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Abstract

The properties of complex particle systems typically depend on
multivariate distributions of particle properties, like size and shape
characteristics. Multidimensional particle property distributions can be
a very powerful tool to describe these systems. However, only few
techniques exist which are able to simultaneously measure more than
one property of individual particles in a fast and efficient way. In the
present paper it is shown how a two-dimensional property space can
be constructed by the combination of two univariate measurements to
obtain a bivariate particle size distribution. The proposed reconstruction
method is a general approach, which can be applied to a wide spectrum
of particle systems and measurement devices. In this paper, the results of
a case study are presented, which allow the estimation of the bivariate
distribution of length and diameter of gold nanorods, solely using
univariate distributions of their particle mass and extinction-weighted
sedimentation coefficient distributions. Each of these two quantities
contains joint information about the particle lengths and diameters, which
is used for the reconstruction. The method is validated in a simulation
study in which both the bivariate distribution to be reconstructed
and the reconstruction parameters, such as the number of measured
univariate distributions used for reconstruction, are varied. In addition,
regularization techniques are introduced to reduce methodical errors. This
approach can be transferred to other particle systems and measurement
techniques, for which functional relationships between vectors of particle
properties and measured quantities are well described.
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1 Introduction

Anisotropic plasmonic, surface functionalized, hierarchically structured or other
multi-dimensionally characterized particles offer vast possibilities of product
design (Amendola et al., 2017; Mehringer et al., 2014; Voigt et al., 2011; Wang
et al., 2018). Elucidating the formation mechanisms allows tailoring properties
of particulate products. Therefore, suitable characterization in terms of a multi-
dimensional property space is mandatory. A particle ensemble can be described
by the multivariate distribution of its properties which, in many applications,
can be represented by its multivariate probability density. However, despite the
importance of accessing multi-dimensional features in contemporary research,
techniques to access more than a single particle attribute are rare. While
techniques like transmission electron microscopy (TEM) or tomography offer
huge capabilities in terms of single particle characterization, they are often
tedious and require complex sample preparation (Elazzouzi-Hafraoui et al.,
2007). To avoid this, in situ measurement techniques are preferable. In the gas
phase, the combination of a differential mobility analyzer and an aerosol particle
mass analyzer (DMA-APM) allows obtaining bivariate probability densities of
particle size and mass via an inversion routine, which allows investigating the
state of nanoparticle aggregation in non-equilibrium plasma synthesis (Rawat
et al., 2016; Chen et al., 2018). Another example is the multi-parameter
measurement of aerosols through wide-angle light scattering, laser scattering
and differential aerodynamic particle sizing (Babick et al., 2018).

Recently, the number-weighted probability density of length and diameter
of rod-shaped gold nanoparticles could be determined in the liquid phase via
the optical back-coupling (OBC) method (Wawra et al., 2018). This technique
relies on coupling of optical and hydrodynamic properties of plasmonic particles
within an analytical ultracentrifugation (AUC). For other particle systems, the
investigation of multi-dimensional particle characteristics is challenging from
an experimental point of view, as different applied measurement techniques
obey varying physical principles. Thus, the measured distributions are
differently weighted which can lead to non-comparability of particle size
distributions (PSDs). This problem was recently overcome by a scheme
which enables the conversion of differently weighted multivariate PSDs into
each other, additionally the connection between bivariate PSDs and univariate
measurements was elaborated in Frank et al. (2019). This development allows
predicting the resulting distributions of particle characteristics for different
independent measurement techniques. Obviously, the inversion of this procedure
is important for applications. More precisely, many laboratories are equipped
with standard measurement techniques, like dynamic light scattering (DLS),
sedimentation analysis or UV/VIS spectroscopy which measure univariate
distributions of particle properties. Thus, the possibility to reconstruct
the multivariate distribution from various univariate distributions obtained
by measurements could open vast new possibilities. As different as these
measurement techniques might be, their respective results all depend on
the characterizing multivariate distribution. Therefore, the latter can be
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reconstructed by combining measured univariate distributions, as long as the
different measurement techniques deliver sufficient information.

In the present paper, the idea of reconstructing bivariate PSDs of gold
nanorods, which are characterized by their length ` and diameter d, from
univariate measurements is elaborated with simulated data. However, the
presented reconstruction technique is not necessarily limited to gold nanorods—
other particle systems could be investigated as well provided that the functional
relationships between vectors of particle properties and measured quantities are
well described. For the particle system considered in the present paper, we
assume that the bivariate PSD, which will be reconstructed, can be represented
by a bivariate piecewise constant probability density. Thus, we have a flexible
family of bivariate probability densities which are parameterized by a finite set
of function values, denoted by the vector p. Then, we represent these values
as a solution of a system of linear equations Tp = b, where the entries of
the matrix T and the right-hand side b are derived from measured univariate
distributions. This inverse problem is then solved in a least-squares sense, i.e.,
by minimizing the term ‖Tp− b‖22, where ‖·‖2 denotes the Euclidean norm
(Kirsch, 2011; Idier, 2013). Note that inverse problems have applications
in various fields, like, for example, in geology (Tarantola, 2005), computed
tomography (Trampert and Leveque, 1990) and image analysis (Chalmond,
2012). In order to specify the entries of the coefficient matrix T of the linear
equations we consider transformation functions γ, given either by analytical
formulas or numerical computation schemes, which assign to each vector (`, d) of
particle characteristics the corresponding measured quantity γ(`, d). Therefore,
in Section 2 we introduce the transformation functions γ considered in the
present paper. Furthermore, some measurement techniques do not provide
number-weighted distributions — thus, we describe measurement-specific weight
functions in Section 2.2. Then, in Section 2.3 we state the inverse problem
which is solved for estimating the bivariate probability density of nanorod
length and diameter, and apply the estimation procedure to measured data in
Section 2.4. Furthermore, we show how regularization techniques can be utilized
to obtain more reliable results (Engl et al., 1996). In Section 2.5, an error
analysis is performed via simulation studies for investigating the robustness of
the estimation procedure. Section 3 deals with further robustness investigations
by applying the presented estimation procedure to various parametric bivariate
probability densities. Therefore, we introduce the notion of copulas (Nelsen,
2007) in Section 3.1 which has been used to model bivariate probability densities
in various applications like, for example, finance and insurance (McNeil et al.,
2005), weather forecast models (von Loeper et al., 2020), climate research
(Schölzel and Friederichs, 2008) and the characterization of particles and porous
media (Furat et al., 2019; Neumann et al., 2020; Spettl et al., 2017). In
Section 3.2 we describe a procedure for fitting a bivariate probability density
from parametric families of densities, where the latter are modeled by copulas.
The robustness analysis mentioned above for the estimation procedure presented
in Section 2.3 is explained in Section 3.3. Finally, Section 4 concludes.
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2 Theoretical considerations & results

In the present paper, we assume that each probability distribution considered
in the following can be represented by a probability density. Thus, from this
point on, we use the terms “probability distribution” and “probability density”
interchangeably.

