a novel approach for locating Colchicum 

autumnale in drone images of grassland sites. The choice of input data 

distinguishes it from most detectors for Rumex obtusifolius relying on close 

range images (Binch and Fox, 2017), which cannot easily be translated to 

Colchicum autumnale because it does not have the prominent form of the 
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Rumex leaves. On the other hand, compared to the method proposed by 

Valente et al. (2019), which also uses drone images, the detector directly 

located the flowers in the input image and no sliding window procedure was

required, which led to a higher efficiency.

Future Work
As shown by Seither and Elsäßer (2014) an effective strategy for reducing 

the stock of Colchicum autumnale is mulching in late spring. It is currently 

unknown how the locations of the plants develop between the imaging and 

the mulching. It is therefore a point of our future research how to combine 

the autumn images with images shot in spring to make more accurate 

predictions. Solely relying on spring images seems like an unnecessarily 

hard problem since a high spatial correlation between the locations of the 

plants in autumn and the locations in spring is suspected and detecting 

Colchicum autumnale in spring only by the form of their leaves can be very 

error-prone. Furthermore, in co-operation with KULT Kress 

Umweltschonende Landtechnik GmbH (Vaihingen an der Enz, Germany), an 

automated treatment tool is developed for which the detected locations of 

the Colchicum autumnale are used to create an application map with the 

AGROCOM MAP software from CLAAS (Harsewinkel, Germany).

Conclusion 
In the present paper, a detector of Colchicum autumnale flowers in drone 

images was presented. For that the input drone images were cut to image 

tiles with a consistent size. On these a convolutional neural network with 

subsequent post-processing predicted the locations of the flowers. The 

quality of the detection was evaluated on known and previously unseen 

grassland sites. In the latter case, 88.6% of the test flowers were detected.
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