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Zausch1, Volker Schmidt2, Ralf Müller3

1 Material and Flow Simulation, Fraunhofer Institute of Industrial Mathematics ITWM,
Kaiserslautern, Germany, tobias.hofmann@itwm.fraunhofer.de

2 Institute of Stochastics, Ulm University, Germany

3 Chair of Applied Mechanics, University of Kaiserslautern, Germany

Key words: multiphysics, electrochemistry, batteries, elasticity, stochastic microstruc-
ture modeling

Abstract. A micromodel coupling lithium-ion diffusion and electric potentials to a lin-
ear elasto-plastic model is applied. The resulting problem is discretized on a regular
voxel grid with a finite-volume method and solved by an adaptive iterative scheme. The
algorithm does not require the assembly of a Jacobian and applies the immersed inter-
face method for the electrochemical problem. An established elastic solver optimized for
non-linear heterogeneous structures is generalized to describe mechanical strains result-
ing from lithium-ion intercalation. Numerical examples on several structures are given,
including academic structures and microstructures given by computer tomography com-
pared to microstructures drawn from stochastic microstructure models. It is found that
the structures drawn from the calibrated model resemble the mechanical properties of the
structures gaind by tomographic imaging, which serves as an additional validation of the
stochastic microstructure modeling approach.

Introduction

Some electrode materials in lithium-ion batteries show deformation and degradation
during operation. The imbalanced intercalation of the lithium ions into the lattice struc-
ture of active particles causes concentration gradients. The stresses resulting from these
gradients can damage and destroy the battery cell. Computer simulations of these stresses
during charging and discharging can help to understand this process and support the de-
velopment of more efficient battery cell structures.

A micromodel coupling lithium-ion diffusion to the electric potential and Butler-Volmer
interface currents and linear elasticity is applied [4, 9]. This enables the resolution of a
complex three-dimensional porous microstructure of the anode and cathode material in
the liquid electrolyte. Additionally mechanical stresses resulting from strains depending
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on the local concentration of lithium ions are computed [1, 15]. This results in a system of
partial differential equations. For the numerical solution, a finite volume method is applied
for the discretization in space, while the time discretization is realized by an implicit Euler
method. A domain decomposition algorithm based on the immersed interface method [10]
is extended for the diffusion and Poisson equation. By this, large, adaptive time steps are
possible in arbitrary complex domains [5].

Numerical examples are given to demonstrate the coupling effects between the elec-
trochemical model and the mechanical model. First, the method is applied to a single
spherical anode particle. Moreover, computer tomography data is used to develop stochas-
tic 3D models for microstructure generation [2, 8, 14]. The electrochemical solution on
these microstructures has been validated recently [3], and a good agreement of spatially
resolved electrochemical properties was found between tomographic image data and re-
alizations of the calibrated model. In the present paper, for an additional validation of
the stochastic modeling approach, mechanical properties are compared using the method
described above. The spatial distribution of stress invariants along the thickness direc-
tion is calculated, and a good match between the results for tomographic image data and
corresponding model realizations is found.

1 Electro-chemo-mechanical model

A cuboid domain Ω = (0, L1)× (0, L2)× (0, L3) ⊂ R3 denotes the microstructure of a
battery cell and consists of the two solid electrodes, anode Ωa and cathode Ωc, and the
liquid electrolyte Ωe. A time-dependent problem is posed on the domain T = (0, t0). For
concentration, electric potential and displacement, partial differential equations are given
on each of the three domains: anode, cathode and electrolyte.

Electro-chemical model

Transport equations in the electrolyte domain, the anode domain, and the cathode
domain are introduced separately based on [9]. The transport equations for ion concen-
tration ce and the electric potential φe in a liquid electrolyte are considered as

∂tce = ∇ ·
[(

De

RT
+
κet+(t+ − 1)

F 2ce

)
∇ce +

κet+
F
∇φe

]
,

0 = ∇ ·
[
κe

(t+ − 1)

Fce
∇ce + κe∇φe

]
.

