Electro-chemo-mechanical simulation for lithium ion batteries across the scales

Tobias Hofmanna, Daniel Westhoffb, Julian Feinauerb, Heiko Andräa, Jochen Zauscha, Volker Schmidtb, Ralf Müllerc

aFraunhofer ITWM, Kaiserslautern, Department of Flow and Materials simulation
bUlm University, Institute of Stochastics
cUniversity of Kaiserslautern, Institute of Applied Mechanics

Abstract

In this work a phase field method is used for the solution of an electro-chemical diffusion model for a lithium-iron-phosphate particle coupled to a small-strain elasto-plasticity model. This coupling takes the mechanical dilatation of the crystal lattice during intercalation into account. The electro-chemo-mechanical coupling is derived from a Helmholtz free energy, resulting in constitutive equations for both the diffusion and the mechanical equilibrium in the electrode material. A new method for the generation of virtual microstructures is given with additional constraints to obtain smooth boundaries. This ensures valid mechanical solutions for grid refinement. The model is then discretized, linearized and solved for various microstructures. Academic results in one and two spatial dimensions are presented as well as results on spherical and highly anisotropic ellipsoidal structures in order to emphasize the influence of the microstructure on the performance of battery designs. The versatility of the numerical method is demonstrated for virtual microstructures generated by stochastic models on graphite.

1. Introduction

A lot of electrode materials for lithium ion batteries show capacity fade or degradation phenomena during their lifetime. Large discharge currents result in steep concentration gradients due to slow lithium ion diffusion. High gradients
of lithium ion concentration result in high mechanical stresses due to the local dilatation of the particles. Those contribute to the aging of the whole battery cell.

Different materials have been used as electrolyte as well as for the cathode and the anode. In a lot of them, the electrochemical processes can be accurately described by Fickian diffusion for the lithium ion concentration field and the Gaussian law for the electric potential field. But especially in the popular cathode material lithium-iron-phosphate (LiFePO$_4$, LFP), the diffusion of the lithium ions from the electrolyte into the active material cannot be modelled by a regular diffusion equation. In a lot of materials the diffusion leads to a uniform ion distribution inside the material. But in lithium-iron-phosphate the lithium ions separate into areas with a maximum concentration of lithium ions and areas where no lithium ions are present [1, 2, 3, 4]. Even without applied current, the lithium rich areas do not diffuse. The distribution of the lithium ions inside the material can then be described by two different phases, one phase rich with lithium ions and one phase depleted of lithium ions. The process of separation into different phases is called spinodal decomposition. The problem of describing the movement of the boundaries between both phases is often referred to as Stefan problem [5, 6] and can be approached by adaptive meshes and front-tracking methods [7].

Another approach called phase-field method is introduced in the works by Cahn and Hilliard [8] and is based on a thermodynamical approach involving a non-convex Helmholtz energy functional. In a general phase-field method, the interface between two phases is regularized [9]. Phase-field methods have been applied for the solution of displacive problems such as the phase transformation between austenite and martensite [10, 11] or mechanical fracture processes [12, 13].

In phase-field models for diffusive processes, the governing fourth-order non-linear partial differential equation is called the Cahn-Hilliard equation. Recent formulations for lithium-iron-phosphate particles can be found in [14, 15, 16, 17, 18]. While those models are restricted to simulations of electrode material, the
model presented in this paper describes diffusion and electric potentials in both electrodes and the electrolyte. There are simulations for the charging of electrode material for different spherical [19, 20], ellipsoidal nanoparticles [21, 22] or more complex single particle microstructures [23, 24, 25]. The effects of charging on porous electrodes has also been studied [26, 27, 28, 29, 30]. Instead of the resolution of a microstructure, homogenization is often applied [26, 31].

If one however wants to consider the entire 3D structural information, stochastic microstructure models are a powerful tool to generate a broad spectrum of realistic 3D input data. These models are based on methods of stochastic geometry [32] and can be constructed for very different materials like organic solar cells [33], open-cell foams [34], SOFC-electrodes [35] and battery electrodes [36]. Once calibrated using tomographic image data of real microstructures, model parameters can be varied systematically to generate a broad spectrum of virtual microstructures. Using, e.g., numerical transport simulations, this data basis can be used to investigate the relationships between descriptors of the 3D morphology and functionality of the materials [37].

In Section 2 an electro-chemo-mechanical model for the simulation of a lithium ion battery on the microscale is given. The model is valid for a porous microstructure of electrode domain. This microstructure may be given by computer tomography and image segmentation. It is also possible to design virtual microstructures using stochastic models. The intercalation of the lithium ions into the electrode material is modelled by Butler-Volmer dynamics. The transport of lithium ions inside the electrode material is described by the Cahn-Hilliard diffusion equation, while the mechanical dilatation of the electrode material is caused by a chemical strain which is proportional to the local lithium ion concentration.

In Section 3 a method for the generation of three-dimensional microstructures with smooth Lipschitz boundaries is given. The main volume of the electrode material is approximated in the shape of regular spherical grids. Then binder material is added by two different methods such that the domain bound-
ary is Lipschitz1. The resulting elastic problem is solved for a constant concentration and shown to be stable for grid refinement. Afterwards, the numerical method for the electro-chemical problem is shortly introduced similar to \cite{38}. Next, a numerical application is given. First the elastic effects are investigated with the help of academic examples. The mechanical stress affects the equilibrium concentration in lithium-rich and lithium-depleted phase as well as the cell voltage. Also, the emergence of lithium-rich phases is enforced by local eigenstrains in an example. The effect of the excentricity of ellipsoidal particles on the strain and stress during charging is investigated as well as the interaction of several spherical particles connected by diffusive zones to each other.

In Section 4, realistic 3D microstructures are considered, which have been generated using stochastic microstructure models. In \cite{39}, a first approach how to combine electro-chemo-mechanical simulations with 3D microstructure modeling has been proposed, which is extended in the present paper. To begin with, we compare tomographic image data with realizations of a calibrated stochastic microstructure model \cite{40}. After that, virtual microstructures are considered for systematically varied volume fractions of active material. These structures have been generated using the method described in \cite{41}.

In Section 5 a short summary of the obtained results is given and future steps for the further development are discussed.

2. Electro-chemo-mechanical model

In this section, the equations for a lithium ion battery model on the microscale are presented. The mathematical model involves the fields of the concentration c, the electric potential ϕ, the chemical potential μ, and the vector field displacement u. The movement of electrons and the charging of a battery is related to the local concentration c and diffusion of positive lithium ions Li^+. The electric potential ϕ is connected to the current provided by the battery.

1Lipschitz domains may include corners, i.e. a non-smooth domain boundary. The presented method additionally guarantees C^1-continuity of the boundary.
Table 1: Definition of symbols and constants.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>(c)</td>
<td>mol cm(^{-3})</td>
</tr>
<tr>
<td>Displacement</td>
<td>(u)</td>
<td>cm</td>
</tr>
<tr>
<td>Lithium ion flux</td>
<td>(f_{se})</td>
<td>mol cm(^{-2}) s(^{-1})</td>
</tr>
<tr>
<td>Strain</td>
<td>(\varepsilon)</td>
<td>1</td>
</tr>
<tr>
<td>Stress</td>
<td>(\sigma)</td>
<td>GPa</td>
</tr>
</tbody>
</table>

during usage. The lithium ion intercalation into electrode material results in the local displacement \(u \) of the electrodes. In Table 1 symbols and units are defined. In a cuboid domain \(\Lambda = (0,L_1) \times (0,L_2) \times (0,L_3) \subset \mathbb{R}^3 \) the microstructure of a solid battery electrode \(\Omega \) is embedded. The particle boundary of \(\Omega \) is denoted by \(\Gamma = \partial \Omega \). Given the time interval \(T = (0,t_0) \), a time-dependent problem is posed on \(\Omega \times T \).

