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Abstract

In this work a phase field method is used for the solution of an electro-chemical

diffusion model for a lithium-iron-phosphate particle coupled to a small-strain

elasto-plasticity model. This coupling takes the mechanical dilatation of the

crystal lattice during intercalation into account. The electro-chemo-mechanical

coupling is derived from a Helmholtz free energy, resulting in constitutive equa-

tions for both the diffusion and the mechanical equilibrium in the electrode

material. A new method for the generation of virtual microstructures is given

with additional constraints to obtain smooth boundaries. This ensures valid

mechanical solutions for grid refinement. The model is then discretized, lin-

earized and solved for various microstructures. Academic results in one and two

spatial dimensions are presented as well as results on spherical structures. The

versatility of the numerical method is demonstrated for virtual microstructures

generated by stochastic models on graphite.

1. Introduction

A lot of electrode materials for lithium ion batteries show capacity fade or

degradation phenomena during their lifetime. Large discharge currents result in

steep concentration gradients due to slow lithium ion diffusion. High gradients

of lithium ion concentration result in high mechanical stresses due to the local

dilatation of the particles. Those contribute to the aging of the whole battery

Preprint submitted to International Journal of Solids and Structures May 1, 2019

*Revised Manuscript (Unmarked)

Click here to view linked References

http://ees.elsevier.com/ijss/viewRCResults.aspx?pdf=1&docID=20787&rev=3&fileID=684717&msid={BB157E76-8190-428D-B42D-57E9AB768AF1}


cell.

Different materials have been used as electrolyte as well as for the cathode

and the anode. In a lot of them, the electrochemical processes can be accu-

rately described by Fickian diffusion for the lithium ion concentration field and

the Gaussian law for the electric potential field. But especially in the popular

cathode material lithium-iron-phosphate (LiFePO4, LFP), the diffusion of the

lithium ions from the electrolyte into the active material cannot be modelled

by a regular diffusion equation. In a lot of materials the diffusion leads to a

uniform ion distribution inside the material. But in lithium-iron-phosphate the

lithium ions separate into areas with a maximum concentration of lithium ions

and areas where no lithium ions are present [1, 2, 3, 4]. Even without applied

current, the lithium rich areas do not diffuse. The distribution of the lithium

ions inside the material can then be described by two different phases, one phase

rich with lithium ions and one phase depleted of lithium ions. The process of

separation into different phases is called spinodal decomposition. The problem

of describing the movement of the boundaries between both phases is often ref-

ered to as Stefan problem [5, 6] and can be approached by adaptive meshes and

front-tracking methods [7].

Another approach called phase-field method is introduced in the works by

Cahn and Hilliard [8] and is based on a thermodynamical approach involving a

non-convex Helmholtz energy functional. In a general phase-field method, the

interface between two phases is regularized [9]. Phase-field methods have been

applied for the solution of displacive problems such as the phase transformation

between austenite and martensite [10, 11] or mechanical fracture processes [12,

13].

In phase-field models for diffusive processes, the governing fourth-order non-

linear partial differential equation is called the Cahn-Hilliard equation. Recent

formulations for lithium-iron-phosphate particles can be found in [14, 15, 16, 17,

18]. While those models are restricted to simulations of electrode material, the

model presented in this paper describes diffusion and electric potentials in both

electrodes and the electrolyte. There are simulations for the charging of elec-

2



trode material for different spherical [19, 20], ellipsoidal nanoparticles [21, 22] or

more complex single particle microstructures [23, 24, 25]. The effects of charg-

ing on porous electrodes has also been studied [26, 27, 28, 29, 30]. Instead of

the resolution of a microstructure, homogenization is often applied [26, 31].

If one however wants to consider the entire 3D structural information, stochas-

tic microstructure models are a powerful tool to generate a broad spectrum of

realistic 3D input data. These models are based on methods of stochastic geom-

etry [32] and can be constructed for very different materials like organic solar

cells [33], open-cell foams [34], SOFC-electrodes [35] and battery electrodes [36].

Once calibrated using tomographic image data of real microstructures, model

parameters can be varied systematically to generate a broad spectrum of vir-

tual microstructures. Using, e.g., numerical transport simulations, this data

basis can be used to investigate the relationships between descriptors of the 3D

morphology and functionality of the materials [37].

In Section 2, an electro-chemo-mechanical model for the simulation of a

lithium ion battery on the microscale is given. The model is valid for a porous

microstructure of electrode domain. This microstructure may be given by com-

puter tomography and image segmentation. It is also possible to design virtual

microstructures using stochastic models. The intercalation of the lithium ions

into the electrode material is modelled by Butler-Volmer kinetics. The transport

of lithium ions inside the electrode material is described by the Cahn-Hilliard

diffusion equation, while the mechanical dilatation of the electrode material is

caused by a chemical strain which is proportional to the local lithium ion concen-

tration. Usually the diffusive properties of lithium-iron phosphate are modelled

by a free energy that depends on the logarithm of the concentration. Those

are difficult to solve efficiently. In this work, the energy is approximated by

a polynomial of fourth order with optimal coefficients. For these polynomials,

efficient methods have been developed.

In Section 3, a method for the generation of three-dimensional microstruc-

tures with smooth Lipschitz boundaries is given. The main volume of the elec-

trode material is approximated in the shape of regular spherical grids. Then
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binder material is added by two different methods such that the domain bound-

ary is Lipschitz1. The resulting elastic problem is solved for a constant concen-

tration and shown to be stable for grid refinement. Afterwards, the numerical

method for the electro-chemical problem is shortly introduced similar to [38].

Next, a numerical application is given. First the elastic effects are investigated

with the help of academic examples. The mechanical stress affects the equilib-

rium concentration in lithium-rich and lithium-depleted phase as well as the cell

voltage.

In Section 4, realistic 3D microstructures are considered, which have been

generated using stochastic microstructure models. In [39], a first approach how

to combine electro-chemo-mechanical simulations with 3D microstructure mod-

eling has been proposed, which is extended in the present paper. To begin with,

we compare tomographic image data with realizations of a calibrated stochastic

microstructure model [40]. After that, virtual microstructures are considered

for systematic ally varied volume fractions of active material. These structures

have been generated using the method described in [41].

In Section 5, a short summary of the obtained results is given and future

steps for the further development are discussed.

2. Electro-chemo-mechanical model

In this section, the equations for a lithium ion battery model on the mi-

croscale are presented. The mathematical model involves the fields of the con-

centration c, the electric potential φ, the chemical potential µ, and the vector

field displacement u. The movement of electrons and the charging of a battery

is related to the local concentration c and diffusion of positive lithium ions Li+.