(1)

Here constants R, T and F are the universal gas constant, the temperature, and the
Faraday constant, respectively. The electro-chemical properties of the electrolyte are
given by its diffusivity De and its conductivity κe. Depending on the transference number
t+, the transport of positive lithium ions is coupled to the transport of additional negative
anions. Inside the electrode material, the lithium ion diffusion cs and the electric potential
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φs are decoupled by the equations

∂tcs = ∇ ·
[
Ds

RT
∇cs

]
,

0 = ∇ · [κs∇φs] ,

(2)

where Ds denotes the corresponding diffusivity, and κs the conductivity.

Elasto-plastic model

The stress-strain relationship model presented in this work is based on a linear-elastic
model, see [1] and [15]. The strain ε in the solid is modified to include a chemical part

ε = εel + εch + εpl, (3)

and consists therefore of an elastic part εel, a chemical part εch and a plastic part εpl.
The constitutive relationships for the displacement u, the elastic strain εel, and the stress
σ are then given as

εel =
1

2
(∇~u+∇~uT ),

σ = λTr(εel)I + 2µεel,
(4)

where the linear-elastic properties of the solid material are given by λ and µ, Tr(·)
denotes the trace of a tensor, I is the unit tensor. The molar volume expansion is given
by θ. By this, the electrochemical model and the mechanical model are coupled as

µel =
θ

3
Tr(σ)⇔ εch =

θ

3
csI, (5)

where µel denotes the elastic part in the electro-chemical potential.
The electrolyte is assumed as an incompressible fluid with bulk modulus K.

Interface conditions

On the electrode-electrolyte interfaces, interface conditions are defined by the Butler-
Volmer conditions as

ise = i0(cs, ce) sinh

(
F

2RT
η

)
, fse =

ise
F
, η = φs − φe −

µs

F
, (6)

Here, η is called the electro-chemical overpotential and µs is the chemical potential of the
solid. The difference η of electro-chemical potentials on either side of the interface is only
zero in the static thermodynamical equilibrium. The function i0 is called the exchange
current density, possibly defined as

i0(cs, ce) = 2k

√
cecs

cmax

2
, (7)
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where k is the Butler-Volmer exchange coefficient and cmax is the maximum solid lithium
ion concentration. The electric current ise is used to define Neumann boundary conditions
for the Poisson equations of the electric potential while the concentration flux fse is used
to define Neumann boundary conditions for the diffusion equations of the lithium ion
concentration. The Faraday constant F acts as a coupling factor. By the positive lithium
ion charge, diffusion is coupled to the electric current. A fixed electric current is defined
by the C-rate, usually specified in the unit per hour, i.e., 1

3600s
= 1

h
. C-rate 1 defines a

charging current iin such that it takes one hour to charge the battery cell from empty to
full state of charge. For the diffusion equations and the elastic equations valid boundary
conditions are considered. A discharged battery is considered for the numerical simulation
test case.

2 Microstructure characterization

To give an example of application of the proposed method to realistic 3D data, in the
present paper the microstructure of lithium-ion battery anodes is considered. A para-
metric stochastic 3D microstructure model has been developed and fitted to tomographic
image data of the system of active particles in energy cell anodes in [2], see also [14] for
power cell anodes and [8] for cathodes. Once calibrated to a given data set, stochastic
microstructure models can be used to generate microstructures on the computer that
are similar in a statistical sense to the data being modeled according to several morpho-
logical properties. Moreover, by systematic variation of model parameters it is possible
to generate virtual, but realistic microstructures for materials that have not (yet) been
manufactured in the laboratory. The combination of stochastic microstructure model-
ing with numerical simulations of functional properties allows us to identify preferable
microstructures, a procedure called virtual materials testing.

The model proposed in [2] has been validated with respect to electrochemical prop-
erties using spatially resolved simulations in [3]. In the present paper, a comparison of
mechanical properties computed for tomographic image data and for realizations of the
calibrated model is performed.