Partial differential equations for the concentration field \(c(x,t) \) and the displacement \(u(x,t) \) will be defined. The boundary conditions will be given by the Butler-Volmer flux relation \(f_{se}(x,t) \) on \(\Gamma \times T \). In this context, the trace operator \(\gamma_0 \) is introduced that gives the trace of a scalar field defined on \(\Omega \) onto \(\Gamma \),

\[
\gamma_0 : c(x,t) \mapsto c_\Gamma(x,t) = \lim_{\Omega \ni \tilde{x} \to x \in \Gamma} c(\tilde{x},t).
\]

2.1. Thermodynamical modeling

A phase-field model for the concentration \(c(x,t) \) is considered. The phase-field parameter is here the normalized lithium ion concentration \(p = \frac{c(x,t)}{c_{\text{max}}} \).

Motivated by previous works in [16, 42, 21], the free energy is assumed as

\[
E_{\text{log}}(p) = RT \left(p \log (p) + (1-p) \log (1-p) + \frac{q}{RT} p(1-p) \right) + \frac{1}{2} \varepsilon_{\text{el}} : C : \varepsilon_{\text{el}},
\]

with the mixing enthalpy \(q \), the gas constant \(R \) and the temperature \(T \) given in Table 2. The first term is related to a diffusion potential based on one-body
<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal gas constant</td>
<td>R</td>
<td>8.314</td>
<td>J mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>300</td>
<td>K</td>
</tr>
<tr>
<td>Faraday constant</td>
<td>F</td>
<td>96485</td>
<td>A s mol$^{-1}$</td>
</tr>
<tr>
<td>Diffusivity</td>
<td>D</td>
<td>10^{-10}</td>
<td>cm2 s$^{-1}$</td>
</tr>
<tr>
<td>Max. Li-ion conc.</td>
<td>c_{max}</td>
<td>0.02</td>
<td>mol cm$^{-3}$</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>E</td>
<td>10</td>
<td>GPa</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>ν</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Partial molar vol.</td>
<td>θ</td>
<td>3.497</td>
<td>cm3 mol$^{-1}$</td>
</tr>
<tr>
<td>Mixing enthalpy</td>
<td>q</td>
<td>$1.110 \cdot 10^4$</td>
<td>J mol$^{-1}$</td>
</tr>
<tr>
<td>Kappa</td>
<td>κ</td>
<td>$2.508 \cdot 10^{-10}$</td>
<td>J cm2 mol$^{-1}$</td>
</tr>
<tr>
<td>Rate constant</td>
<td>k</td>
<td>$3.159 \cdot 10^{-8}$</td>
<td>mol cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Hardening parameters</td>
<td>σ^0</td>
<td>0.4</td>
<td>GPa</td>
</tr>
<tr>
<td></td>
<td>σ^∞</td>
<td>0.6</td>
<td>GPa</td>
</tr>
<tr>
<td></td>
<td>H^0</td>
<td>1.0</td>
<td>GPa</td>
</tr>
<tr>
<td></td>
<td>H^∞</td>
<td>0.1</td>
<td>GPa</td>
</tr>
</tbody>
</table>

Table 2: Material parameters partially taken from [43, 44, 42, 45]. Hardening parameters for silicon particles taken from [46, 47].
terms in a Hamiltonian of the crystalline structure in active material. The second term results from a mean-field approximation of two-body interaction terms in the Hamiltonian. The equilibrium values for p are given by the minimizers of $E'_{\log}(p) = 0$ as p_1 and p_2.

2.2. Electro-chemical model

Transport equations in the electrolyte domain, the anode domain, and the cathode domain are introduced separately based on [44]. The transport equations for ion concentration c_e and the electric potential ϕ_e in a liquid electrolyte are considered as

$$
\partial_t c_e = \nabla \cdot \left[\left(\frac{D_e}{RT} + \frac{\kappa_e t_+(t_+ - 1)}{F^2 c_e} \right) \nabla c_e + \frac{\kappa_e t_+}{F} \nabla \phi_e \right],
$$

$$
0 = \nabla \cdot \left[\frac{\kappa_e (t_+ - 1)}{F c_e} \nabla c_e + \kappa_e \nabla \phi_e \right].
$$

(3)

Here constants R, T and F are the universal gas constant, the temperature, and the Faraday constant, respectively. The electro-chemical properties of the electrolyte are given by its diffusivity D_e and its conductivity κ_e. Depending on the transference number t_+, the transport of positive lithium ions is coupled to the transport of additional negative anions. Inside the electrode material, the lithium ion diffusion c_s and the electric potential ϕ_s are decoupled by the equations

$$
\partial_t c_s = \nabla \cdot \left[\frac{D_s}{RT} \nabla c_s \right],
$$

$$
0 = \nabla \cdot [\kappa_s \nabla \phi_s],
$$

(4)

where D_s denotes the corresponding diffusivity, and κ_s the conductivity.

2.3. Cahn-Hilliard equation

For a numerically efficient solution E_{\log} is replaced by a polynomial approximation

$$
E_{\text{poly}}(p) = a_0 \left(p - \frac{1}{2} \right)^4 + a_1 \left(p - \frac{1}{2} \right)^2 + a_2,
$$

(5)

with $a_0, a_1, a_2 \in \mathbb{R}$ chosen as appropriate fit parameters. By definition it is symmetric around $p = 0.5$. Three conditions ensuring existence and uniqueness are given by
<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0129</td>
<td>0.9871</td>
<td>7.667</td>
<td>-3.638</td>
<td>0.419</td>
</tr>
</tbody>
</table>

Table 3: Parameters for the polynomial fit

- $E_{\text{poly}}'(p_i) = 0$, $i \in \{1, 2\}$,
- $E_{\text{poly}}(p_i) = E_{\text{log}}(p_i)$, $i \in \{1, 2\}$,
- $E_{\text{poly}}(\frac{1}{2}) = E_{\text{log}}(\frac{1}{2})$.