2.1 Number-weighted univariate distributions

From a known bivariate, number-weighted, probability density q0 of particle
characteristics it is possible to obtain number-weighted univariate probability
densities in various ways. A simple two-dimensional description of a system
of nanorods with hemispherical end caps is given by the joint probability
density q0 of particle length ` and diameter d. From such a representation,
univariate probability densities of length ` and diameter d can be obtained
via marginalization, which is equivalent to an integration with respect to the
complementary variable. With this, one obtains e.g. the number-weighted
probability density of particle lengths

%0(`) =
w∞

0
q0(`, d) dd. (1)

If more complex distributions, like the surface or volume/mass distributions
shall be computed from q0, marginalization cannot be directly used as e.g. the
volume is a linked variable of length and diameter. For the general case of
such a linked variable y = γ(`, d), described by some transformation function
γ : R2 → R, one obtains for the corresponding (univariate) probability density
%0 by marginalizing (Frank et al., 2019), i.e., by

%0(y) =
d

dy

w

{(`,d)∈R2
+ : γ(`,d)≤y}

q0(`, d) ddd`. (2)

The number-weighted probability density of the particle mass distribution can
be, for example, obtained if the function γ in Equation (2) is a suitably selected
transformation function for the mass. For nanorods with hemispherical endcaps
the volume is obtained as sum of the volumes of a cylinder with diameter d and
length `−d and a sphere with diameter d. Multiplication with the particle bulk
density ρpart yields the mass mpart of each rod:

γm(`, d) = mpart(`, d) = ρpartπd
2

(
1

4
`− 1

12
d

)
. (3)

The distributions of the aspect ratio ν and surface S can be obtained in a
similar manner if γ is chosen as γν(`, d) = ν(`, d) = `

d and γS(`, d) = S(`, d) =
πd(`− d) + πd2 = πd`, respectively.

In the more general case, the measured univariate distributions are weighted
as a result of the underlying measurement principle. To obtain the transformed
and weighted univariate measured distribution %κ from q0, the latter has to
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be weighted with the corresponding weight function κ first, resulting in the
weighted bivariate PSD qκ given by

qκ(`, d) =
q0(`, d)κ(`, d)r

R2
+
q0(`, d)κ(`, d) d(d, `)

=
q0(`, d)κ(`, d)

Mκ,0
(4)

where κ is the weight function and Mκ,0 the involved moment (Frank et al.,
2019). From the weighted PSD qκ the univariate distribution %κ weighted with
κ can be obtained by means of (2):

%κ(y) =
d

dy

w

{(`,d)∈R2
+ : γ(`,d)≤y}

qκ(`, d) ddd`. (5)

2.2 Extinction-weighted distribution of the sedimentation
coefficient

An important case for the previously discussed weighted univariate distributions
are extinction weighted sedimentation coefficients, which will be used in the
present paper for the reconstruction of bivariate PSDs. The hydrodynamical
properties of particles can be observed with analytical ultracentrifugation
(AUC). Here a centrifugal force is applied to a nanoparticle water dispersion
within a centrifuge. This induces the sedimentation of nanoparticles to higher
radial positions. Wawra et al. (2018) The sedimentation speed u at radial
position r and angular velocity ω can be expressed in terms of the sedimentation
coefficient s, which solely depends on particle and solvent properties:

s =
u

ω2r
=
m
(

1− %solvent
%part,eff

)

3πη ff0xV
. (6)

Here, %solvent corresponds to the solvent mass density, η is the solvent viscosity,
%part,eff the effective mass density of the particle, xV the volume-equivalent

diameter and f
f0

the frictional ratio. The latter is defined as the ratio of
the hydrodynamic diameter xH to the volume-equivalent diameter xV , which
corresponds to the diameter of a sphere experiencing the same drag respectively
the same volume as the particle under consideration. Specifically for cylinders
the frictional ratio f

f0
is approximately given by

f

f0
=1.0304 + 0.0193 ln (νs) + 0.06229 (ln (νs))

2
+ 0.00476 (ln (νs))

3

+ 0.00166 (ln (νs))
4

+ 2.66 · 10−6 (ln (νs))
7
,

(7)

where νs is the particle’s aspect ratio (Hansen, 2004). Equation (7) also
provides a good approximation for the frictional ratio f

f0
of gold nanorods

with hemispherical end caps (Wawra et al., 2018). Alternatively the expression
obtained by Walter et al. (2015) or the Perrin formula for ellipsoids of revolution
(Perrin, 1936) could be used. It should be noted that the hydrodynamic
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properties measured by AUC correspond to complex particles, which consist
of a core particle, a shell including attached ligand and hydration. For
shape-anisotropic analytes, like gold nanorods, the sedimentation coefficient in
Equation (6) does not only depend on the length, diameter and mass density
of the core nanorod, but also on the corresponding parameters of the shell,
as shown schematically in Figure SI1 of the Supporting Information (SI).
Therefore, xV , m, %part,eff as well as f

f0
have to be calculated based on the

core-shell particle. Details regarding the determination of these parameters
for hemispherical end capped nanorods can be found in the SI, where also the
usage of Hansen’s formula for hemispherical end capped cylinders is discussed.
With Equations (2), (6) and (7) being available, the sedimentation coefficients
of all nanorods within a bivariate number-weighted particle size distribution
q0 can be calculated. For plasmonic particles the distribution q0 can be
determined via the optical back-coupling method (OBC) for multiwavelength
analytical ultracentrifugation (MWL-AUC). This technique relies on coupling
the measured sedimentation coefficient with the optical extinction spectra of
the corresponding species. The embedded geometrical information within
the unique optical signature of anisotropic plasmonic particles together with
s allows to determine the bivariate size distribution within one experiment
(Wawra et al., 2018). However, in general, particles do not exhibit this
explicit geometrical information within their extinction spectra, which induces
that additional information from the spectra is not available and q0 cannot
be determined. Still, the optical properties of the particle ensemble play
a decisive role in order to determine the distribution of the sedimentation
coefficient. For MWL-AUC, measuring the radial and temporal evolution of the
particles’ extinction during centrifugation allows to quantify the distribution
of the measured sedimentation coefficients. Extinction of light is a combined
process of scattering and absorption induced by the presence of an obstacle in
the path of light (Bohren and Huffman, 1998). MWL-AUC uses an extinction
detector, leading to sedimentation coefficient distributions which are extinction-
weighted and not number-weighted, as the particle ensemble is fractionated and
quantified according to the optical signal of the individual species. From this
follows that the measured distributions depend on the wavelength λ as well as
on the optical properties of the analyte under consideration. Its probability
density %ext,λ can be obtained from the density qext,λ of the extinction-weighted
bivariate size distribution:

%ext,λ(s) =
d

ds

w

{(`,d)∈R2
+ : γs(`,d)≤s} qext,λ(`, d) ddd`, (8)

where γs is the transformation function which assigns, to a particle with length
` and diameter d, the sedimentation coefficient s given by (6), see Frank et al.
(2019). The density of the extinction-weighted bivariate size distribution qext,λ

can be obtained via the extinction weighting function σext,λ and the extinction
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moment Mext,λ,0 by means of (4):

qext,λ(`, d) =
q0(`, d)σext,λ(`, d)r

R2
+
q0(`, d)σext,λ(`, d) d(d, `)