The electric potential φ is connected to the current provided by the battery

during usage. The lithium ion intercalation into electrode material results in

1Lipschitz domains may include corners, i.e. a non-smooth domain boundary. The pre-

sented method additionally guarantees C1-continuity of the boundary.
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Name Symbol Unit

Concentration c mol cm−3

Displacement u cm

Lithium ion flux fse mol cm−2 s−1

Strain ε 1

Stress σ GPa

Table 1: Definition of symbols and constants.

the local displacement u of the electrodes. In Table 1, symbols and units are

defined.

In a cuboid domain Λ = (0, L1)×(0, L2)×(0, L3) ⊂ R
3 the microstructure of

a solid battery electrode Ω is embedded. The particle boundary of Ω is denoted

by Γ = ∂Ω. Given the time interval T = (0, t0), a time-dependent problem is

posed on Ω× T .

Partial differential equations for the concentration field c(x, t) and the dis-

placement u(x, t) will be defined. The boundary conditions will be given by

the Butler-Volmer flux relation fse(x, t) on Γ × T . In this context, the trace

operator γ0 is introduced that gives the trace of a scalar field defined on Ω onto

Γ,

γ0 : c(x, t) 7→ cγ(x, t) = lim
Ω∋x̃→x∈Γ

c(x̃, t). (1)

2.1. Thermodynamical modeling

A phase-field model for the concentration c(x, t) is considered. The phase-

field parameter is here the normalized lithium ion concentration p = c(x,t)
cmax

.

Motivated by previous works in [16, 42, 21], the free energy is assumed as

Elog(p) =RT
(

p log (p) + (1− p) log (1− p) +
q

RT
p(1− p)

)

+
1

2
εel : C : εel + Eplas,

(2)

with the mixing enthalpy q, the gas constant R and the temperature T given in

Table 2. Electric contributions to the energy are not considered. By not includ-

ing all terms into the free energy, the problem is simplified and the application
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of the Cahn-Hilliard scheme does not describe a whole system entirely. The full

theoretical approach is still an open problem and not given in this work.

The first term is related to a diffusion potential based on one-body terms

in a Hamiltonian of the crystalline structure in active material. The second

term results from a mean-field approximation of two-body interaction terms in

the Hamiltonian. The equilibrium values for p are given by the minimizers of

E′
log(p) = 0 as p1 and p2.

2.2. Electro-chemical model

Transport equations in the electrolyte domain, the anode domain, and the

cathode domain are introduced separately based on [44]. The transport equa-

tions for ion concentration ce and the electric potential φe in a liquid electrolyte

are considered as

∂tce = ∂tce = ∇ ·
[(

De +
κeRTt+(t+ − 1)

F 2ce

)

∇ce +
κet+
F

∇φe
]

, (3a)

0 = ∇ ·
[

κe
(t+ − 1)

Fce
∇ce + κe∇φe

]

. (3b)

Here constants R, T and F are the universal gas constant, the temperature,

and the Faraday constant, respectively. The electro-chemical properties of the

electrolyte are given by its diffusivity De and its conductivity κe. Depending

on the transference number t+, the transport of positive lithium ions is coupled

to the transport of additional negative anions. The units fit the following way.

First look at the dimensions of the following expression,

[

κeRTt+(t+ − 1)

F 2ce

]

=
A

V cm
J

molKK
(

A s
mol

)2 mol
cm3

=
AJ

V cmmol

A2 s2

mol cm3

=
J
V

A s2

cm2

=
VA s
V

A s2

cm2

=
cm2

s
, (4)

which is the same dimension as the diffusion coefficient. The expression De∇ce
then has the unit mol s−1 cm−2, which is the same as the second term inside the

square brackets in 3a,

[

κet+
F

∇φe
]

=
A

V cm
A s
mol

1

cm
V =

mol

s cm2 . (5)
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Name Symbol Value Unit

Universal gas constant R 8.314 Jmol−1 K−1

Temperature T 300 K

Faraday constant F 96485 A smol−1

Diffusivity D 10−10 cm2 s−1

Max. Li-ion conc. cmax 0.02 mol cm−3

Young’s modulus E 125 GPa

Poisson’s ratio ν 0.3 -

Partial molar vol. θ 3.497 cm3 mol−1

Mixing enthalpy q 1.110 · 104 Jmol−1

Kappa κ 2.508 · 10−10 J cm2 mol−1

Rate constant k 3.159 · 10−8 mol cm−2 s−1

Young’s modulus E 160 GPa

(silicon)

Hardening parameters σ0 0.4 GPa

(silicon) σ∞ 0.6 GPa

H0 1.0 GPa

H∞ 0.1 GPa

Young’s modulus E 109 GPa

(graphite)

Table 2: Material parameters partially taken from [43, 44, 42, 45, 46]. Parameters for silicon

taken from [47, 48].
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The equation 3a can be derived from Equations 23 and 50 in [44]. Given a

chemical potential for the electrolyte µe = RT log (c), setting the charge con-

stant z+ to 1 because we consider lithium ions, and disregarding temperature

gradients, the Equation 23 is then

j = −κ∇φ− κ
t+ − 1

F

RT

c
∇c. (6)

This can be plugged into Equation 50 in [44], which gives

∂tce = ∇ · [De∇ce]−∇ ·
[

t+
F

j

]

= ∇ · [De∇ce]−∇ ·
[

− t+κ
F

∇φ− κt+(t+ − 1)RT

F 2c
∇c
]

= ∇ ·
[

De∇ce +
t+κ

F
∇φ+

κt+(t+ − 1)RT

F 2c
∇c
]

= ∇ ·
[

De∇ce +
t+κ

F
∇φ+

κt+(t+ − 1)RT

F 2c
∇c
]

= ∇ ·
[(

De +
κt+(t+ − 1)RT

F 2c

)

∇c+ t+κ

F
∇φ
]

,

(7)

which is Equation 3a. Inside the electrode material, the lithium ion diffusion cs

and the electric potential φs are decoupled by the equations

∂tcs = ∇ ·
[

Ds

RT
∇cs

]

, (8a)

0 = ∇ · [κs∇φs] , (8b)

where Ds denotes the corresponding diffusivity, and κs the conductivity.

2.3. Cahn-Hilliard equation

For a numerically efficient solution Elog is replaced by a polynomial approx-

imation

Epoly(p) = a0

(

p− 1

2

)4

+ a1

(

p− 1

2

)2

+ a2, (9)

with a0, a1, a2 ∈ R chosen as appropriate fit parameters. By definition it is

symmetric around p = 0.5. Three conditions ensuring existence and uniqueness

are given by

• E′
poly(pi) = 0, i ∈ {1, 2},

8



p1 p2 a0 a1 a2

0.0129 0.9871 7.667 -3.638 0.419

Table 3: Parameters for the polynomial fit
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Figure 1: Energy (a) and chemical potential (b) for logarithmic and polynomial approximation.