The first condition ensures that the equilibrium concentrations are the same as for the logarithmic potential. The second condition ensures that the energy content of the equilibrium concentration is preserved. The last condition ensures that the activation energy remains unaltered. The resulting parameters of the polynomial approximation are given in Table 3. In Figure 1, the logarithmic energy and the polynomial fit are compared to each other as well as the derivative, the chemical potential. The phase interface between lithium-rich phase and lithium-depleted phase is related to misfits in the crystal structure. Therefore, a penalty term involving a norm of the gradient of the phase-field parameter is added to the free energy

$$E(p) = E_{\text{poly}}(p) + \frac{\kappa}{2RT} |\nabla p|^2.$$

(6)

The chemical potential is then defined as the variational derivative,

$$\mu(x, t) = \frac{\delta E}{\delta p} = \partial_p E(p) - \nabla \partial_{\nabla p} E(p) =$$

$$4a_0 \left(p(x, t) - \frac{1}{2}\right)^3 + 2a_1 \left(p(x, t) - \frac{1}{2}\right) - \frac{\kappa}{RT} \Delta p(x, t),$$

(7)

and coupled to the diffusion equation by

$$\partial_t c(x, t) = \text{div} \left(Dc(x, t) \left(1 - \frac{c(x, t)}{c_{\text{max}}}\right) \nabla \mu(x, t)\right).$$

(8)

\[^2]\text{Maximum height of the energy landscape between equilibrium concentrations.}\]
Figure 1: Energy (a) and chemical potential (b) for logarithmic and polynomial approximation.
Here the diffusion coefficient is approximated at \(c = \frac{c_{\text{max}}}{2} \). By this (8) is now linear in the chemical potential. The equation is then rewritten in terms of the time evolution of the non-dimensional phase-field parameter, yielding

\[
\partial_t p(x, t) = \frac{D}{4} \Delta \mu(x, t). \tag{9}
\]

By combining (7) and (9) the Cahn-Hilliard equation is obtained,

\[
\partial_t p(x, t) = \frac{D}{4} \Delta \left(4a_0 \left(p(x, t) - \frac{1}{2} \right)^3 + 2a_1 \left(p(x, t) - \frac{1}{2} \right) + \frac{\kappa}{RT} \Delta p(x, t) \right). \tag{10}
\]

2.4. Mechanical model

The strain in the material is decomposed into a chemical, an elastic and a plastical part as

\[
\varepsilon = \varepsilon_{\text{ch}} + \varepsilon_{\text{el}} + \varepsilon_{\text{pl}} = \frac{\theta c}{3} I + \varepsilon_{\text{el}} + \varepsilon_{\text{pl}}. \tag{11}
\]

The chemical strain is assumed as a hydrostatic dilatation depending on the partial molar volume coefficient \(\theta \). The constituitive equation for the stress is then given as the variational derivative of the free energy in (2) as

\[
\sigma = C : \varepsilon_{\text{el}} = C : \left(\varepsilon - \frac{\theta c}{3} I - \varepsilon_{\text{pl}} \right). \tag{12}
\]

In the simulation on the lithium-iron-phosphate on the nano-scale, the plastic strain will be disregarded. Assuming a linear elastic isotropic material behavior with the two Lame constants \(\lambda \) and \(\mu \), the set of mechanical field equations is given by

\[
\varepsilon_{\text{el}} = \frac{1}{2}(\nabla u + \nabla u^T) - \frac{\theta c}{3} I,
\]

\[
\sigma = \lambda \text{Tr}(\varepsilon_{\text{el}}) I + 2\mu \varepsilon_{\text{el}}, \tag{13}
\]

\[
0 = \text{div} \sigma.
\]

Concerning its mechanical behavior, the electrolyte region \(\Lambda \setminus \Omega \) is assumed to behave like pore space. The dilatation due to intercalation of the particle displaces the electrolyte.
2.5. Extension to rate-independent small strain elasto-plasticity

Mechanical modeling of electrode microstructures has also been extended to include plasticity [48, 49, 50, 22, 51]. The model presented in this section is able to characterize permanent changes to the battery microstructure. For the sake of simplicity, we consider von Mises plasticity with isotropic hardening [52, 53, 54]. First we introduce one scalar internal variable r as isotropic hardening parameter. The expansion of the yield surface by isotropic hardening is characterized by the yield function

$$
\sigma_y(r) = \sigma^0 + H^0 r + (\sigma^\infty - \sigma^0) [1 - \exp(-\delta r)],
$$

for given material parameters $\sigma^\infty \geq \sigma^0 \geq 0, H^\infty \geq H^0 \geq 0$ and

$$
\delta = \frac{H^\infty - H^0}{\sigma^\infty - \sigma^0}.
$$

Now we construct the plastic energy contribution and the plastic evolution such that the yield condition

$$
|\text{dev} \sigma| - \sigma_y(r) \leq 0
$$

is satisfied. We decompose the free energy $\psi = \psi_{el} + \psi_{pl}$ into the elastic part ψ_{el} and the plastic part ψ_{pl}, where the latter part is defined by

$$
\psi_{pl} = \int_0^r \sigma_y(\rho) \, d\rho.
$$

By introducing the conjugate internal variable R, the constitutive relation is defined by

$$
R = -\partial_r \psi(\varepsilon, \varepsilon_{pl}, r) = \partial_r \psi_{pl}(r) = -\sigma_y(r).
$$

The evolution of the internal variables is derived from the plastic dissipation potential

$$
F_{pl}(\sigma, R) = \begin{cases}
0, & |\text{dev} \sigma| + R \leq 0 \text{ and } R \leq 0 \\
\infty, & \text{otherwise}
\end{cases}
$$

In every material point the evolution of the internal variables is evaluated by $(\dot{\varepsilon}_{pl}, \dot{r}) \in \partial F_{pl}(\sigma, R)$. With the consistency parameter λ_{pl} this plastic evolution
can be written equivalently as normality rule
\[\dot{\varepsilon}_{pl} = \lambda_{pl} \frac{\text{dev } \sigma}{|\text{dev } \sigma|} \quad \dot{r} = \lambda_{pl} \]
and the complementary conditions are given by
\[\lambda_{pl} \geq 0, \quad |\text{dev } \sigma| + R \leq 0, \quad \lambda_{pl}(|\text{dev } \sigma| + R) = 0. \]
This implies \(|\dot{\varepsilon}_{pl}| = \dot{r}\) and assuming \(\varepsilon_{pl}(0) = 0\) and \(r(0) = 0\) at the initial time \(t = 0\) we obtain
\[r(t) = \int_0^t \dot{r}(t) \, dt = \int_0^t |\dot{\varepsilon}_{pl}(t)| \, dt. \]

The presented model does not take kinematic hardening and viscous effects into account, i.e. a quasistatic problem is solved.

2.6. Interface, boundary and initial conditions

The Butler-Volmer flux \(f\) is defined as
\[f(x, t) = k \sqrt{p(x, t)(1 - p(x, t))} \sinh \left(\frac{F}{2RT} \phi(t) - U(p(x, t)) \right). \quad (14) \]
where \(k\) is the Butler-Volmer rate constant and \(\phi\) is the constant electric potential inside the particle. The electric potential of the surrounding electrolyte is here assumed as constant zero. The value
\[\eta = \frac{F}{2RT} \phi(t) - U(p(x, t)) \]
(15)
is called overpotential. The assumptions of locally constant electric potentials are valid for small structures in the range of microns and due to the high conductivity of the regarded material. The hyperbolic function is a result of the approximation of chemical reaction rates. The open circuit potential \(U(p)\) is given as a function from measurements, see Figure 2. The concentration flux is used to define a Neumann boundary condition,
\[n \cdot \left(\frac{D}{4} \nabla \mu(x, t) \right) = f(x, t) \quad \text{for all } x \in \Gamma. \quad (16) \]
With the electric solid potential \(\phi\) as an additional scalar degree of freedom, another equation is required to close the system. For this, the parameter C-rate
is introduced to define a meaningful charging boundary condition. It is defined as the quotient of the constant volume flux into the battery and the maximum lithium ion capacity of the battery. It is usually specified in the unit h\(^{-1}\). A given rate \(C\) then defines a concentration flux \(F\) such that it takes \(\frac{1}{C}\) hours to charge the battery cell from empty to full state of charge,

\[
F = \frac{\left|\Omega\right|}{\left|\Gamma\right|} C.
\] (17)