=
q0(`, d)σext,λ(`, d)

Mext,λ,0
. (9)

Note that the weight function κ was replaced with the length- and diameter-
dependent value of the extinction cross section σext,λ, representing the fraction of
the individual species of the integral extinction signal. Thus, it can be calculated
from the scattering and absorption cross sections σsca,λ and σabs,λ by

σext,λ(`, d) = σsca,λ(`, d) + σabs,λ(`, d), (10)

see Bohren and Huffman (1998). The formulas for the calculation of the
scattering and absorption cross sections σsca,λ and σabs,λ are given in the SI. In
general, these cross sections can be computed in different ways, which depend on
the investigated system. Spheres are described well by the Mie theory, spheroids
are calculated via the Mie-Gans theory, but for most particle systems the cross
sections have to be computed numerically, e.g., via boundary element methods
or finite element methods, based on the Maxwell equations for classical electrical
fields (Bohren and Huffman, 1998; Hohenester and Trügler, 2012). Alternatively,
semi empirical models can be used (Yu et al., 2017). The extinction-weighted
univariate distribution of the sedimentation coefficient can thus be regarded as a
conversion of the bivariate number-weighted size distribution via the weighting
function in Equation (10) and the sedimentation coefficient in Equation (6).

2.3 Reconstruction of bivariate densities

Now, we present a method for estimating the bivariate PSD of nanorod
ensembles from univariate measurements, as they were introduced in
Sections 2.1 and 2.2. Therefore, we will assume that the bivariate probability
density q0 : R2 → [0,∞) of the length ` and diameter d of gold nanorods with
hemispherical end caps is piecewise constant. This simple model assumption
will make the reconstruction from univariate measurements easier, yet, the
assumption is not too restrictive, providing a flexible class of distributions. More
precisely, q0 will be uniquely described by just a few function values which are
in a linear relationship with measured quantities. Thus, the reconstruction of
q0 will entail (approximately) solving a system of linear equations. First, we
show how these linear equations are obtained from univariate number-weighted
measurements. Then, the more general case of non-constantly weighted
measurements is considered. In Section 2.4 the method is applied to reconstruct
the probability density q0 of gold nanorods. Note that, even though we only
consider bivariate densities, the methods presented in this section can be easily
transfered to higher dimensions. Furthermore, although the present paper
focuses on the bivariate probability density q0 of length ` and diameter d of
gold nanorods, the method could also be utilized when considering other particle
systems. More precisely, the reconstruction scheme could be applied to systems
of particles which are described by another set of particle characteristics and
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for which experimental measurement techniques measure different quantities.
To do so, the transformation functions γ matching particle characteristics with
measured quantities have to be well known. Since some measurement techniques
provide measurements which are weighted differently in dependence of particle
characteristics their corresponding weight functions have to be known (e.g.
MWL-AUC measurements of gold nanorods have the weight function σext,λ).

In this section, we use the mathematical concept of a random vector (L,D)
of length and diameter corresponding to the distribution q0. More precisely, for
any rectangle R ⊂ R2 the probability that the values of (L,D) belong to R is
given by

P ((L,D) ∈ R) =
w

R
q0(`, d) ddd`. (11)

For the estimation procedure of q0 based on measured univariate distributions
presented in Sections 2.1 and 2.2, we assume that the density function q0 has a
bounded support supp q0 and is piecewise constant, i.e., there are n bounded,
pairwise disjoint and closed polygons A1, . . . , An ⊂ R2 and some non-negative
scalar values p1, . . . , pn, such that

q0(`, d) =

n∑

k=1

pk1Ak
(`, d) (12)

for each (`, d) ∈ R2 and 1Ak
denotes the indicator function.1 Note that, since q0

is a probability density, the values p1, . . . , pn have to fulfill the following linear
equation:

w

R2
+

q0(`, d) ddd` =

n∑

k=1

pk|Ak| = 1, (13)

where |Ak| denotes the area of the set Ak. Using this approach, we can estimate
q0 by determining the coefficients p1, . . . , pn based on measured univariate
distributions. In the following, we will show that p = (p1, . . . , pn) is in a linear
relationship with information gained from measured univariate distributions %κ,
i.e., there is some matrix T and a vector b with Tp = b, where the entries of T
and b depend on measurements and functional relationships between (`, d) and
the measured quantities. Figure 1 visualizes how linear equations are obtained
from number-weighted measured distributions %κ, i.e., for κ ≡ 1. More precisely,
by using the piecewise constant representation of q0 given in (12) the linear
relationship between p and information obtained from measurements is given

1 For some set A the indicator function 1A is defined by

1A(x) =

{
1, if x ∈ A,
0, if x /∈ A.

A common convention is to denote 1A(x) by 1x∈A. Also, for intervals A = (−∞, y] with
y ∈ R we use the notation 1x≤y = 1(−∞,y](x).
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Figure 1: Scheme for obtaining linear equations from univariate number-
weighted measurements, which are used to reconstruct the bivariate PSD.
Left: two univariate number-weighted distributions %1 (a) and %2 (b), which
can be described by transforming a bivariate PSD with some transformation
functions γ1 and γ2, respectively. The brown and purple areas represent the
probabilities of the measured value belonging to the corresponding intervals,
i.e., P1 =

r y2
y1
%1(y)dy and P2 =

r y4
y3
%1(y)dy. Analogously, the green area

corresponds to P3 =
r y6
y5
%2(y)dy. Right: A piecewise constant bivariate PSD (c)

which is uniquely described by its function values p1, . . . , p64 on a 8×8 grid. The
“purple stripe” corresponds to the (`, d) vectors with y3 ≤ γ1(`, d) ≤ y4. The
integral of the bivariate PSD over this stripe has the value P2 resulting in the
linear equation P2 = a3p3+a4p4+a12p12+a13p13+· · ·+a32p32+a39p39+a40p40.
The coefficient ak is the area of the intersection of the stripe and the rectangle
corresponding to pk. Analogously, the “brown and green stripes” provide linear
equations. By partitioning the supports of %1 and %2 into further intervals, or
by considering additional univariate measurements we obtain even more linear
equations, which are used to determine a solution p.

by
w y2

y1
%κ(y) dy =

w

{(`,d)∈R2
+ : y1≤γ(`,d)≤y2}

q0(`, d) ddd`

=

n∑

k=1

pk|{(`, d) ∈ R2
+ : y1 ≤ γ(`, d) ≤ y2} ∩Ak|, (14)

where y1 ≤ y2 and γ is the transformation function corresponding to the
measurement. By varying y1 and y2, or by considering other measurements, we
obtain additional linear equations. Thus, the estimation of q0 can be performed
by solving the system of linear equations Tp = b for p. In the following, we
show how these linear equations are derived in the general case of non-constant
weight functions κ.