• Epoly(pi) = Elog(pi), i ∈ {1, 2},

• Epoly(
1
2 ) = Elog(

1
2 ).

The first condition ensures that the equilibrium concentrations are the same

as for the logarithmic potential. The second condition ensures that the energy

content of the equilibrium concentration is preserved. The last condition en-

sures that the activation energy2 remains unaltered. The resulting parameters

of the polynomial approximation are given in Table 3. In Figure 1, the loga-

rithmic energy and the polynomial fit are compared to each other as well as the

derivative, the chemical potential. The phase interface between lithium-rich

phase and lithium-depleted phase is related to misfits in the crystal structure.

Therefore, a penalty term involving a norm of the gradient of the phase-field

parameter is added to the free energy

E(p) = Epoly(p) +
κ

2RT
|∇p|2. (10)

2Maximum height of the energy landscape between equilibrium concentrations.
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The chemical potential is then defined as the variational derivative,

µ(x, t) =
δE

δp
= ∂pE(p)−∇∂∇pE(p) =

4a0

(

p(x, t)− 1

2

)3

+ 2a1

(

p(x, t)− 1

2

)

− κ

RT
∆p(x, t),

(11)

and coupled to the diffusion equation by

∂tc(x, t) = div
(

Dc(x, t)

(

1− c(x, t)

cmax

)

∇µ(x, t)
)

. (12)

Here the diffusion coefficient is approximated at c = cmax

2 . By this (12) is now

linear in the chemical potential. The equation is then rewritten in terms of the

time evolution of the non-dimensional phase-field parameter, yielding

∂tp(x, t) =
D

4
∆µ(x, t). (13)

By combining (11) and (13) the Cahn-Hilliard equation is obtained,

∂tp(x, t) =
D

4
∆

(

4a0

(

p(x, t)− 1

2

)3

+ 2a1

(

p(x, t)− 1

2

)

+
κ

RT
∆p(x, t)

)

.

(14)

This equation may look unusual to some readers comparing to the known clas-

sical equation in e.g. [49], there given as Eq. 4.15,

∂φ

∂t
=M∇2

(

−Wa∇2φ+ a2φ+ a4φ
3
)

(15)

Now, this equation can be compared to ours by replacing the φ with the variable

p, the ∇2 with the letter ∆, as well as other names for the numeric coefficients.

Please also note the similar polynomial dependence of third order, only differing

in numerical coefficients.

2.4. Mechanical model

The strain in the material is decomposed into a chemical, an elastic and a

plastical part as

ε = εch + εel + εpl =
θc

3
I+ εel + εpl. (16)
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The first component, the chemical strain is locally different due to different

local concentrations. By this way, concentration gradients result in different

local expansion of the particle. The chemical strain is assumed as a hydrostatic

dilatation depending on the partial molar volume coefficient θ. The constitutive

equation for the stress is then given as the variational derivative of the free

energy in (2) as

σ = C : εel = C : (ε− θc

3
I− εpl) (17)

In the simulation on the lithium-iron-phosphate on the nano-scale, the plastic

strain will be disregarded. Assuming a linear elastic isotropic material behavior

with the two Lame constants λ and µ, the set of mechanical field equations is

given by

εel =
1

2
(∇u+∇uT )− θ

3
cI,

σ = λTr(εel)I + 2µεel,

0 = divσ.

(18)

Concerning its mechanical behavior, the electrolyte region Λ \ Ω is assumed

to behave like pore space. The dilatation due to intercalation of the particle

displaces the electrolyte.

2.5. Extension to rate-independent small strain elasto-plasticity

Mechanical modeling of electrode microstructures has also been extended to

include plasticity [50, 51, 52, 22, 53]. The model presented in this section is

able to characterize permanent changes to the battery microstructure. For the

sake of simplicity, we consider von Mises J2 plasticity with isotropic hardening

[54, 55, 56]. First we introduce one scalar internal variable r as isotropic hard-

ening parameter. The expansion of the yield surface by isotropic hardening is

characterized by the yield function

σy(r) = σ0 +H0r + (σ∞ − σ0) [1− exp(−δr), ]

for given material parameters σ∞ ≥ σ0 ≥ 0, H∞ ≥ H0 ≥ 0 and

δ =
H∞ − h0

σ∞ − σ0
.
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Now we construct the plastic energy contribution and the plastic evolution such

that the classic yield condition is satisfied. By decomposition of the free energy

into elastic and plastic part, and introduction of the conjugate internal variable

R, a constitutive relation is defined. Following this the evolution of the inter-

nal variables is derived from the plastic dissipation potential. The presented

model does not take kinematic hardening and viscous effects into account, i.e.

a quasistatic problem is solved.

2.6. Interface, boundary and initial conditions

For the formulation of interface conditions, a simplified and modified Butler-

Volmer equation is used where reversible processes are not taken into account.

The Butler-Volmer flux ise [44] is defined similar to other work [57, 58, 59, 60]

as

ise = k
√

cecs(cs,max − cs) sinh

(

F

2RT
(φs − U0)

)

. (19)

where k is the Butler-Volmer rate constant and φs is the spatially constant

electric potential inside the particle using equations 34, 39 and 40 from [44].

Following are the direct quotes of those equations from [44]. Equation 34 in [44]

is

ise = i0

(

exp

[

αaF

RT
ηs

]

− exp

[−αcF

RT
ηs

])

, (20)
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where i0 is called exchange current density, αA and αC are weighting the anodic

and the cathodic contribution of the overpotential ηs to the overall reaction. The

overpotential is the deviation of the electrochemical potential from the chemi-

cal equilibrium between active particle and electrolyte. By detailed derivation

which is not reproduced here, it can be derived as Equation 39 in [44],

ηs = φs − φe − U0. (21)

The variable φe is here the electrochemical potential instead of the electric

potential. The amplitude of the exchange current density i0 in Equation 20 is

given in Equation 40 in [44] as

i0 = kcαa

e cαa

s (cs,max − cs)
αc , (22)

where k is a reaction rate and cs,max is the maximum concentration of ions in

the active particle. Now assuming that αa = αc = 0.5, the Equations 20, 21,

and 22 can be simplified to the presented form in Equation 19. The electric

potential of the surrounding electrolyte is here assumed as constant zero. The

value

η =
F

2RT
φ(t)− U(c(x, t)) (23)

is called overpotential. The assumptions of locally constant electric potentials

are valid for small structures in the range of microns and due to the high con-

ductivity of the regarded material. The hyperbolic function is a result of the

approximation of chemical reaction rates. The open circuit potential U(c) is

given as a function from measurements, see Figure 2. The concentration flux is

used to define a Neumann boundary condition,

n ·
(

D

4
∇µ(x, t)