This puts an integral condition on the concentration flux \(f\) as

\[
\frac{1}{\left|\Gamma\right|} \int_{\Gamma} f(\mathbf{x}, t) = \frac{\left|\Omega\right|}{\left|\Gamma\right|} C, \quad \text{for all } t \in T,
\] (18)

that can be used to calculate \(\phi(t)\). For the chemical potential \(\mu(\mathbf{x}, t)\), an additional boundary condition along \(\Gamma\) is needed, called surface wetting. The applied boundary condition corresponds to neither strong wetting nor strong dewetting,

\[
\mathbf{n} \cdot \nabla p = 0, \quad (\mathbf{x}, t) \in \Gamma \times T.
\] (19)

As the microstructure is assumed to be periodic, periodic boundary conditions are chosen for the mechanical model. The microstructure is interpreted as a representative volume element and no macroscopic displacements are assumed.
Therefore, the displacements are periodic and identical on opposite sites. The boundary conditions are then

$$u(x, t) = u(x + L_i e_i, t), \quad (x, t), (x + L_i e_i, t) \in \partial \Lambda \times T, i \in \{1, 2, 3\}. \quad (20)$$

Because the electrolyte is modeled as pore material, it is displaced by the expanding electrode material. Therefore on the particle boundary Γ, a traction free condition is fulfilled as

$$\sigma(x, t) \cdot n = 0, \quad \text{for all } (x, t) \in \Gamma \times T. \quad (21)$$

The simulation of the charging of a microstructure is initialized with a constant concentration and therefore a constant phase-field parameter,

$$p(x, 0) = \frac{c_0}{c_{\text{max}}}, \quad x \in \Omega. \quad (22)$$

with $c_0 \in \mathbb{R}^+$. This is a static equilibrium state as no concentration gradient is present. It corresponds to a state of charge $\text{SOC} = \frac{c_0}{c_{\text{max}}}$. It is possible to calculate consistent initial values for the concentration flux $f(x, 0) = f_0$ and the electric solid potential $\phi(0) = \phi_0$, which solve the respective governing static Equations (14) and (18).

3. Application on the nano-scale: Cathode made of LFP

In this section, an application on the nano-scale for the material lithium-iron phosphate is given. First an algorithm for the generation and extension of periodic microstructures ist introduced. Spherical packings are introduced in Section 3.1 and an elastic test is presented. The concept of regularisation is introduced in Section 3.2. Then two different coating methods are analyzed in Section 3.3 and Section 3.4 and compared in Section 3.5. The elastic test example is repeated with the regularised microstructures in Section 3.6. In Section 3.7 basic results for the charging of a spherical particle are given. The phase separation is shown. Section 3.8 shows the different behavior of ellipsoidal particles depending on the eccentricity. Finally Section 3.9 shows the interaction of several particles connected to each other. In the following lengths are given in nanometers.
3.1. Spherical packing

The centers of the spheres are specified in Table A.5. Figure 3 shows the unit cell for the four different spherical packings. The spherical packings are defined such that the spheres do not overlap. An elastic problem on such spherical packings is ill-posed for the contact points [56]. The numerical solution for the stress does not show uniform convergence for finer discretizations. The analytical solution to an elasticity problem posed in the presented manner possesses a singular value, such as infinitesimal small deformation and an infinite stress [57]. A numerical example is given to illustrate this behavior and to investigate the maximum stress occurring. Consider a cathode domain Ω_c consisting of two hemispheres with radius 50 in the domain $\Omega = (0, 100)^3$, see Figure 4. Four different spherical packings are introduced, simple cubic (SC), body centered cubic (BCC), face centered cubic (FCC) and hexagonal close packed (HCP) [58]. The definition of a spherical packing envails the lengths of the unit cell, the radius of the spheres in the unit cells, and the centers of all spheres that have non-empty intersection with this unit cell. This gives an analytical description of the packing.

- **SC**: Unit cell $[0, 1] \times [0, 1] \times [0, 1]$. Radius $r = \frac{1}{2}$, 8 centers of spheres.
- **BCC**: Unit cell $[0, 1] \times [0, 1] \times [0, 1]$. Radius $r = \frac{\sqrt{3}}{4}$, 9 centers of spheres.
Figure 4: Microstructure for computation of elastic stresses

- **FCC**: Unit cell \([0, 1] \times [0, 1] \times [0, 1]\). Radius \(r = \frac{\sqrt{2}}{4}\), 14 centers of spheres.

- **HCP**: Unit cell \([0, 1] \times [0, \sqrt{3}] \times [0, \sqrt{2}/3]\). Radius \(r = \frac{1}{2}\), 14 centers of spheres.

The centers of the two hemispheres are given as \(M_1 = (0, 50, 50)\) and \(M_2 = (100, 50, 50)\). The domain \(\Omega_c\) is then defined as

\[
\Omega_c = \{ |x - M_1| < r \land |x - M_2| < r \},
\]

and \(\Omega_e = \Omega \setminus \Omega_c\) is the electrolyte domain. A static elastic problem is considered and the concentration \(c\) inside the electrode material is set to the constant value \(c(x) = 0.5c_{\text{max}}\). The elastic constants in cathode and electrolyte are chosen according to Table 2. Periodic boundary conditions are chosen in all three spatial dimensions. The spatial discretization with \(N_1 = N_2 = N_3\) is chosen from \(N_1 \in \{30, 40, \ldots, 250\}\). Figure 5 (a) shows the resulting von Mises stress along the line from \(M_1\) to \(M_2\). The solution for the von Mises stress does not converge. Figure 5 (b) shows the maximum von Mises stress. A limit value of the maximum von Mises stress cannot be extrapolated.

3.2. Geometric regularisation algorithms

In order to give a well-posed elastic problem, a geometric regularisation is introduced that enlarges the domain and gives a smooth surface of the domain.
Figure 5: von Mises stress in a not regularised microstructure. (a) Along the line from M_1 to M_2. (b) Maximum von Mises stress.
\(\Omega_c \). Assume a pair of points \(P = (M_1, M_2) \) that consists of two centers of spheres with the same radius \(R \) touching each other in a point. Therefore, it holds \(|M_1 - M_2| = 2R \). A local cylindric coordinate system is defined by projection onto \((z, r)\) from the global coordinates \(x = (x_1, x_2, x_3) \). The third degree of freedom, the rotational angle around the center axis is neglected due to an assumption of axial symmetry for a geometric regularisation algorithm. The projection \(\phi \) is then given as

\[
\phi : \begin{cases}
\mathbb{R}^3 &\to \mathbb{R}^2, \\
x &\mapsto \begin{pmatrix} z \\ r \end{pmatrix} = \begin{pmatrix} (x - M_1) \cdot \frac{M_2 - M_1}{|M_2 - M_1|} \\ (x - M_1) \times \frac{M_2 - M_1}{|M_2 - M_1|} \end{pmatrix}.
\end{cases}
\] (24)

A geometric regularisation function \(f \) is defined as

\[
f : \begin{cases}
\mathbb{R}^2 &\to \{0, 1\}, \\
\begin{pmatrix} z \\ r \end{pmatrix} &\mapsto f \begin{pmatrix} z \\ r \end{pmatrix}.
\end{cases}
\] (25)

A regularisation domain is defined as a subset \(\Omega_{coat} \) of the domain \(\Omega_c \) and is given as

\[
\Omega_{coat} = \{ x \in \Omega_c | f(\phi(x)) = 1 \}.
\] (26)

An algorithm will be called regularisation if it possesses the following properties

- **Bounded regularisation:** \(f(z, r) = 0 \) if \((z, r) \notin [0, R] \times [0, 2R]\).
 This restricts the regularisation to a reasonable domain around the contact point.