Note that each univariate cumulative distribution function Ξκ : R→ [0,∞)
which is measured in the setting of the present paper can be expressed in terms of
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the bivariate probability density q0 of the random vector (L,D). More precisely,
using a weight function κ : R2 → [0,∞) and a transformation γ : R2 → R, the
measured distribution function Ξκ is given by

Ξκ(y) = P
(
γ(L̃, D̃) ≤ y

)
for each y ∈ R, (15)

where (L̃, D̃) is a random vector distributed according to a weighted version qκ
of the probability density q0 which is given by

qκ(`, d) =
q0(`, d)κ(`, d)

Mκ,0
=

q0(`, d)κ(`, d)r
R2

+
q0(`, d)κ(`, d) d(d, `)

, (16)

provided that Mκ,0 < ∞. For example, for the number-weighted mass
measurements described in Section 2.1 the weight function is given by κ ≡ 1
and the value γ(`, d) of the transformation corresponds to the mass of a nanorod
with length ` and diameter d given by Equation (3).

By combining Equations (15) and (16) we get

Ξκ(y)Mκ,0 =
w

{(`,d)∈R2
+ : γ(`,d)≤y}

q0(`, d)κ(`, d) ddd`. (17)

Then, the piecewise constant representation of q0 given in Equation (12) leads
to

Ξκ(y)

n∑

k=1

pk
w

Ak

κ(`, d) ddd` =

n∑

k=1

pk
w

Ak

1γ(`,d)≤y κ(`, d) ddd` (18)

or, equivalently,

n∑

k=1

pk
w

Ak

κ(`, d)
(
1γ(`,d)≤y − Ξκ(y)

)
ddd` = 0. (19)

Note that for absolutely continuous distribution functions Ξκ of measurements,
i.e., functions Ξκ for which there is a probability density %κ : R → [0,∞) with
Ξκ(y) =

r y
−∞ %κ(y′) dy′ for each y ∈ R, one can show that

n∑

k=1

pk
w

Ak

κ(`, d)
(
1γ(`,d)∈B −

w

B
%κ(y) dy

)
ddd` = 0 (20)

for each interval B ⊂ R. Equation (20) is the basis for the procedure of
estimating q0 with M measured univariate probability densities %κ1

, . . . , %κM
,

where the probability density %κj is obtained by weighting q0 with some weight

function κj : R2 → [0,∞) followed by a transformation with the transformation
function γj : R2 → R for each j = 1, . . . ,M , see Equations (15) and (16).

Therefore, let Ξκj
denote the cumulative distribution function corresponding

to the probability density %κj
for each j = 1, . . . ,M , respectively. Furthermore,

we assume that %κj
has a bounded support, i.e., supp %κj

⊂ γj (supp q0) is
bounded for each j = 1, . . . ,M . For example, due to the bounded support of
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q0, see Equation (12), this condition is fulfilled for continuous transformation
functions γj which include the transformation functions considered in the
present paper, see Equations (3) and (6). Beyond that, this assumption is
reasonable since distributions of measured quantities usually have a bounded
support. Then, for each measured probability density %κj

, its support
supp %κj ⊂ [Ξ−1

κj
(0),Ξ−1

κj
(1)) is partitioned into N > 0 intervals which, based on

Equation (20), lead to N linear equations for each measured probability density
%κ1

, . . . , %κM
. For the partitioning of supp %κj

we construct disjoint equiprobable
intervals. More precisely, for each j = 1, . . . ,M we define a monotone sequence

−∞ < w
(j)
0 ≤ w(j)

1 ≤ · · · ≤ w(j)
N <∞, where

w(j)
g = Ξ−1

κj

( g
N

)
(21)

for each g = 0, . . . , N . These values define the endpoints of the intervals

B
(j)
1 , . . . , B

(j)
N which are given by

B(j)
g = [w

(j)
g−1, w

(j)
g ) for each g = 1, . . . , N. (22)

By Equation (21), we have

w

B
(j)
g

%κj (y′) dy′ = P
(
γj(L̃, D̃) ∈ B(j)

g

)
= Ξκj (w(j)

g )− Ξκj (w
(j)
g−1) =

1

N
. (23)

Thus, B
(j)
1 , . . . , B

(j)
N partition the support supp %κj

into equiprobable intervals.
Then, by inserting Equation (23) into (20) we obtain the linear equation

n∑

k=1

pk
w

Ak

κj(`, d)

(
1
γj(`,d)∈B(j)

g
− 1

N

)
ddd` = 0 (24)

for each j = 1, . . . ,M and g = 1, . . . , N . Actually, Equation (24) describes a
system of N ·M linear equations with unknowns p1, . . . , pn, i.e., there is a matrix
T ∈ R(N ·M)×n, whose entries are given by (24) such that the system of linear
equations is given by

Tp = 0. (25)

Furthermore, we have the constraints p1, . . . , pn ≥ 0 and the constraint given
in Equation (13) which ensure that the function

∑n
k=1 pk1Ak

induced by the
solution p is a probability density. If the underlying bivariate probability density
q0 is piecewise constant, this system of linear equations is solvable. If the number
of linear independent equations in (25) is smaller than n − 1, the solution
is not unique. However, this can be remedied by deriving additional linear
equations obtained by considering additional univariate probability densities or
finer partitions of their supports. Due to numerical errors or the fact that the
bivariate probability density q0, from which measured univariate probability
densities %κ1

, . . . , %κM
are obtained, is not piecewise constant, the system of

linear equations is not necessarily solvable. Therefore, we compute values for
p1, . . . , pn, which fulfill the constraints and minimize the mean squared error.
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More precisely, instead of the system of linear equations given by (25) we
consider the optimization problem

min
p=(pi)ni=1

‖Tp‖22

such that

n∑

k=1

pk|Ak| = 1

pk ≥ 0 for k = 1, . . . , n,

(26)

where ‖·‖2 denotes the Euclidean norm and the entries of the matrix T ∈
R(N ·M)×n are given by Equation (24). Then, approximate solutions p for
minimization problem given in (26) can be computed iteratively using interior
point methods Altman and Gondzio (1998).

2.4 Application to length and diameter of nanorods

The outlined method is applied to a particle system of gold nanorods, which
are distributed in length ` and diameter d according to the bivariate PSD q0.
The used univariate measurements are the previously discussed measurements
of particle masses m and extinction weighted sediment coefficients s, that are
characterized via their univariate probability densities. In order to increase
the readability the notation is slightly modified. From hereon, we denote the
probability density of the particle mass and sedimentation coefficient by %m and
%s,λ, respectively, where the latter depends on the wavelength λ.

In order to demonstrate the performance of the reconstruction method a
known bivariate PSD of gold nanorods (Wawra et al., 2018) is used as initial
data set. From this, univariate distributions of s and m are computed and
used as an input for the described method. After reconstruction one receives an
estimate q̂0 for the bivariate PSD, which itself is compared to the true density
q0 for the error investigation of this procedure.