)

= f(x, t) for all x ∈ Γ. (24)

With the electric solid potential φ as an additional scalar degree of freedom,

another equation is required to close the system. For this, the parameter C-rate

is introduced to define a meaningful charging boundary condition. It is defined

as the quotient of the constant volume flux into the battery and the maximum
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Figure 2: Open circuit potential of lithium-iron-phosphate [61].

lithium ion capacity of the battery. It is usually specified in the unit h−1. A

given rate C then defines a concentration flux F such that it takes 1
C

hours to

charge the battery cell from empty to full state of charge,

F =
|Ω|
|Γ|C. (25)

This puts an integral condition on the concentration flux f as

1

|Γ|

∫

Γ

f(x, t) =
|Ω|
|Γ|C, for all t ∈ T, (26)

that can be used to calculate φ(t). In this paper, active solid material as well

as binder and conductive additives are not considered separately on the con-

tinuum scale. This is reflected in the material coefficients, e.g. the maximum

concentration of the active material. For the chemical potential µ(x, t), an addi-

tional boundary condition along Γ is needed, called surface wetting. The applied

boundary condition corresponds to neither strong wetting nor strong dewetting,

n · ∇c = 0, (x, t) ∈ Γ× T. (27)

As the microstructure is assumed to be periodic, periodic boundary conditions

are chosen for the mechanical model. The microstructure is interpreted as a

representative volume element and no macroscopic displacements are assumed.

Therefore, the displacements are periodic and identical on opposite sites. The
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boundary conditions are then

u(x, t) = u(x+ Liei, t), (x, t), (x+ Liei, t) ∈ ∂Λ× T, i ∈ {1, 2, 3}. (28)

Because the electrolyte is modeled as pore material, it is displaced by the ex-

panding electrode material. Therefore on the particle boundary Γ, a traction

free condition is fulfilled as

σ(x, t) · n = 0, for all (x, t) ∈ Γ× T. (29)

The simulation of the charging of a microstructure is initialized with a constant

concentration

(30)

c0 ∈ R
+. This is a static equilibrium state as no concentration gradient is

present. It corresponds to a state of charge SOC= c0
cmax

. It is possible to calculate

consistent initial values for the concentration flux f(x, 0) = f0 and the electric

solid potential φ(0) = φ0, which solve the respective governing static Equations

(19) and (26). The open circuit potentials for graphite and silicon are taken

from [62, 63].

3. Application on the nano-scale: Cathode made of LFP

In this section, an application on the nano-scale for the material lithium-

iron phosphate is given. First an algorithm for the generation and extension of

periodic microstructures ist introduced. Spherical packings are introduced in

Section 3.1 and an elastic test is presented. Regular spherical packings inspired

by atomic lattices are considered. Those regular structures are only used in

order to enable the study of interactions of different contacting particles. They

are not supposed to represent real arrangements of perfect spherical particles

on the nanoscale. The concept of regularisation is introduced in Section 3.2.

Then two different coating methods are analyzed in Section 3.3 and Section 3.4

and compared in Section 3.5. The elastic test example is repeated with the

regularised microstructures in Section 3.6. In Section 3.7, basic results for the
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charging of a spherical particle are given. The phase separation is shown. Sec-

tion 3.9 shows the different behavior of ellipsoidal particles depending on the

excentricity. Finally Section 3.10 shows the interaction of several particles con-

nected to each other. In the following lengths are given in nanometers. The

open circuit voltage corresponding to [61] is applied for the cathode material.

3.1. Spherical packing

The centers of the spheres are specified in Table A.5. Figure 3 shows the

unit cell for the four different spherical packings.

Four different spherical packings are introduced, simple cubic (SC), body

centered cubic (BCC), face centered cubic (FCC) and hexagonal close packed

(HCP) [64]. The definition of a spherical packing envails the lengths of the unit

cell, the radius of the spheres in the unit cells, and the centers of all spheres

that have non-empty intersection with this unit cell. This gives an analytical

description of the packing.

• SC: Unit cell [0, 1]× [0, 1]× [0, 1]. Radius r = 1
2 , 8 centers of spheres.

• BCC: Unit cell [0, 1]× [0, 1]× [0, 1]. Radius r =
√
3
4 , 9 centers of spheres.

• FCC: Unit cell [0, 1]× [0, 1]× [0, 1]. Radius r =
√
2
4 , 14 centers of spheres.

• HCP: Unit cell [0, 1] × [0,
√
3] × [0,

√

8
3 ]. Radius r = 1

2 , 14 centers of

spheres.

The spherical packings are defined such that the spheres do not overlap. An

elastic problem on such spherical packings is ill-posed for the contact points [65].

The numerical solution for the stress does not show uniform convergence for

finer discretizations. The analytical solution to an elasticity problem posed in

the presented manner possesses a singular value, such as infinitesimal small

deformation and an infinite stress [66]. A numerical example is given to illus-

trate this behavior and to investigate the maximum stress occuring. Consider a

cathode domain Ωc consisting of two hemispheres with radius 50 in the domain

Ω = (0, 100)3, see Figure 4.
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Figure 3: Unit cell of not regularised spherical packings. (a) SC. (b) BCC. (c) FCC. (d) HCP.

Figure 4: Microstructure for computation of elastic stresses
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Figure 5: von Mises stress in a not regularised microstructure. (a) Along the line from M1 to

M2. (b) Maximum von Mises stress.

The centers of the two hemispheres are given as M1 = (0, 50, 50) and M2 =

(100, 50, 50). The domain Ωc is then defined as

Ωc = {|x−M1| < r ∧ |x−M2| < r} , (31)

and Ωe = Ω\Ωc is the electrolyte domain. A static elastic problem is considered

and the concentration c inside the electrode material is set to the constant value

c(x) = 0.5cmax. The elastic constants in cathode and electrolyte are chosen

according to Table 2. Periodic boundary conditions are chosen in all three

spatial dimensions. The spatial discretization with N1 = N2 = N3 is chosen

from N1 ∈ {30, 40, . . . , 250}. Figure 5 (a) shows the resulting von Mises stress

along the line from M1 to M2. The solution for the von Mises stress does not

converge. Figure 5 (b) shows the maximum von Mises stress. A limit value of

the maximum von Mises stress cannot be extrapolated.

3.2. Geometric regularisation algorithms

In order to give a well-posed elastic problem, a geometric regularisation is

introduced that enlarges the domain and gives a smooth surface of the domain

Ωc. Assume a pair of points P = (M1,M2) that consists of two centers of

spheres with the same radius R touching each other in a point. Therefore, it
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holds |M1 − M2| = 2R. A local cylindric coordinate system is defined by

projection onto (z, r) from the global coordinates x = (x1, x2, x3). The third

degree of freedom, the rotational angle around the center axis is neglected due

to an assumption of axial symmetry for a geometric regularisation algorithm.