- **Axial symmetry:** \(f(z, r) = f(2R - z, r) \) for all \((z, r) \in [0, R] \times [0, 2R]\).
 This ensures that the regularisation is axially symmetric such that the mapping from the set of center points to the ordered pairs \(P = (M_1, M_2) \) is invariant to permutation.

- **Simply connected:** \(\Omega_c \cup \Omega_{coat} \) is simply connected.
This reflects the basic property of a regularisation to be adhesive to the surface of the not regularised domain such that no holes are generated by the regularisation.

- **Smoothing**: The boundary of $\Omega_c \cup \Omega_{coat}$ is smooth.

This should prevent the divergent elastic solution as shown in Figure 5.

Next, two different regularisation functions are defined that fulfill the presented requirements. The analytic description of the regularisation function f is given as well as the volume fraction of the regularisation. The geometric derivations are supported by well-known formulas available in standard mathematical handbooks, e.g. in [59].

3.3. Arc regularisation

Figure 6(a) depicts the projection domain $[0, 2R] \times [0, R]$. The points M_1, M_2, P and Q have local coordinates $(0, 0)$, $(2R, 0)$, (R, R) and $(\frac{\sqrt{2}}{2}R, \frac{\sqrt{2}}{2}R)$ respectively. Additionally, values $z_l = \frac{\sqrt{2}}{2}R$ and $z_r = \left(2 - \frac{\sqrt{2}}{2}\right)R$ are introduced, the r-coordinates of Q and Q'. A function $c(r, z) : [0, 2R] \times [0, R] \to \mathbb{R}$ is introduced as

$$c(r, z) = (z - R)^2 + (r - R)^2 - (\sqrt{2} - 1)^2R^2. \quad (27)$$
The level set \(\{ c = 0 \} \) includes the circle arc going through \(Q \) and \(Q' \). The regularisation function is then

\[
f(z, r) = \begin{cases}
0, & \text{if } z < z_l, \\
H(c(r, z)), & \text{if } z_l \leq z \leq z_r, \\
0, & \text{if } z_r < z,
\end{cases}
\]

(28)

where \(H \) is the Heaviside function. This relates to the area under the parabola which can then be calculated easily. Figure 6(b) introduces colored domains for the derivation of the volume of the regularisation domain (green). The volume of the rotational body resulting from the gray segment is now calculated. Guldin’s formula gives the volume of a rotational body as \(V = 2\pi r_s A \), where \(A \) is the area of the rotating shape and \(r_s \) the distance of the centroid of it to the rotation axis. The area of a segment and a centroid are given as

\[
A(\xi, q) = \frac{q^2}{2} (2\xi - \sin (2\xi))
\]

\[
d(\xi, q) = \frac{4q \sin^3 (\xi)}{3(2\xi - \sin (2\xi))},
\]

(29)

where \(\xi \) is the angle and \(q \) is the radius of the segment. The value of \(d \) gives the distance of the centroid from the radius. The values for angle and radius are \(\xi = \frac{\pi}{4} \) and \(q = (\sqrt{2} - 1)R \), respectively. The distance of the centroid to the rotational axis is then \(r_s = R - d(\xi, q) \). The volume of a spherical cap (red in Figure 6) is \(V_{\text{Cap}}(q, h) = \frac{\pi h^2}{3} (3q - h) \), where \(q \) is the radius and \(h \) is the height. Here, \(q = r \) and \(h = 1 - \cos (\frac{\pi}{4}) \). The volume of a cylinder consisting of the colored parts in Figure 6 is \(V_{\text{Cyl}} = \pi q^2 h \), where \(q \) is the radius and \(h \) is the height. Here, \(h = 2 - 2\cos (\frac{\pi}{4}) \) and \(q = \sin (\frac{\pi}{4}) \). The volume of the regularisation is then given as

\[
V_R = V_{\text{Cyl}} - V_{\text{Seg}} - 2V_{\text{Cap}} = \\
\frac{1}{2} \left(2\sqrt{2} - 3\right) (\pi - 4) \pi R^3
\]

(30)

\[
\approx 0.231346 r^3
\]

20
3.4. Parabola regularisation

Figure 7 depicts the projection domain $[0, 2R] \times [0, R]$. The point Q has coordinates $(R \cos(\alpha), R \sin(\alpha))$. Additionally, values $z_l = R \cos(\alpha)$ and $z_r = R(2 - \cos(\alpha))$ are introduced. The parabola is represented as the level set of the function $p(r, z) = a(z - x_s)^2 + b - r$, with $a, b, x_s \in \mathbb{R}$ being the parameters. Then $x_s = R$ due to axial symmetry of M_1 and M_2. Furthermore,

$$R \cos(\alpha) = a(R \sin(\alpha) - R)^2 + b, \quad (31a)$$

$$- \cot(\alpha) = 2a(R \sin(\alpha) - R), \quad (31b)$$

where (31a) results from Q being on the parabola and (31b) results from the requirement that the slope is continuous at Q in order to get a C^1-boundary. This gives

$$a = -\frac{\cot(\alpha)}{2(r \cos(\alpha) - r)}, \quad (32)$$

$$b = R \sin(\alpha) + \frac{1}{2} R \cot(\alpha)(\cos(\alpha) - 1).$$

The regularisation function is then

$$f(z, r) = \begin{cases}
0, & \text{if } z < z_l, \\
H(p(r, z)), & \text{if } z_l \leq z \leq z_r, \\
0, & \text{if } z_r < z,
\end{cases} \quad (33)$$

where H is the Heaviside function. Figure 6(b) introduces colored domains for the derivation of the volume of the regularisation domain (green). The volume
of the rotational body given by the parabola is given as an integral,

$$V_{\text{Para}} = \pi \int_{z_{\text{f}}}^{z_{i}} (a(x-x_s)^2 + b)^2 \, dx.$$ \hspace{1cm} (34)$$

The volume of the spherical caps V_{Caps} is calculated as shown in the previous subsection. The volume of the regularisation is then given dependent on the angle α as

$$V_R(\alpha) = V_{\text{Para}} - 2V_{\text{Cap}} =$$

$$= \frac{16}{15} \pi \left(6 + 5 \cos(\alpha) + \cos(2\alpha) \csc(\alpha)^2 \sin \left(\frac{\alpha}{2} \right)^6 \right) r^3,$$ \hspace{1cm} (35)$$

$$V_R\left(\frac{\pi}{4} \right) \approx 0.20072 r^3,$$

$$V_R\left(\frac{\pi}{6} \right) \approx 0.0436365 r^3,$$ \hspace{1cm} (36)$$

$$V_R\left(\frac{\pi}{10} \right) \approx 0.00594741 r^3.$$

3.5. Comparison of regularisations

Figure 8 shows the arc regularisation and the parabola regularisation for $\alpha \in \{ \frac{\pi}{4}, \frac{\pi}{6}, \frac{\pi}{10} \}$. With $\alpha = \frac{\pi}{4}$, the parabola regularisation uses the same analytic contact points as the arc regularisation but it has smaller volume fraction. Figure 9 shows those four different regularisations in a 3D representation. In red the two hemispheres can be seen, the regularisation is shown in green. Table 4 gives numerical values for the volume fraction of the different regularisations. Several spatial discretizations are realized and the result is compared to analytical limits. The volume of the sphere itself is in this case $\frac{4}{3}\pi R^3 \approx 4.19R^3$. Figure 10 shows unit cells of regularised spherical packings.
Figure 9: Regularisations of the elastic test microstructure. (a) Arc regularisation. (b)-(d) Parabola regularisation for different angles α.