The construction of the model is based on three main steps. To begin with, the sampling
window is decomposed into a system of convex polytopes using a Laguerre tessellation,
see Figure 1 (i). Later on, a particle will be placed in each polytope. However, to ensure
complete connectivity of the system of particles, in the second step a connectivity graph
is constructed, see the blue lines in Figure 1 (ii). This graph indicates which particles are
supposed to be connected, i.e., if there is an edge of the graph between two polytopes, the
corresponding particles will be forced to touch each other. In the third step, the particles
themselves are modeled using spherical harmonic expansions of Gaussian random fields
on the sphere. Thereby, the additional constraints that predefined points on the facets
between those Laguerre polytopes where an edge of the connectivity graph is present are
hit by the particles ensures that the particles touch each other as desired, see Figure 1
(iii). Then, the tessellation and connectivity graph are deleted, as they were only auxiliary
tools for constructing the system of particles, see Figure 1 (iv). As a postprocessing step,
a morphological closing is performed to mimic the effect of binder, see Figure 1 (v). A 3D
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Figure 1: 2D sketch showing the individual steps of the stochastic microstructure model proposed in
[2]. (i) Decomposition of the sampling window into convex polytopes. (ii) Construction of a connectivity
graph. (iii) Modeling of particles according to the constraints given by the connectivity graph. (iv)
The auxiliary tools are deleted. (v) A morphological closing is performed to mimic the effect of binder.
Reprinted from [2], with permission from Elsevier.

Figure 2: Left: CT image. Right: Simulated structure using the calibrated stochastic model.

comparison of tomographic image data and a corresponding model realization is shown
in Figure 2.

3 Numerical methods

The governing equations of the electrochemical model are separated into six smaller
initial-boundary-value-problems (IBVPs). The focus is on the coupling of those six dif-
ferent IBVPs in anode, cathode and electrolyte for both lithium ion concentration and
electric potential. The coupling by the non-linear Butler-Volmer equations is solved using
iteration. The convergence order of the domain decomposition algorithm is one.

Next the immersed interface method (IIM) is introduced for both the time-independent
Poisson equation and the time-dependent diffusion equation. For the solution finite dif-
ference stencils and implicit Runge-Kutta schemes may be applied. Methods with con-
vergence order two, four and six can be defined for the periodic Poisson equation and the
periodic diffusion equation.

Assume that the diffusion equation is given on an arbitrary domain Λ. Then a dis-
cretization in time with an implicit Euler method with time step size τ and in space with
a symmetric finite difference stencil with discretization width h results in the equation

(Ih + τ∆h)ch = čh, (8)
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where ch and čh denote the concentration field for the current and previous timestep,
respectively, and Ih and ∆h denote the discrete unit tensor and the discrete Laplacian
operator, a finite difference stencil of second order. This equation is extended to include
additional jump variables gh on the boundary ∂Λ that allow for an embedding of the
equation onto a larger cuboid domain Ω,(

Ih + τ∆h Ψ
D Ih

)(
ch
gh

)
=

(
čh
fh

)
, (9)

where fh denotes arbitrary Neumann boundary conditions on ∂Λ ⊂ Ω. The matrices
Ψ and D are called projection matrix and differentation matrix, respectively. In special
cases they equal finite difference stencils and represent discretized delta distributions. The
enlarged block system is then reduced by Schur’s complement to(

Ih −D(Ih + τ∆h)−1Ψ
)

= fh −D(Ih + τ∆h)−1čh. (10)

This allows for an efficient numerical solution as the number of variables is significantly
reduced. Given a regular voxel mesh discretization with width h, the number of degrees of
freedom inside Λ is in the order of O( 1

h3 ), while the number of degrees of freedom on the
boundary domain ∂Λ is in O( 1

h2 ). A second-order formulation for the immersed interface
methods can be given.

The mechanical subproblem is solved and discretized on the same grid and linearized.
The linear system is then solved with either a conjugate-gradient method for the linear-
elastic problem or a Neumann fixed-point method if the non-linear plastification model is
used. As a pre-conditioner, an operator representing a reference material with constant-
coefficients is applied using Fast-Fourier methods [12].