The projection ψ is then given as

ψ :























R
3 → R

2,

x 7→







z

r






=







(x−M1) ◦ M1−M2

|M1−M2|

|(x−M1)× M1−M2

|M1−M2| |






.

(32)

This gives a projection from three-dimensional space into cylinder coordinates

while disregarding the angle and assuming symmetry along this angle. That

is why the coordinates are called z for the coordinate along the cylinder axis

direction and r along the radial direction. A geometric regularisation function

g is defined as

g :























R
2 → {0, 1},






z

r






7→ f







z

r






.

(33)

This function gives the value 0 to express that no coating is present at this point

in space or 1 to express that coating material is present at this point in space.

A regularisation domain is defined as a subset Ωcoat of the domain Ωe and is

given as

Ωcoat = {x ∈ Ωe|f(ψ(x)) = 1} . (34)

An algorithm will be called regularisation if it possesses the following properties

• Bounded regularisation: g(z, r) = 0 if (z, r) 6∈ [0, R]× [0, 2R].

This restricts the regularisation to a reasonable domain around the contact

point.

• Axial symmetry: g(z, r) = g(2R− z, r) for all (z, r) ∈ [0, R]× [0, 2R].

This ensures that the regularisation is axially symmetric such that the
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Figure 6: (a) Diagram for the derivation of the arc regularisation. (b) Diagram for the

derivation of the volume fraction of the arc regularisation.

mapping from the set of center points to the ordered pairs P = (M1,M2)

is invariant to permutation.

• Simply connected: Ωc ∪ Ωcoat is simply connected.

This reflects the basic property of a regularisation to be adhesive to the

surface of the not regularised domain such that no holes are generated by

the regularisation.

• Smoothing: The boundary of Ωc ∪ Ωcoat is smooth.

This should prevent the divergent elastic solution as shown in Figure 5.

Next, two different regularisation functions are defined that fulfill the presented

requirements. The analytic description of the regularisation function g is given

as well as the volume fraction of the regularisation. The geometric derivations

are supported by well-known formulas available in standard mathematical hand-

books, e.g. in [67].

3.3. Arc regularisation

Figure 6 (a) depicts the projection domain [0, 2R]× [0, R].

The points M1, M2, P and Q have local coordinates (0, 0), (2R, 0), (R,R)

and (
√
2
2 R,

√
2
2 R) respectively. Additionally, values zl =

√
2
2 R and zr =

(

2−
√
2
2

)

R

are introduced, the r-coordinates of Q and Q′. A function b(r, z) : [0, 2R] ×
[0, R] → R is introduced as

b(r, z) = (z −R)2 + (r −R)2 − (
√
2− 1)2R2. (35)
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The level set {b = 0} includes the circle arc going through Q and Q′. The

regularisation function is then

g(z, r) =























0, if z < zl,

H(b(r, z)), if zl 6 z 6 zr,

0, if zr < z,

(36)

whereH is the Heaviside function. This relates to the area under the circle which

can then be calculated easily. Figure 6 (b) introduces colored domains for the

derivation of the volume of the regularisation domain (green). The volume of

the rotational body resulting from the gray segment is now calculated. Guldin’s

formula gives the volume of a rotational body as V = 2πrsA, where A is the

area of the rotating shape and rs the distance of the centroid of it to the rotation

axis. The area of a segment and a centroid are given as

A(ξ, q) =
q2

2
(2ξ − sin (2ξ))

d(ξ, q) =
4q sin3 (ξ)

3 (2ξ − sin (2ξ))
,

(37)

where ξ is the angle and q is the radius of the segment [67]. The value of d

gives the distance of the centroid from the radius. The values for angle and

radius are ξ = π
4 and q = (

√
2− 1)R, respectively. The distance of the centroid

to the rotational axis is then rs = R − d(ξ, q). The volume of a spherical cap

(red in Figure 6) is VCap(q, h) =
πh2

3 (3q− h), where q is the radius and h is the

height. Here, q = r and h = 1 − cos (π4 ). The volume of a cylinder consisting

of the colored parts in Figure 6 is VCyl = πq2h, where q is the radius and h

is the height. Here, h = 2 − 2 cos (π4 ) and q = sin
(

π
4

)

. The volume of the

regularisation is then given as

VR = VCyl − VSeg − 2VCap =

=
1

2

(

2
√
2− 3

)

(π − 4)πR3

≈ 0.231346r3

(38)
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Figure 7: (a) Diagram for the derivation of the parabola regularisation. (b) Diagram for the

derivation of the volume fraction of the parabola regularisation.

3.4. Parabola regularisation

Figure 7 depicts the projection domain [0, 2R] × [0, R]. The point Q has

coordinates (R cos (α), R sin (α)). Additionally, values zl = R cos (α) and zr =

R(2 − cos (α)) are introduced. The parabola is represented as the level set of

the function p(r, z) = a(z−xs)
2 + b− r, with a, b, xs ∈ R being the parameters.

Then xs = R due to axial symmetry of M1 and M2. Furthermore,

R cos (α) = a(R sin (α)−R)2 + b, (39a)

− cot (α) = 2a(R sin (α)−R), (39b)

where (39a) results from Q being on the parabola and (39b) results from the

requirement that the slope is continuous at Q in order to get a C1-boundary.

This gives

a = − cot (α)

2(r cos (α)− r)
,

b = R sin (α) +
1

2
R cot (α)(cos (α)− 1).

(40)

The regularisation function is then

g(z, r) =























0, if z < zl,

H(p(r, z)), if zl 6 z 6 zr,

0, if zr < z,

(41)

where H is the Heaviside function. Figure 6 (b) introduces colored domains for

the derivation of the volume of the regularisation domain (green). The volume
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Figure 8: Comparison of arc and parabola regularisation for different angles α.

of the rotational body given by the parabola is given as an integral,

VPara = π

zr
∫

zl

(a(x− xs)
2 + b)2dx. (42)

The volume of the spherical caps VCaps is calculated as shown in the previous

subsection. The volume of the regularisation is then given dependent on the

angle α as

VR(α) = VPara − 2VCap =

=
16

15
π

(

6 + 5 cos (α) + cos (2α) csc (α)
2
sin (

α

2
)
6
)

r3,
(43)

VR(
π

4
) ≈ 0.20072r3,

VR(
π

6
) ≈ 0.0436365r3,

VR(
π

10
) ≈ 0.00594741r3.

(44)

3.5. Comparison of regularisations

Figure 8 shows the arc regularisation and the parabola regularisation for

α ∈ {π
4 ,

π
6 ,

π
10}. With α = π

4 , the parabola regularisation uses the same analytic

contact points as the arc regularisation but it has smaller volume fraction.