<table>
<thead>
<tr>
<th>Regularisation function</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>Analytical sol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc</td>
<td>0.23096</td>
<td>0.23053</td>
<td>0.23151</td>
<td>0.23133</td>
<td>0.23135</td>
</tr>
<tr>
<td>Parabola, $\alpha = \frac{\pi}{4}$</td>
<td>0.19922</td>
<td>0.19913</td>
<td>0.20093</td>
<td>0.20072</td>
<td>0.2007</td>
</tr>
<tr>
<td>Parabola, $\alpha = \frac{\pi}{6}$</td>
<td>0.04248</td>
<td>0.04337</td>
<td>0.04364</td>
<td>0.04364</td>
<td>0.043637</td>
</tr>
<tr>
<td>Parabola, $\alpha = \frac{\pi}{10}$</td>
<td>0.00562</td>
<td>0.00568</td>
<td>0.00592</td>
<td>0.00593</td>
<td>0.0059474</td>
</tr>
</tbody>
</table>

Table 4: Volume fractions as parts of R^3

Figure 10: Unit cell of coated spherical packings. (a) SC. (b) BCC. (c) FCC. (d) HCP.
3.6. Numerical test of the regularisation

The static elastic test example given before is repeated with a regularised domain. The parabola regularisation function is chosen with \(\alpha = \frac{\pi}{6} \). The regularisation is added to the electrode material, \(\Omega = \Omega_c \cup \Omega_{\text{coat}} \). All other parameters are set to the same values. Figure 11 (a) shows the resulting von Mises stress along the line from \(M_1 \) to \(M_2 \). The solution converges numerically to a limit. Figure 11 (b) shows the maximum von Mises stress in the domain with respect to the spatial discretization width \(h \). For the problem with the coated domain, the value for the maximum von Mises stress converges inside the domain. In the following section, several numerical examples are shown. Basic mechanical effects are evaluated on structures with one and two spatial dimensions in Section 3.7. Next regular microstructures for cathode material such as ellipsoidal particles in Section 3.8 and multiple spherical particles in Section 3.9 are considered. As a reference a non-dimensional stress is used,

\[
\sigma_0 = c_{\text{max}} \theta E \approx 0.699 \text{GPa} \implies \tilde{\sigma} = \frac{\sigma}{\sigma_0}
\]

This allows the use of stress invariants as the von Mises stress and hydrostatic stress for the evaluation of different electrode particles and microstructures. The results can be translated to other material parameters.

3.7. Basic results

A beam made from cathode material is considered with length \(L_1 = 40 \) nm and equal width and height \(L_2 = L_3 = 1 \) nm. It is charged with C-rate 1. The spatial discretization is chosen as \(N_1 = 100 \) and \(N_2 = N_3 = 1 \) with \(h = 1 \) nm. Figure 12 (a) shows the lithium ion concentration in the cathode particle at SOC=0.5. Figure 12 (b) and (c) show magnifications of interesting regions. The lithium ion concentration is shown for different values for the partial molar volume \(\theta \). As \(\theta \) increases, different effects can be seen. The equilibrium concentrations change. The low equilibrium concentration increases and vice versa. For \(\theta = 0 \) cm\(^3\)mol\(^{-1}\) they are \(c_1 = 0.013 c_{\text{max}} \) and \(c_2 = 0.987 c_{\text{max}} \), while for \(\theta = 3 \) cm\(^3\)mol\(^{-1}\) they are \(c_1 \approx 0.1 c_{\text{max}} \) and \(c_2 \approx 0.9 c_{\text{max}} \). A second effect is
Figure 11: von Mises stress in a regularised microstructure. (a) Along the line from M_1 to M_2. (b) Maximum von Mises stress.
the widening of the interface width L. For $\theta = 0 \text{ cm}^3 \text{mol}^{-1}$ it is $L = 3.3 \text{ nm}$ while for $\theta = 3 \text{ cm}^3 \text{mol}^{-1}$ it is $L \approx 4 \text{ nm}$. Figure 13 (a) shows the hydrostatic stresses in the cathode particle. First, θ is chosen as $0 \text{ cm}^3 \text{mol}^{-1}$ and no stress occurs in the cathode material. For higher partial molar volumes, stress in both the lithium-rich phase and the lithium-depleted phase occurs. At the interface a smooth transition between the two stress states can be observed that also widens according to a widening interface. Figure 13 (b) shows the potential jump at the cathode-electrolyte interface. First, for higher values of θ the phase separation starts later and ends sooner. The phase-separated state is shorter compared to smaller values of θ. Second, for higher values of θ the electric potential during phase separation is lower. Figure 14 shows the cell voltage for different C-rates compared to the equilibrium voltage curve. It can be seen that the distance from the equilibrium curve increases for a larger C-rate as the overpotential η in (15) is larger. Also, the phase transition happens slightly later. Figure 15 shows the lithium ion concentration in the cathode particle at (a) SOC=0.55 and (b) SOC=0.92. The solution is rotationally symmetric and therefore a 2D projection is shown. At SOC=0.55 the particle is composed of approximately equally sized lithium-rich and lithium-depleted phase. Set $\Omega = (0, 100) \times (0, 60) \times (0, 60)$, $C = 1$, $N_1 = 100$ and $N_2 = N_3 = 60$. The cathode is a spherical particle with radius $r = 30 \text{ nm}$. Figure 16 shows the cell voltage as well as the maximum hydrostatic stress and the maximum von Mises stress in the cathode particle. The plot is shown for SOC between 0.34 and 0.99 where phase separation is present. The hydrostatic stress attains its maximum around SOC=0.55 and its minimum around SOC=0.92. The von Mises stress increases in this range.

3.8. Ellipsoidal particles

In this numerical example, different ellipsoidal particles are considered as idealized electrode microstructures. Only ellipsoids with axial symmetry and a fixed volume are used. The microstructure of the reference particle is a sphere with radius $r = 50 \text{ nm}$. An ellipsoid with the three half axes (a, a, c) then has to
Figure 12: (a) Lithium ion concentration for different values of partial molar volume. (b)-(c) Magnifications of interesting regions.
Figure 13: Hydrostatic stress and cell voltage for different values of partial molar volume. (a) Hydrostatic stress. (b) Cell voltage.
Figure 14: Electric potential for different C-rates. Compared to the open circuit potential in equilibrium state. The voltage drop is due to the high surface concentration during phase separation.