First, the cumulative distribution function Ξm of the mass m of particles
is derived from the bivariate probability density q0 by means of Equation (15),
with the constant weight function κ ≡ 1 and the transformation γ = mpart

given in Equation (3). Then, derivation of Ξm leads to the corresponding
probability density %m, see Figure 2b. Analogously, the cumulative distribution
function Ξs,λ of the extinction-weighted sedimentation coefficients measured
at wavelength λ can be obtained. The corresponding weight function, which
depends on the wavelength λ, and the transformation function are given in
Equations (10) and (6), respectively. After derivation of Ξs,λ, the resulting
probability densities %s,λ are visualized in Figure 2c for various wavelengths
λ. The corresponding bivariate probability density q0 of particle length and
diameter is depicted in Figure 2a.

For estimating the bivariate probability density q0 based on the probability
densities %m and %s,λ1

, . . . , %s,λM
, we assume that diameters and lengths within

the system are bounded by minimal and maximal lengths `min, `max and
diameters dmin, dmax, which induces that the support supp q0 of q0 is bounded

12
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Figure 2: Bivariate probability density q0 of length and diameter of gold
nanorods, adapted with permission from Wawra et al. (2018) under the Creative
Commons Attribution 4.0 International License (2020). Dark blue color
corresponds to small values and yellow color to large values of the probability
density. Negligibly small values are white (a). The corresponding distributions
of mass (b) and extinction-weighted sedimentation coefficients of the particles
(c) which were computed from (a) via the outlined integration and weighting
techniques described in Sections 2.1 and 2.2.

by some rectangle R = [`min, `max)× [dmin, dmax). In real life applications these
boundaries can be obtained in two different ways which can also be combined.
The synthesis of nanoparticles usually follows strict protocols, which dictate
a rough size estimation of the nanoparticles a priori. This information can be
used to approximate the lower and upper limits of the rectangle R. Additionally,
the univariate measurements yield important information. Figure 1 illustrates
that each point on the x-axis of a univariate measurement corresponds to a
curve in the 2D length-diameter space. Thus, the lower and upper bounds of
the support of the univariate distribution generate two curves between which
the support of the bivariate distribution is located. The usage of additional
univariate measurements restricts the set in which the support of the bivariate
distribution is located even further. Then, the resulting set can be approximated
by a rectangle which, a posteriori, defines the bounded support.

The estimated density q̂0 will be of the form

q̂0(`, d) =

n∑

i,j=1

pi,j1Ai,j
(`, d) for each (`, d) ∈ R2 . (27)

Thus, q̂0 is piecewise constant on n2 pairwise disjoint rectangular sets Ai,j
(which we call bins from now on) given by

Ai,j =

[
`min +

i− 1

n
∆`, `min +

i

n
∆`

)
×
[
dmin +

j − 1

n
∆d, dmin +

j

n
∆d

)
(28)

for all i, j = 1, . . . , n, where ∆` = `max− `min and ∆d = dmax− dmin. Then, the

bins (Ai,j)
n
i,j=1 are partitioning the rectangle R ⊃ supp q0, i.e., R =

n⋃
i,j=1

Ai,j .
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Figure 3: Bivariate probability density q0 to be reconstructed (a) and the
corresponding reconstructions (b-e). The estimated probability density q̂0 in
(b) utilized the mass distribution and the sedimentation coefficient distribution
for the wavelength λ = 480 nm with n2 = 122 bins. The same univariate
distributions were used to estimate the probability density in (c) with n2 = 302

bins. The estimate q̂0 in (d) was computed with n2 = 302 bins using twelve
additional sedimentation coefficient distributions. For the estimate in (e)
the mass distribution and the sedimentation coefficient distribution for the
wavelength λ = 673 nm was used with n2 = 122 bins.
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Note that, in general, one could partition the `- and d-axis into n and m intervals
with n 6= m, respectively, leading to a partition with nm bins. By means
of Equation (24), from the univariate probability densities %m, %s,λ1

, . . . , %s,λM

we obtain a system of (M + 1)N linear equations with n2 unknowns, namely
(pi,j)

n
i,j=1, where N is the number of partition components into which the

support of the M+1 univariate measurements is divided into, see Equation (22).
Note that the coefficients of (pi,j)

n
i,j=1 given by (24) are given by integrals

which we computed numerically. This can introduce errors in the reconstructed
probability densities which are not investigated in the present paper. The values
(pi,j)

n
i,j=1 which describe the estimate q̂0 can then be obtained by finding an

optimal solution for the system of linear equations under the constraints pi,j ≥ 0
and

∑n
i,j=1 pi,j |Ai,j | = 1 with the interior point algorithm, see Equation (26).

Figure 3b depicts the estimated probability density q̂0, where we used the
density %m of the mass and one density %s,480nm of sedimentation coefficients
with n = 12 and N = 300. Even though the resolution given by the number
of bins n2 = 122 is relatively low, the estimated density q̂0 reassembles q0

with good accuracy. Quantitatively, the mismatch between q̂0 and q0 can be

described by the error term ‖q̂0 − q0‖ =
(r

R2 |q̂0(`, d)− q0(`, d)|2 ddd`
) 1

2 . Note
that ‖·‖ denotes the L2 norm.2 For the estimate q̂0 depicted in Figure 3b this
error ‖q̂0 − q0‖ is 0.016, see also Table 1. If we utilize the same amount of
information for the estimation of q̂0, namely the univariate probability densities
%m and %s,480nm, but increase the number of bins used in the estimation to
n2 = 402, the error increases significantly to ‖q̂0−q0‖ = 0.035, see also Figure 3c.
Then, if we include further information in form of twelve additional densities
of sedimentation coefficients (for the wavelengths λ ∈ {495 nm, 510 nm, 547 nm,
561 nm, 575 nm, 590 nm, 604 nm, 618 nm, 632 nm, 646 nm, 660 nm, 673 nm}) we
can reduce the error down to ‖q̂0 − q0‖ = 0.018 while remaining at the finer
resolution of n2 = 402, see Figure 3d.

However, when estimating q0 with linear equations derived from certain
univariate probability densities %s,λ by means of (24), a relatively large error
‖q̂0 − q0‖ can occur. For example, when estimating the bivariate probability
density q0 depicted in Figure 3a for n2 = 122 utilizing the univariate probability
densities %m and %s,673nm we obtain the error ‖q̂0 − q0‖ = 0.045, see also
Figure 3e. A possible reason for this effect is that the matrix T whose entries
are given by Equation (24) is ill-posed when using certain univariate probability
densities %s,λ for estimating q0. The reasons for this effect are currently not fully
understood and will be studied in future. The ill-posedness of a matrix T can
be characterized by the condition number k which is given by

k(T ) =
τmax

τmin
, (30)

2 The L2 norm of a bivariate function f : R2 → R is given by

‖f‖ =
(w

R2
f(x, y)2 dxdy

) 1
2
. (29)
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Table 1: Reconstruction parameters and errors of the estimates q̂0 depicted in
Figures 3b-4b.