Figure 9 shows those four different regularisations in a 3D representation.

In red the two hemispheres can be seen, the regularisation is shown in green.

Table 4 gives numerical values for the volume fraction of the different regu-

larisations. Several spatial discretizations are realized with N being the number

of nodes in direction x, y and z. This means the total number of finite volume
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Figure 9: Regularisations of the elastic test microstructure. (a) Arc regularisation. (b)-(d)

Parabola regularisation for different angles α.

Regularisation function N=64 N=128 N=256 N=512 Analytical sol.

Arc 0.23096 0.23053 0.23151 0.23133 0.23135

Parabola, α = π
4 0.19922 0.19913 0.20093 0.20072 0.2007

Parabola, α = π
6 0.04248 0.04337 0.04364 0.04364 0.043637

Parabola, α = π
10 0.00562 0.00568 0.00592 0.00593 0.0059474

Table 4: Volume fractions as parts of R3

cells is N3. The result is compared to analytical limits. The volume of the

sphere itself is in this case 4π
3 R

3 ≈ 4.19R3.

Figure 10 shows unit cells of regularised spherical packings.

3.6. Numerical test of the regularisation

The static elastic test example given before is repeated with a regularised

domain. The parabola regularisation function is chosen with α = π
6 . The

regularisation is added to the electrode material, Ω = Ωc ∪ Ωcoat. All other

parameters are set to the same values. Figure 11 (a) shows the resulting von

Mises stress along the line from M1 to M2. The solution converges numerically

to a limit. Figure 11 (b) shows the maximum von Mises stress in the domain

with respect to the spatial discretization width h. For the problem with the

coated domain, the value for the maximum von Mises stress converges inside

the domain. This numerical test is only done for coating and active material

possessing the same linear-elastic material properties. It shows that the resulting

regularisations are valid and define smooth surfaces of the microstructures.
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Figure 10: Unit cell of coated spherical packings. (a) SC. (b) BCC. (c) FCC. (d) HCP.
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Figure 11: von Mises stress in a regularised microstructure. (a) Along the line from M1 to

M2. (b) Maximum von Mises stress.
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In the following section, several numerical examples are shown. Basic me-

chanical effects are evaluated on structures with one and two spatial dimensions

in Section 3.7. Next regular microstructures for cathode material such as ellip-

soidal particles in Section 3.9 and multiple spherical particles in Section 3.10

are considered. As a reference a non-dimensional stress is used,

σ0 = cmaxθE ≈ 0.699GPa ⇒ σ̃ =
σ

σ0
(45)

This allows the use of stress invariants as the von Mises stress and hydrostatic

stress for the evaluation of different electrode particles and microstructures. The

results can be translated to other material parameters.

3.7. Basic results with a beam structure for the cathode

A beam made from cathode material is considered with length L1 = 40

nm and equal width and height L2 = L3 = 1 nm. It is charged with C-rate

1. The boundary value problem is then given by the electro-chemo-mechanical

problem with the phase-field model in the cathode material. The boundary

conditions are introduced in Equations 26 (C-rate 1), 27 and 29 (periodic me-

chanical boundary conditions). The initial conditions are given by a constant

concentration corresponding to state of charge 0.01. The structure is charged

from the right side (x=40nm). At the left side, the current collector resides

and a no-flux boundary condition is applied. The spatial discretization is cho-

sen as N1 = 100 and N2 = N3 = 1 with h = 1 nm. Figure 12 (a) shows the

lithium ion concentration in the cathode particle at SOC=0.5. Figure 12 (b)

and (c) show magnifications of interesting regions. The lithium ion concentra-

tion is shown for different values for the partial molar volume θ. As θ increases,

different effects can be seen. The equilibrium concentrations change. The low

equilibrium concentration increases and vice versa. For θ = 0 cm3 mol−1 they

are c1 = 0.013cmax and c2 = 0.987cmax, while for θ = 3 cm3 mol−1 they are

c1 ≈ 0.1cmax and c2 ≈ 0.9cmax. A second effect is the widening of the interface

width L. For θ = 0 cm3 mol−1 it is L = 3.3 nm while for θ = 3 cm3 mol−1 it is
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Figure 12: (a) Lithium ion concentration for different values of partial molar volume at state

of charge 50%. (b)-(c) Magnifications of interesting regions.

L ≈ 4 nm. Those results are well known but we still chose to include them as

an introduction to the topic of phase separation.

Figure 13 (a) evaluates the hydrostatic stress for the exact same example at

the state of charge 50%. It shows the hydrostatic stresses in the cathode particle.

First, θ is chosen as 0 cm3 mol−1 and no stress occurs in the cathode material.

For higher partial molar volumes, stress in both the lithium-rich phase and the

lithium-depleted phase occurs. At the interface a smooth transition between

the two stress states can be observed that also widens according to a widening

interface. Figure 13 (b) shows the potential jump at the cathode-electrolyte

interface. First, for higher values of θ the phase separation starts later and ends

sooner. The phase-separated state is shorter compared to smaller values of θ.
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Figure 13: Hydrostatic stress and cell voltage for different values of partial molar volume. (a)

Hydrostatic stress. (b) Cell voltage.

Second, for higher values of θ the electric potential during phase separation is

lower. Although steps are occuring on the curves, numerical stability is given

by the numerical method.

Figure 14 again relates to the example with a beam structure. It shows the

cell voltage for different C-rates compared to the equilibrium voltage curve. It

can be seen that the distance from the equilibrium curve increases for a larger

C-rate as the overpotential η in (23) is larger. Also, the phase transition hap-

pens slightly later. Between states of charge 0.3 and 0.9 oscillations in the cell

potential are observed. They are due to large time steps. Errors disappear for

finer discretizations and the numerical solution can be adapted to the required

accuracy as shown in previous works [25, 38].

3.8. Basic results with a spherical structure for the cathode

Now another example with another geometry for the microstructure. A

spherical structure for the cathode is evaluated. Set Ω = (0, 100) × (0, 60) ×
(0, 60), C = 1, N1 = 100 and N2 = N3 = 60. The cathode is a spherical

particle with radius r = 30 nm. Figure 15 shows the lithium ion concentration

in the cathode particle at (a) SOC=0.55 and (b) SOC=0.92. The solution is

rotationally symmetric and therefore a 2D projection is shown. At SOC=0.55
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Figure 14: Electric potential for different C-rates. Compared to the open circuit potential

in equilibrium state. The voltage drop is due to the high surface concentration during phase

separation.
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Figure 15: Lithium ion concentration for a cathode built of a spherical particle. (a) SOC=0.55.

(b) SOC=0.92.

the particle is composed of approximately equally sized lithium-rich and lithium-

depleted phase. Compare these results with Figure 3A in [2] where experimental

measurements and the visualisation of a phase separation process in an electrode

material are shown.