Figure 15: Lithium ion concentration for a cathode built of a spherical particle. (a) SOC=0.55. (b) SOC=0.92.
Figure 16: Cell voltage for ellipsoidal two-dimensional particle microstructure

Figure 17: Some of the generated ellipsoidal structures chosen as representative particles. Shown are different excentricities $-\frac{2}{3}$ (prolate), 0 (sphere) and $\frac{2}{3}$ (oblate).

fulfill the condition $a^2c = r^3$. Therefore it has the same volume as the spherical particle. Given the parameters a and c defining the axes of the ellipsoids, the value $m = \frac{a-c}{a+c} \in (-1, 1)$ is called excentricity. It is varied from $-\frac{2}{3}$ to $\frac{2}{3}$. Rotational ellipsoids with $a > c$ are called oblates; for $a < c$ they are called prolates. Figure 17 shows a three-dimensional representation of the generated structures with different excentricities. For the presented example, the discretization width is set to $h = 1$ nm and C-rate 1 is chosen. Figure 18 (a) shows the cell voltage for different excentricities. Figure 18 (b) shows the average von Mises stress for different excentricities. Figure 18 (c) shows the maximum hydrostatic stress for different excentricities. Figure 19 shows lithium ion concentration c, von Mises
Figure 18: Results for ellipsoidal particles as microstructure. Legend shows the eccentricity.
(a) Cell voltage. (b) Maximum von Mises stress. (c) Maximum hydrostatic stress.
stress σ_{VM}, hydrostatic stress σ_h in a prolate particle for SOC 30%, 40%, 50%.

Figure 20 shows the maximum occurring von Mises stress in the structure. Figure 21 shows some three-dimensional images of the lithium-ion concentration and the hydrostatic stress in ellipoidal particles.

3.9. Multiple spheres

In this examples, several spheres are combined to an electrode microstructure. The simulation domain is set to $\Omega = (0, 320) \times (0, 60) \times (0, 60)$, $N_1 = 320$ and $N_2 = N_3 = 60$. The parabola regularisation is applied between them. The spatial discretization width is $h = 1$ nm and the C-rate is 1. Figure 22 shows the cell voltage as well as the maximum hydrostatic stress and the maximum von Mises stress. The plot is shown for SOC between 0.32 and 0.99 where phase separation is present. Both the hydrostatic stress and the cell voltage are to some extent periodic. Local minima for the cell voltage are attained for SOC=0.45 and SOC=0.76, a local maximum for SOC=0.66. The hydrostatic stress attains its maximum at SOC=0.96. Figure 23 shows the lithium ion concentration in the structure at (a) SOC=0.45, (b) SOC=0.66, (b) SOC=0.76 and (d) SOC=0.96. (a) and (c) correspond to one or two completely filled particles, respectively, with small interfacial regions.

4. Application on the micro-scale: Anode made of graphite

To give an example of application of the proposed method to realistic 3D data, in the present paper the microstructure of lithium-ion battery anodes is
Figure 20: Different ellipsoids over one charge cycle. (a) Maximum von Mises stress. (b) Maximum hydrostatic stress.
Figure 21: (a)-(b) Three-dimensional images showing the lithium ion concentration and stress in some ellipsoidal particles for SOC 30%. (c) Volume dilatation in an ellipsoidal particle (not to scale).

Figure 22: Cell voltage and stress invariants for a cathode built of multiple spherical particles.

Figure 23: Lithium ion concentration for a cathode built of multiple spherical particles. (a)-(d) SOC ∈ {0.45, 0.66, 0.76, 0.96}.
considered. A parametric stochastic 3D microstructure model has been developed and fitted to tomographic image data of the system of active particles in energy cell anodes in [40], see also [60] for power cell anodes and [61] for cathodes. Once calibrated to a given data set, stochastic microstructure models can be used to generate microstructures on the computer that are similar in a statistical sense to the data being modeled according to several morphological properties. Moreover, by systematic variation of model parameters it is possible to generate virtual, but realistic microstructures for materials that have not (yet) been manufactured in the laboratory. The combination of stochastic microstructure modeling with numerical simulations of functional properties allows us to identify preferable microstructures, a procedure called virtual materials testing.

The model proposed in [40] has been validated with respect to electrochemical properties using spatially resolved simulations in [62]. In the present paper, a comparison of mechanical properties computed for tomographic image data and for realizations of the calibrated model is performed.

4.1. Computer tomography data analysis

Tomography data from an anode microstructure is analyzed regarding the grain sizes and sphericities. A microstructure consisting of $400 \times 400 \times 119$ voxels with resolution $h = 0.438 \mu m$ is used, seen in Figure 24 (i). The watershed algorithm is applied and grains cut by the non periodic boundary are disregarded. Image artifacts resulting in grains smaller than $r_{\text{min}} = 5 \mu m$ are disregarded, resulting in 1023 grains seen in Figure 24 (ii). The volume of each grain is used to calculate the diameter of a sphere with equal volume and the histogram of these equivalent diameters is given in Figure 24 (iii).

4.2. Virtual microstructure generation

The construction of the model is based on three main steps. To begin with, the sampling window is decomposed into a system of convex polytopes using a Laguerre tessellation, see Figure 25 (i). Later on, a particle will be placed
in each polytope. However, to ensure complete connectivity of the system of particles, in the second step a connectivity graph is constructed, see the blue lines in Figure 25 (ii). This graph indicates which particles are supposed to be connected, i.e., if there is an edge of the graph between two polytopes, the corresponding particles will be forced to touch each other. In the third step, the particles themselves are modeled using spherical harmonic expansions of Gaussian random fields on the sphere. Thereby, the additional constraints that predefined points on the facets between those Laguerre polytopes where an edge of the connectivity graph is present are hit by the particles ensures that the particles touch each other as desired, see Figure 25 (iii). Then, the tesselation and connectivity graph are deleted, as they are only auxiliary tools for constructing the system of particles, see Figure 25 (iv). As a postprocessing step, a morphological closing is performed to mimic the effect of binder, see Figure 25 (v). A 3D comparison of tomographic image data and a corresponding model realization is shown in Figure 26.

4.3. Spherical symmetry

For validation of the method, a typical academic example as presented in other work [63, 64] is chosen. Figure 27 shows the lithium-ion concentration and corresponding stress invariants in an anode spherical particle with diameter 10 µm in radial direction during different states of charge. As the particle is spherical, no difference along tangential directions of the particle is observed and the properties only vary along the radial direction. While the von-Mises stress
Figure 25: 2D sketch showing the individual steps of the stochastic microstructure model proposed in [40]. (i) Decomposition of the sampling window into convex polytopes. (ii) Construction of a connectivity graph. (iii) Modeling of particles according to the constraints given by the connectivity graph. (iv) The auxiliary tools are deleted. (v) A morphological closing is performed to mimic the effect of binder. Reprinted from [40], with permission from Elsevier.