Figure
number of

bins n2
number of

measurements M + 1
regularization error ‖q0 − q̂0‖

3b 122 2 no 0.0164
3c 302 2 no 0.0346
3d 302 14 no 0.0177
3e 122 2 no 0.0450
4a 122 2 yes 0.0467
4b 302 2 yes 0.0248

where τmin and τmax are the smallest and largest singular values of T ,
respectively, where the singular values of T are given by the square roots of the
eigenvalues of the matrix T>T (Trefethen and Bau III, 1997). For example, the
matrix T used for the estimate depicted in Figure 3e has a condition number of
1.2·1017, whereas the matrix used for estimating the probability density depicted
in Figure 3b has a condition number of 6 · 1016. Note that this effect on the
estimate q̂0 can be decreased by considering additional univariate probability
densities %s,λ, see Figure 3d.

Another approach to handle possibly ill-posed matrices T—causing
oscillations in the estimate q̂0, e.g., see Figures 3c and 3e—are so-called
regularization techniques which are used for increasing the stability of solutions
of inverse problems with respect to both numerical and measurement errors
(Engl et al., 1996). More precisely, it is possible to introduce a regularization
term to the function to be minimized in (26), i.e.,

min
p=(pi)ni=1

‖Tp‖22 + µR

(
n∑

k=1

pk1Ak

)
, (31)

where µ > 0 and R is a functional which, for example, characterizes the amount
of oscillation in a bivariate function. One possible way to do so, is considering
the squared L2 norm of the absolute gradient of the estimate, i.e.,

R(q0) =
∥∥∥
√

(∂`q0)2 + (∂dq0)2
∥∥∥

2

= ‖∂`q0‖2 + ‖∂dq0‖2 , (32)

where ∂`q0 and ∂dq0 denote the partial derivatives of q0. Since the regularization
term suggested in (32) requires, among other things, differentiability which is
not given for q0 =

∑n
k=1 pk1Ak

, we propose a modified regularization term
which is given by

R(f) = ‖q0 ∗ ∂`g‖2 + ‖q0 ∗ ∂dg‖2 , (33)

where g : R2 → R is a centered Gaussian kernel and ∗ denotes the convolution
operation. For q0 =

∑n
k=1 pk1Ak

, the values of the function q0 ∗ ∂`g can be
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approximated by using discrete convolution kernels or, in other words, by linear
combinations of the entries of p. Furthermore, the value of ‖q0 ∗ ∂`g‖2 =r
R2

+
(q0 ∗ ∂`g)2(`, d) ddd` can be numerically computed by a weighted sum of

values of (q0 ∗ ∂xg)2. Therefore, we can determine a matrix L`, such that

‖q0 ∗ ∂`g‖2 ≈ ‖L`p‖22 and analogously a matrix Ld with ‖q0 ∗ ∂dg‖2 ≈ ‖Ldp‖22.
From here on, we therefore use the regularization term

R(p) = ‖L`p‖22 + ‖Ldp‖22 = ‖Lp‖22 , (34)

where L =

(
L`
Ld

)
. The representation of the regularization term R given in

(34) has the advantage that the regularized minimization problem is again of
the form given in (26). More precisely, the regularized minimization problem is
given by

min
p=(pi)ni=1

‖Tp‖22 + µ ‖Lp‖22 = min
p=(pi)ni=1

∥∥∥∥
(

C√
µL

)
p

∥∥∥∥
2

2

such that

n∑

k=1

pk|Ak| = 1

pk ≥ 0 for k = 1, . . . , n,

(35)

where we determine a good choice for the regularization parameter µ by
following the procedure described in Cultrera and Callegaro (2016). Note
that there are various procedures for choosing an appropriate regularization
parameter µ with different a priori assumptions on the inverse problem. For
further references we refer the reader to Sparacino et al. (2001). By utilizing
this regularization scheme for computing estimates q̂0, the latter exhibits less
oscillation, which is depicted in Figure 4a. Furthermore, the use of the
regularization term can even reduce estimation errors. For example, the
estimates depicted in Figures 4b were computed from the same system of
linear equations given by T , while for the latter the regularization scheme was
employed—reducing the error ‖q0 − q̂0‖ from 0.0346 to 0.0248.

This first analysis of the reconstruction and regularization scheme made
in this section indicates that for larger numbers of bins n2 used for the
estimated density q̂0 more information in form of univariate probability densities
obtained by weighting and transformation of q0 is required, i.e., more univariate
measurements are needed. Furthermore, the utilization of regularization
techniques can lead to more realistic estimates q̂0 and even smaller estimation
errors. Therefore, in the next section, we will give a more detailed error analysis.

2.5 Error analysis

The estimation method presented in Sections 2.3 and 2.4 can reconstruct a
piecewise constant bivariate with varying accuracy, depending on how well-
determined the resulting system of linear equations is. However, several error
sources need to be taken into account, e.g.
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Figure 4: Estimates q̂0 of the bivariate probability density q0 which were
computed using regularization techniques (bottom row). The corresponding
estimates which were computed without regularization are depicted in the top
row. For the estimate in (a) the mass distribution and sedimentation coefficient
distribution for the wavelength λ = 673 nm was used with n2 = 122 bins. The
estimate in (b) was computed with n2 = 302 bins using the mass distribution
and sedimentation coefficient distribution for the wavelength λ = 480 nm.
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Figure 5: The smallest possible approximation error ‖q̂(n)
opt − q0‖ for the

probability density q0 depicted in Figure 3a versus the number of bins n2.

(i) numerical errors while applying the method,

(ii) numerical or measurement errors in the univariate densities,

(iii) the real density is not piecewise constant, resulting in non-avoidable
approximation errors.

On one hand, the numerical (and measurement) errors tend to grow when
the number of bins n2 or the number of partition components N increase. On
the other hand, the smallest possible approximation error decreases when using
a finer grid size (larger number of bins n2). More precisely, the best possible

piecewise constant approximation q̂
(n)
opt of q0 with n2 bins is characterized by

(i) q̂
(n)
opt is a piecewise constant density with n2 bins, i.e.,

q̂
(n)
opt =

n∑

i,j=1

pi,j1Ai,j and ‖q̂(n)
opt‖ = 1 (36)

(ii) For any bivariate piecewise constant probability density q̃0 =∑n
i,j=1 p̃i,j1Ai,j with n2 bins, the discrepancy between q̃0 and q0 has to

be larger than between q̂
(n)
opt and q0, i.e., the following inequality holds:

‖q̂(n)
opt − q0‖ ≤ ‖q̃0 − q0‖. (37)