3.9.

3.10. Multiple spheres

In this examples, several spheres are combined to an electrode microstruc-

ture. The simulation domain is set to Ω = (0, 320)× (0, 60)× (0, 60), N1 = 320

and N2 = N3 = 60. The parabola regularisation is applied between them. The
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Figure 16: Cell voltage and stress invariants for a cathode built of multiple spherical particles.

The concentration distribution at the times marked with vertical lines are shown in Figure 17.

spatial discretization width is h = 1 nm and the C-rate is 1. The boundary

value problem is then given by the electro-chemo-mechanical problem with the

phase-field model in the cathode material. The boundary conditions are intro-

duced in Equations 26 (C-rate 1), 27 and 29. The initial conditions are given

by a constant concentration corresponding to state of charge 0.01. Figure 16

shows the cell voltage as well as the maximum hydrostatic stress and the maxi-

mum von Mises stress. The plot is shown for SOC between 0.32 and 0.99 where

phase separation is present. Both the hydrostatic stress and the cell voltage

are to some extent periodic. Local minima for the cell voltage are attained for

SOC=0.45 and SOC=0.76, a local maximum for SOC=0.66. The hydrostatic

stress attains its maximum at SOC=0.96.

Figure 17 shows the lithium ion concentration in the structure at (a) SOC=0.45,

(b) SOC=0.66, (b) SOC=0.76 and (d) SOC=0.96. (a) and (c) correspond to

one or two completely filled particles, respectively, with small interfacial regions.

This structure is analyzed for academic purposes to show the flexibility of the

presented model. It is possible to demonstrate complex effects like the succe-

sive phase transition of different particles in a granular electrode. Although

the small-strain model can be used to compute the high stresses occuring at
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Figure 17: Lithium ion concentration for a cathode built of multiple spherical particles. (a)-(d)

SOC ∈ {0.45, 0.66, 0.76, 0.96}, corresponding to the vertical lines in Figure 16.

the joint of different particles, in the presented way it can not be applied for

the prediction of separation and fracture of the particles and the rearrangement

following from this event.

The periodically rising stress in Figure 16 can be understood by and identi-

fied with the concentration distribution in Figure 17. By this method, it could

be possible to understand and design electrode microstructures that minimize

mechanical stresses. In the given example e.g., a high voltage for charging and

a high von Mises stress appears when a particle is nearly filled and the phase

interface is getting smaller, see SOC=0.66% and SOC=0.96%.

4. Application on the micro-scale: Anode made of graphite

To give an example of application of the proposed method to realistic 3D

data, in the present paper the microstructure of lithium-ion battery anodes is

considered. A parametric stochastic 3D microstructure model has been devel-

oped and fitted to tomographic image data of the system of active particles

in energy cell anodes in [40], see also [68] for power cell anodes and [69] for

cathodes. Once calibrated to a given data set, stochastic microstructure models

can be used to generate microstructures on the computer that are similar in a

statistical sense to the data being modeled according to several morphological

properties. Moreover, by systematic variation of model parameters it is possi-

ble to generate virtual, but realistic microstructures for materials that have not

(yet) been manufactured in the laboratory. The combination of stochastic mi-

crostructure modeling with numerical simulations of functional properties allows

us to identify preferable microstructures, a procedure called virtual materials

testing.
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Figure 18: (i) Anode microstructure from tomography data. (ii) Reconstructed grains. (iii)

Histogram of the equivalent diameters.

The model proposed in [40] has been validated with respect to electrochem-

ical properties using spatially resolved simulations in [70]. In the present paper,

a comparison of mechanical properties computed for tomographic image data

and for realizations of the calibrated model is performed.

In this section, no phase-field model ist applied, as graphite is not known

for phase transition. Instead, a classic diffusion model derived from Fick’s law

is applied as originally presented in [44].

4.1. Computer tomography data analysis

Tomography data from an anode microstructure is analyzed regarding the

grain sizes and sphericities. A microstructure consisting of 400×400×119 voxels

with resolution h = 0.438µm is used, seen in Figure 18 (i). The watershed algo-

rithm is applied and grains cut by the non periodic boundary are disregarded.

Image artifacts resulting in grains smaller than rmin = 5µm are disregarded,

resulting in 1023 grains seen in Figure 18 (ii). The volume of each grain is used

to calculate the diameter of a sphere with equal volume and the histogram of

these equivalent diameters is given in Figure 18 (iii).

4.2. Virtual microstructure generation

The construction of the model is based on three main steps. To begin with,

the sampling window is decomposed into a system of convex polytopes using

a Laguerre tessellation, see Figure 19 (i). Later on, a particle will be placed

in each polytope. However, to ensure complete connectivity of the system of
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Figure 19: 2D sketch showing the individual steps of the stochastic microstructure model

proposed in [40]. (i) Decomposition of the sampling window into convex polytopes. (ii)

Construction of a connectivity graph. (iii) Modeling of particles according to the constraints

given by the connectivity graph. (iv) The auxiliary tools are deleted. (v) A morphological

closing is performed to mimic the effect of binder. Reprinted from [40], with permission from

Elsevier.

particles, in the second step a connectivity graph is constructed, see the blue

lines in Figure 19 (ii). This graph indicates which particles are supposed to

be connected, i.e., if there is an edge of the graph between two polytopes, the

corresponding particles will be forced to touch each other. This means that

the particles radii along this edge are chosen as large as to ensure that the

particle touch each other. In the third step, the particles themselves are modeled

using spherical harmonic expansions of Gaussian random fields on the sphere.

Thereby, the additional constraints that predefined points on the facets between

those Laguerre polytopes where an edge of the connectivity graph is present are

hit by the particles ensures that the particles touch each other as desired, see

Figure 19 (iii). Then, the tessellation and connectivity graph are deleted, as they

are only auxiliary tools for constructing the system of particles, see Figure 19

(iv). As a postprocessing step, a morphological closing is performed to mimic

the effect of binder, see Figure 19 (v). A 3D comparison of tomographic image

data and a corresponding model realization is shown in Figure 20.

4.3. Spherical symmetry

For validation of the method, a typical academic example as presented in

other work [71, 72] is chosen. Figure 21 shows the lithium-ion concentration

and corresponding stress invariants in an anode spherical particle with diameter

10 µm in radial direction during different states of charge. As the particle is
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Figure 20: Left: CT image. Right: Simulated structure using the calibrated stochastic model.
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Figure 21: Radial-symmetric solution of (i) lithium-ion concentration and (ii) hydrostatic

stress and von-Mises stress in a spherical particle for states of charge 40%, 55% (dashed) and

70% (dotted). (iii) Radial-symmetric solution of equivalent plastic strain in a spherical silicon

particle for states of charge 21%, 23% and 25%.