Figure 26: Left: CT image. Right: Simulated structure using the calibrated stochastic model.
Figure 27: Radial-symmetric solution of (i) lithium-ion concentration and (ii) hydrostatic stress and von-Mises stress in a spherical particle for states of charge 40%, 55% (dashed) and 70% (dotted). (iii) Radial-symmetric solution of equivalent plastic strain in a spherical silicon particle for states of charge 21%, 23% and 25%.
maximum is situated in the outer shell of the particle, a local maximum of the hydrostatic stress is located in the center of the particle, compare to corresponding results in [65, 66, 64]. There, single particles without enwrapping electrolyte are discussed. Here, in the presented results, the increasing stress at the outer shell of the particle is due to the pressure of the enwrapping electrolyte, which is modeled as an incompressible fluid. Appropriate models for the electrolyte as well as periodic mechanical boundary conditions are open for discussion. It is also possible to extend this example with an elastoplastic model. Given the model as presented in Section 2.5, the permanent change in the particle can be characterized by its equivalent plastic strain $\bar{\varepsilon}_{\text{pl}}$. Figure 27 (iii) shows that the plastification immediately occurs during charging in the outer shell of the particle. For larger states of charge, the plastification increases in an growing outer shell of the particle.

4.4. Virtually generated microstructures

Figure 28 shows a comparison of the lithium-ion concentration and stress invariants in two different microstructures of anode material charged with C-rate 1 at 40% state of charge. In the top row, a tomographic image is depicted, while in the bottom row a realization of the calibrated stochastic microstructure model is shown. The electrode structure is charged from top to bottom. Concentration gradients arising from uneven interface current densities can be seen. The inner center of larger particles remains empty. Maxima of hydrostatic stress occur together with maxima of the lithium-ion concentration. Maxima of the von-Mises stress occur mainly at particle boundaries.

4.5. Comparison between virtual and real microstructure simulations

For a more thorough analysis, a total of 22 cutouts of tomographic image data and 20 simulated model realizations of the same size are chosen. These 42 examples of anode microstructures are charged separately each with C-rate 1. Then the full-field solution for both stress invariants is averaged along the second
Figure 28: Full-field solution of lithium-ion concentration, hydrostatic stress and von-Mises stress in both tomographic (top) and simulated (bottom) microstructures.

and third dimension such that a spatial trend along the through-plane direction remains. Then for both, tomographic image data and model realizations, the results are averaged and the mean and standard deviation are calculated. Figure 29 shows the resulting curves and ±1 standard deviation. While boundary effects can be seen in both stress invariants, the deviations between the computer tomography solution and the stochastically generated structures are within the standard deviations. This shows that, except for the boundary of the structure, mechanical properties are in good agreement between real and simulated data. The differences at the boundary can be attributed to the fact that the solid volume fraction is larger on the boundary than in the center for tomographic image data, while this effect is not reproduced in the stochastic microstructure model. Next, a set of three virtual microstructures is generated with varying solid volume fractions of 60%, 73% and 80% is generated using the method introduced in [41]. Again, each half-cell is charged with C-rate 1 and their full-field solution for both stress invariants averaged along second and third dimension. Figure 30 shows the resulting spatial trend. It can be seen that
Figure 29: Comparison of the hydrostatic stress (left) and the von-Mises stress (right) for SOC=40% in the thickness direction. Plotted is the mean as well as ±1 standard deviation.
Figure 30: Comparison of the hydrostatic stress (left) and the von-Mises stress (right) for SOC=40% in the thickness direction. Plotted is the mean in each layer.
hydrostatic pressure as well as von-Mises stress are increasing with increasing solid volume fraction.

5. Conclusions

In this work the coupling of an electro-chemical model to a small-strain linear elasticity model is presented. The model is formulated with the help of variational derivatives and an approximation of the free energy functional. For the connection between different particles, different regularisation algorithms are introduced which ensure a Lipschitz boundary. In the numerical applications, several representative microstructures and particles are discussed. During phase separation into lithium-rich and lithium-depleted phase, high hydrostatic stresses occur that influence the equilibrium concentration of both phases. For ellipsoidal particles, the maximum stress inside during the charging varies highly. Regarding their excentricity, oblate particles are to be preferred due to their better ratio of surface to volume. For connected spheres the lithium-rich phase is shown to appear first in one particle and filling the structure one particle at a time. On the micro-scale, different structures are analyzed, which, e.g., allows for a comparison of mechanical properties between tomographic image data and simulated realizations of a stochastic microstructure model. Overall, a good agreement was found. Moreover, the approach allows us to investigate morphological advantages with respect to mechanical properties. Depending on material parameters the maximum C-rate and cycling effects can be evaluated. So far, the evaluation of maximum stress invariants inside the battery electrode particles allowed only for rough qualitative prediction of time and point of failure. In the future, additional damage or fracture models will allow for a more precise prediction of the aging under realistic load cases. In combination with stochastic microstructure modeling, a broad spectrum of virtual, but realistic microstructures can be analyzed accordingly, and morphologies with preferable mechanical properties can be identified by relating the maximum stresses occurring to properties such as the solid volume fraction.
Appendix A. Additional parameters

Table A.5 shows the numerical parameters for the generation of spherical packings. Given are the number of sphere centers required for the unit cell and the corresponding coordinates of each center. Many of these spheres contribute only with a small sector cut to the unit cell.

<table>
<thead>
<tr>
<th>Packing</th>
<th>Number of centers</th>
<th>Center coordinates $M_i=\left(x_M, y_M, z_M\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>8</td>
<td>(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1).</td>
</tr>
<tr>
<td>BCC</td>
<td>9</td>
<td>(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1), ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$).</td>
</tr>
<tr>
<td>FCC</td>
<td>14</td>
<td>(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1), ($\frac{1}{2}$, $\frac{1}{2}$, 0), ($\frac{1}{2}$, $\frac{1}{2}$, 1), ($\frac{1}{2}$, 0, $\frac{1}{2}$), ($\frac{1}{2}$, 1, $\frac{1}{2}$), (0, $\frac{1}{2}$, $\frac{1}{2}$), (1, $\frac{1}{2}$, $\frac{1}{2}$).</td>
</tr>
<tr>
<td>HCP</td>
<td>14</td>
<td>(0,0,0), (0,0, $\sqrt{\frac{3}{2}}$), (0, $\sqrt{\frac{3}{2}}$, 0), (0, $\sqrt{\frac{3}{2}}$, $\sqrt{\frac{3}{2}}$), (1,0,0), (1,0, $\sqrt{\frac{3}{2}}$), (1, $\sqrt{\frac{3}{2}}$, 0), (1, $\sqrt{\frac{3}{2}}$, $\sqrt{\frac{3}{2}}$), ($\frac{1}{2}$, $\sqrt{\frac{3}{2}}$, 0), ($\frac{1}{2}$, $\sqrt{\frac{3}{2}}$, $\sqrt{\frac{3}{2}}$), (0, $\frac{\sqrt{3}}{6}$, $\sqrt{\frac{3}{2}}$), (1, $\frac{\sqrt{3}}{6}$, $\sqrt{\frac{3}{2}}$).</td>
</tr>
</tbody>
</table>

Table A.5: Parameters for the unit cells of spherical packings.

[20] M. J. Welland, D. Karpeyev, D. T. O’Connor, O. Heinonen, Miscibility gap closure, interface morphology, and phase microstructure of 3D Li$_x$FePO$_4$

[63] V. Malavé, J. R. Berger, H. Zhu, R. J. Kee, A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles, Electrochimica Acta 130 (2014) 707–717. doi:10.1016/j.electacta.2014.03.113