Then the value ‖q̂(n)
opt − q0‖ is the smallest possible approximation error as

illustrated in Figure 5.
However, a larger number of bins n2 leads to more unknowns which

consequently implies the necessity for more equations, i.e., a larger number of
partition components N and/or more univariate distributions. These complex
relationships between the different types of errors make it hard to perform
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an analysis of the underlying error contributions. Thus, we will perform a
simulation study to heuristically determine best practices for applying the
reconstruction method proposed in the present paper and reducing the overall
error (approximation and numerical error). In order to do so, we computed
the estimate q̂0 of the bivariate probability density q0, depicted in Figure 3a,
for various constellations of the number of bins n2, the number of considered
univariate probability densities M and the number of partition components N .
More precisely, in this simulation study, the number of bins n2 was taken from
{82, 102, . . . , 262, 282, 302}, while the number of partition components N was
taken from the set {100, 300, 500}. The number M of considered univariate
probability densities was varied from 2 to 32, where the mass distribution
%m was considered for each estimate q̂0 of the bivariate density q0. The
remaining M−1 univariate probability densities were distributions of extinction-
weighted sedimentation coefficients at different wavelengths λ between 480 nm
and 908 nm. Figure 6 depicts the computed errors ‖q̂0−q0‖, which indicate that
for small values of the number of bins n2, the errors stay relatively large. This
is expected, a bivariate continuous distribution cannot be properly represented
by a few bins. Increasing the number M of considered univariate probability
densities up to a number of 20 distributions, results in the considered scenario
to relatively large errors. This effect is not understood so far, but it can be
reduced by using additional univariate probability densities.
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Figure 6: Error ‖q̂0− q0‖ for the estimation of the bivariate probability density
q0 depicted in Figure 3a in dependency of the number of bins n2 and the number
of considered univariate distributions considered for computing q̂0. From each
univariate distribution 100 (a), 300 (b) and 500 (c) linear equations were derived.

Since the estimation procedure described in Sections 2.3 and 2.4 is based
on the solution of a system of linear equations with N · M equations and
n2 unknowns (or n2 − 1 unknowns, due to the normalization of probability
densities, see Equation 13), we now analyze the estimation error with respect
to the number α = NM of equations provided. The scatter plot depicted in
Figure 7a indicates that the estimation error ‖q̂0−q0‖ converges with increasing
α. However, there seem to be subsets of points which converge to different lower
limits. This effect can be explained by the smallest possible approximation

error ‖q̂(n)
opt − q0‖, see Figure 5, which is a lower limit for the estimation error
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Figure 7: (a): Scatter plot of estimation errors in dependency of the number
α(M,N) = NM of linear equations. (b): Scatter plot of normalized estimation
errors in dependency of α(M,N) = NM .

‖q̂0 − q0‖ in dependency of the number of bins n2. Therefore, in Figure 7b,

we consider the normalized estimation error ‖q̂0−q0‖
‖q̂(n)

opt−q0‖
, where we can see that

for increasing α = MN the errors seem to converge against a relatively small
approximation error of about 2.5. Note, that the estimate q̂0 depicted in
Figure 3d, which visually reassembles the true density q0 quite nicely, has a
normalized estimation error of 3.39. Furthermore, Figure 7 indicates, that the
utilization of regularization techniques during the estimation of q0 can reduce
the error even further. Also, we observed that for large values of M the error
cannot be decreased by further increasing M . A possible explanation for this is
the fact that for larger number M of partitions the integration area (“stripes”
in Figure 1) for computing entries of the matrix T become smaller, which might
cause redundant linear equations.

3 Reconstruction of parametric distributions

Until now, we used the estimation technique presented in Sections 2.3 and
2.4 to obtain estimates q̂0 of the bivariate probability density q0 depicted in
Figure 3a. However, the method is not limited to this particular case. Therefore,
in this section, we investigate a parametric family {qθ : θ ∈ Θ} of bivariate
probability densities, where Θ is some parameter space. Then, by considering
various parameters θ1, . . . , θz ∈ Θ, we obtain z bivariate probability densities
qθ1 , . . . , qθz on which we can test our estimation method. This workflow is
visualized in Figure 8. First, we derive the univariate probability distributions of
measured quantities for each bivariate probability density qθj where j = 1, . . . , z.
Based on these univariate distributions, the method presented in Sections 2.3
and 2.4, provides estimates q̂θ1 , . . . , q̂θz of qθ1 , . . . , qθz , respectively. Thus,
we can analyze the performance of the method for a wide range of bivariate
distributions. Moreover, it is possible to fit, once again, parametric bivariate
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probability densities from the family {qθ : θ ∈ Θ} to the piecewise constant

estimates q̂θj by determining a parameter θ̂j with

qθ̂j ≈ q̂θj (38)

for each j = 1, . . . , z. This provides the means to investigate the robustness
of the estimation method, by comparing the initial parameter θj with the

parameter θ̂j of the fit.
In order to obtain a wide variety of bivariate probability densities qθ1 , . . . , qθz

to test the estimation method, we consider so-called copulas which are a useful
tool for describing non-Gaussian multivariate distributions with correlated
marginals (Nelsen, 2007; Joe, 2014). We will specifically focus on Archimedean
copulas which provide a wide variety of parametric bivariate probability
densities while still having analytical representations.

3.1 Representation of bivariate distributions by copulas

To demonstrate the importance of copulas for modeling bivariate probability
densities q, we have to go back to the notion of the cumulative distribution
function Q : R2 → [0, 1] corresponding to q which is given by

Q(x1, x2) =
w

(−∞,x1]×(−∞,x2]
q(y1, y2) dy1dy2. (39)

Then, the marginal cumulative distribution functions Ξ1 and Ξ2 of the bivariate
distribution function Q are given by

Ξ1(x) = lim
x2→∞

Q(x, x2) (40)

and
Ξ2(x) = lim

x1→∞
Q(x1, x). (41)

In particular, a bivariate copula C : R2 → [0, 1] is a bivariate distribution
function whose marginal distributions are uniform distributions on the interval
[0, 1], i.e., a copula C is a bivariate distribution function for which

lim
x1→∞

C(x1, x) = lim
x2→∞

C(x, x2) =





0, if x < 0,
x, if x ∈ [0, 1],
1, if x > 1,

(42)

see Nelsen (2007). Copulas are of great interest for modeling distributions of
dependent random variables since for any copula C and for any univariate
distribution functions Ξ1,Ξ2 : R → [0, 1] the function Q : R2 → [0, 1] given
by