4 Numerical examples

For validation of the method, a typical academic example as presented in other work [7,
11] is chosen. Figure 3 shows the lithium-ion concentration and corresponding stress
invariants in an anode spherical particle with diameter 10 µm in radial direction during
different states of charge. As the particle is spherical, no difference along tangential
directions of the particle is observed and the properties only vary along the radial direction.
While the Von-Mises stress maximum is situated in the outer shell of the particle, a local
maximum of the hydrostatic stress is located in the center of the particle, compare to
corresponding results in [13, 7, 6]. There, single particles without enwrapping electrolyte
are discussed. Here, in the presented results, the increasing stress at the outer shell of
the particle is due to the pressure of the enwrapping electrolyte, which is modeled as an
incompressible fluid. Appropriate models for the electrolyte as well as periodic mechanical
boundary conditions are open for discussion.

Figure 4 shows a comparison of the lithium-ion concentration and stress invariants
in two different microstructures of anode material charged with C-rate 1 at 40% state
of charge. In the top row, a tomographic image is depicted, while in the bottom row
a realization of the calibrated stochastic microstructure model is shown. The electrode
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Figure 3: Radial-symmetric solution of (i) lithium-ion concentration and (ii) hydrostatic stress and
von-Mises stress in a spherical particle for states of charge 40%, 55% (dashed) and 70% (dotted).

Figure 4: Full-field solution of lithium-ion concentration, hydrostatic stress and von-Mises stress in both
tomographic (top) and simulated (bottom) microstructures.
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Figure 5: Comparison of the hydrostatic stress (left) and the von-Mises stress (right) for SOC=40% in
the thickness direction. Plotted is the mean as well as ±1 standard deviation.

structure is charged from top to bottom. Concentration gradients arising from uneven
interface current densities can be seen. The inner center of larger particles remains empty.
Maxima of hydrostatic stress occur together with maxima of the lithium-ion concentration.
Maxima of the von-Mises stress occur mainly at particle boundaries.

For a more thorough analysis, a total of 22 cutouts of tomographic image data and
20 simulated model realizations of the same size were chosen. These 42 examples of
anode microstructures were charged separately each with C-rate 1. Then the full-field
solution for both stress invariants was averaged along the second and third dimension
such that a spatial trend along the through-plane direction remains. Then for both,
tomographic image data and model realizations, the results were averaged and the mean
and standard deviation were calculated. Figure 5 shows the resulting curves and ±1
standard deviation. While boundary effects can be seen in both stress invariants, the
deviations between the computer tomography solution and the stochastically generated
structures are within the standard deviations. This shows that, except for the boundary
of the structure, mechanical properties are in good agreement between real and simulated
data. The differences at the boundary can be attributed to the fact that the solid volume
fraction is larger on the boundary than in the center for tomographic image data, while
this effect is not reproduced in the stochastic microstructure model.

Conclusions

A micromodel coupling lithium-ion diffusion to the electric potential, Butler-Volmer in-
terface currents and linear elasticity is applied. Mechanical stresses resulting from strains
depending on the concentration are computed. Different microstructures are analyzed,
which, e.g., allows for a comparison of mechanical properties between tomographic image
data and simulated realizations of a stochastic microstructure model. Overall, a good
agreement was found. Moreover, the approach allows us to investigate morphological ad-
vantages with respect to mechanical properties. Depending on material parameters the
maximum C-rate and cycling effects can be evaluated. So far, the evaluation of maximum
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stress invariants inside the battery electrode particles allowed only for rough qualitative
prediction of time and point of failure. In the future, additional damage or fracture mod-
els will allow for a more precise prediction of the aging under realistic load cases. In
combination with stochastic microstructure modeling, a broad spectrum of virtual, but
realistic microstructures can be analyzed accordingly, and morphologies with preferable
mechanical properties can be identified.
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