34



spherical, no difference along tangential directions of the particle is observed and

the properties only vary along the radial direction. The structure is a spherical

particle in a cuboid domain. The spherical particle is either made of graphite

for the linear-elastic simulation or silicon for the elasto-plastic simulation.

While the von-Mises stress maximum is situated in the outer shell of the

particle, a local maximum of the hydrostatic stress is located in the center of

the particle, compare to corresponding results in [73, 74, 72]. There, single par-

ticles with zero stress boundaries are discussed. Here, in the presented results,

the increasing stress at the outer shell of the particle is due to the non zero

stress boundaries. Appropriate models for the electrolyte as well as periodic

mechanical boundary conditions are open for discussion. It is also possible to

extend this example with an elastoplastic model. Given the model as presented

in Section 2.5, the permanent change in the particle can be characterized by its

equivalent plastic strain ε̄pl. Figure 21 (iii) shows that the plastification imme-

diately occurs during charging in the outer shell of the particle. For larger states

of charge, the plastification increases in an growing outer shell of the particle.

4.4. Virtually generated microstructures

Figure 22 shows a comparison of the lithium-ion concentration and stress

invariants in two different microstructures of anode material charged with C-rate

1 at 40% state of charge. In the top row, a tomographic image is depicted, while

in the bottom row a realization of the calibrated stochastic microstructure model

is shown. The electrode structure is charged from top to bottom. Concentration

gradients arising from uneven interface current densities can be seen. The inner

center of larger particles remains empty. Maxima of hydrostatic stress occur

together with maxima of the lithium-ion concentration. Maxima of the von-

Mises stress occur mainly at particle boundaries.

4.5. Comparison between virtual and real microstructure simulations

For a more thorough analysis, a total of 22 cutouts of tomographic image

data and 20 simulated model realizations of the same size are chosen. These 42
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Figure 22: Full-field solution of lithium-ion concentration, hydrostatic stress and von-Mises

stress in both tomographic (top) and simulated (bottom) microstructures.
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Figure 23: Comparison of the hydrostatic stress (left) and the von-Mises stress (right) for

SOC=40% in the thickness direction. Plotted is the mean as well as ±1 standard deviation.
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Figure 24: Comparison of the hydrostatic stress (left) and the von-Mises stress (right) for

SOC=40% in the thickness direction. Plotted is the mean in each layer.

examples of anode microstructures are charged separately each with C-rate 1.

The full-field solution gives numerical values for e.g. the hydrostatic stress at

each finite volume center node. This is a three-dimensional field. This field is

integrated in space along the y- and the z-direction and averaged. The result

is a one-dimensional field. This field is the average hydrostatic stress in each

layer. The procedure is done according to previous work in [70]. Then for both,

tomographic image data and model realizations, the results are averaged and

the mean and standard deviation are calculated. Figure 23 shows the resulting

curves and ±1 standard deviation. While boundary effects can be seen in both

stress invariants, the deviations between the computer tomography solution and

the stochastically generated structures are within the standard deviations. This

shows that, except for the boundary of the structure, mechanical properties are

in good agreement between real and simulated data. The differences at the

boundary can be attributed to the fact that the solid volume fraction is larger

on the boundary than in the center for tomographic image data, while this effect

is not reproduced in the stochastic microstructure model.

Next, a set of three virtual microstructures is generated with varying solid

volume fractions of 60%, 73% and 80% is generated using the method introduced

in [41]. Again, each half-cell is charged with C-rate 1 and their full-field solution

for both stress invariants averaged along second and third dimension. Figure 24
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shows the resulting spatial trend. It can be seen that hydrostatic pressure as

well as von-Mises stress are increasing with increasing solid volume fraction.

5. Conclusions

In this work the coupling of an electro-chemical model to a small-strain lin-

ear elasticity model is presented. The model is formulated with the help of

variational derivatives and an approximation of the free energy functional. For

the connection between different particles, different regularisation algorithms

are introduced which ensure a Lipschitz boundary. In the numerical applica-

tions, several representative microstructures and particles are discussed. During

phase separation into lithium-rich and lithium-depleted phase, high hydrostatic

stresses occur that influence the equilibrium concentration of both phases. For

ellipsoidal particles, the maximum stress inside during the charging varies highly.

Regarding their excentricity, oblate particles are to be preferred due to their

better ratio of surface to volume. For connected spheres the lithium-rich phase

is shown to appear first in one particle and filling the structure one particle

at a time. On the micro-scale, different structures are analyzed, which, e.g.,

allows for a comparison of mechanical properties between tomographic image

data and simulated realizations of a stochastic microstructure model. Overall,

a good agreement was found. Moreover, the approach allows us to investigate

morphological advantages with respect to mechanical properties. Depending on

material parameters the maximum C-rate and cycling effects can be evaluated.

So far, the evaluation of maximum stress invariants inside the battery electrode

particles allowed only for rough qualitative prediction of time and point of fail-

ure. In the future, additional damage or fracture models will allow for a more

precise prediction of the aging under realistic load cases. In combination with

stochastic microstructure modeling, a broad spectrum of virtual, but realistic

microstructures can be analyzed accordingly, and morphologies with preferable

mechanical properties can be identified by relating the maximum stresses oc-

curing to properties such as the solid volume fraction.
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Appendix A. Additional parameters

Table A.5 shows the numerical parameters for the generation of spherical

packings. Given are the number of sphere centers required for the unit cell and

the corresponding coordinates of each center. Many of these spheres contribute

only with a small sector cut to the unit cell.

Packing Number of centers Center coordinates Mi=(xM ,yM ,zM )

SC 8 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

BCC 9 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1),

( 12 ,
1
2 ,

1
2 ).

FCC 14 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1),

( 12 ,
1
2 , 0), (

1
2 ,

1
2 , 1), (

1
2 , 0,

1
2 ),

( 12 , 1,
1
2 ), (0,

1
2 ,

1
2 ), (1,

1
2 ,

1
2 ).

HCP 14 (0, 0, 0), (0, 0,
√

8
3 ), (0,

√
3, 0), (0,

√
3,
√

8
3 ),

(1, 0, 0), (1, 0,
√

8
3 ), (1,

√
3, 0), (1,

√
3,
√

8
3 ),

( 12 ,
√
3
2 , 0), (

1
2 ,

√
3
2 ,
√

8
3 ), (

1
2 ,

√
3
6 ,
√

2
3 ),

( 12 ,
7
√
3

6 ,
√

2
3 ), (0,

2
√
3

6 ,
√

2
3 ), (1,

2
√
3

6 ,
√

2
3 ).

Table A.5: Parameters for the unit cells of spherical packings.
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