Q(x1, x2) = C(Ξ1(x1),Ξ2(x2)) for each (x1, x2) ∈ R2, (43)

is a bivariate distribution function whose marginals are Ξ1 and Ξ2 (Nelsen,
2007). Note that there is still another interesting aspect of copulas
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Figure 8: Workflow of the simulation study performed in Section 3. Any
parameter vector θ ∈ Θ defines a copula-based bivariate probability density
qθ which are to be reconstructed using the method presented in Sections 2.3
and 2.4. Therefore, univariate distributions of mass and extinction-weighted
sedimentation coefficient are derived from qθ. Using the method presented in
Section 2.4 we obtain a piecewise constant estimate q̂θ of qθ. An additional
estimate qθ̂ of qθ is obtained by fitting a copula-based probability density to q̂θ.
For both estimates q̂θ and qθ̂ the discrepancy to the original probability density
qθ are investigated. Additionally, the discrepancy between the parameter vectors
θ and θ̂ is analyzed, where the latter is given by the estimate qθ̂. By varying the
initial parameter vector θ ∈ Θ we consider a wide range of initial probability
densities qθ to which this workflow can be applied on.
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which motivates their use for modeling multivariate distributions. Namely,
any bivariate distribution function Q : R2 → [0, 1] can be represented as
in Equation (43) by its marginal distribution functions Ξ1,Ξ2 and some
bivariate copula C which describes the dependence structure between the two
components. The characterization of bivariate distribution functions by their
marginals and a copula function, given in Equation (43), holds for any bivariate
distribution (Sklar, 1959; Nelsen, 2007). However, the method presented in
Sections 2.3 and 2.4 deals with the estimation of bivariate probability densities.
Therefore, we consider a differential version of Equation (43). More precisely, let
Q be a bivariate distribution function of the form (43), such that the marginal
distribution functions Ξ1,Ξ2 have probability densities %1, %2 : R → [0,∞),
respectively. Moreover, let the copula C be differentiable such that it has the
bivariate probability density c : R2 → [0,∞) (also called copula density) given
by

c(x1, x2) =
∂2

∂x1∂x2
C(x1, x2). (44)

Then, differentiating both sides of Equation (43) twice, implies that Q has the
bivariate probability density q which is given by

q(x1, x2) =
∂2

∂x1∂x2
Q(x1, x2) = %1(x1)%2(x2)c(Ξ1(x1),Ξ2(x2)). (45)

3.2 Fitting of model parameters

Now, we briefly explain how to parametrically model a given bivariate
probability density q with copulas. In a first step we parametrically model
the univariate probability densities of its marginals %1, %2 which are given by

%1(x) =
w∞

−∞
q(x, y) dy (46)

and
%2(x) =

w∞

−∞
q(y, x) dy, (47)

see also Equation (1). Therefore, we chose suitable parametric families

{%(1)
θ1

: θ1 ∈ Θ1}, {%(2)
θ2

: θ2 ∈ Θ2} of univariate probability densities (for example,
the log-normal, normal or exponential distribution, etc.) from which we fit
densities to %1 and %2, respectively. More precisely, we determine optimal
parameters θ̂i ∈ Θi such that

θ̂i = arg min
θi∈Θi

‖%i − %(i)
θi
‖ (48)

holds for i = 1, 2. In a second step, we chose a suitable parametric family
{cθ3 : θ3 ∈ Θ3} of copula densities for modeling q. Note that, similarly to the
univariate case, there are numerous parametric families of copula densities which

24



can be used for modeling bivariate distributions (Joe, 2014; Nelsen, 2007). Using
Equation (45) we then obtain a parametric family

{
qθ1,θ2,θ3 : (θ1, θ2, θ3) ∈ Θ1 ×Θ2 ×Θ3,

qθ1,θ2,θ3(x1, x2) = %
(1)
θ1

(x1) %
(2)
θ2

(x2) cθ3

(
Ξ

(1)
θ1

(x1),Ξ
(2)
θ2

(x2)
)}

(49)

of bivariate probability densities, where Ξ
(1)
θ1
,Ξ

(2)
θ2

denote the distribution

functions of %
(1)
θ1

and %
(2)
θ2

, respectively. Then, the marginal densities of

the bivariate density qθ1,θ2,θ3 belong to the parametric families {%(1)
θ1

: θ1 ∈
Θ1}, {%(2)

θ2
: θ2 ∈ Θ2}. Especially, when choosing θ1 = θ̂1 and θ2 = θ̂2 according

to (48), the bivariate density qθ̂1,θ̂2,θ3 has, for each θ3 ∈ Θ3, the marginal

probability densities %
(1)

θ̂1
, %

(2)

θ̂2
which were fitted in the first step. Then, we

obtain from the parametric family of bivariate probability densities given in
(49) a parametric fit qθ̂1,θ̂2,θ̂3 of the initial bivariate density q by solving

θ̂3 = arg min
θ3∈Θ3

‖q − qθ̂1,θ̂2,θ3‖. (50)

The main advantage of copulas for modeling bivariate distributions is that it
is possible to model the marginal distributions first. Then, in a second step the
correlation structure is modeled with copulas. Due to this hierarchical modeling
approach, the resulting bivariate density has marginals which are identical to
the univariate fits of the first step.

3.3 Simulation study: Fitting Archimedean copulas

In this section we investigate the robustness of the method proposed in
Sections 2.3 and 2.4 for the reconstruction of parametric bivariate densities.
Assume that the true bivariate probability densities qθ3 which are to be
estimated are given by

qθ3(`, d) = %1(`)%2(d)cθ3(Ξ1(`),Ξ2(d)), (51)

where Ξ1 is the cumulative distribution function of nanorod lengths which
is assumed to be log-normally distributed with fixed parameters µ = 4 and
σ = 0.075 which is truncated on the interval [40, 75]. Furthermore, we assume
that the cumulative distribution function Ξ2 of diameters follows a normal
distribution with parameters µ = 22 and σ = 2.7 which was truncated on
the interval [15, 30], where %1, %2 are the probability densities of Ξ1 and Ξ2

respectively. Note that the marginal distributions Ξ1 and Ξ2 were chosen in
this manner, such that they fit the marginal distributions of the probability
density depicted in Figure 3a. Finally we assume that the bivariate function
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cθ3 in Equation (51) is the density of an Ali-Mikhail-Haq copula which is a
parametric copula given by

cθ3(x1, x2) =
∂2

∂x1∂x2

x1x2

1− θ3(1− x1)(1− x2)
, (52)

with copula parameter θ3 ∈ (−1, 1) (Ali et al., 1978; Nelsen, 2007; Joe, 2014). In
the simulation study presented in this section, we have chosen the values for the

copula parameter θ3 from the set {θ3,k = −1 + 2(k−1)
15 : k = 2, . . . , 15}. Thus, we

have 14 bivariate densities qθ3,k from which we can compute univariate densities
which represent measurements, such that the estimation scheme presented in
Sections 2.3 and 2.4 can be applied to obtain piecewise constant estimates. In
the simulation study the number M of considered bivariate probability densities
was varied from 2 to 32, while the number of bins and partition components
were fixed to n = 202 and N = 300, respectively.

After computing (either regularized or non-regularized) estimates q̂θ3,k for
qθ3,k for various values ofM , see Figure 9a (blue, yellow) for errors in dependency
of α = NM = 300M , we use the approach described in Section 3.2 to fit
parametric bivariate densities qθ̂1,θ̂2,θ̂3,k to the estimates. As already mentioned

above, for the parametric family of bivariate probability densities, see (49),
we chose bivariate densities which have log-normally and normally distributed
marginals with Ali-Mikhail-Haq copulas describing their dependence structure.
Figure 9a indicates a significant decrease of errors when fitting a density from a
parametric family to the piecewise constant estimates. A reason for this might
be the fact that the true bivariate densities qθ3,k are smooth. Thus, by fitting
bivariate densities from a smooth parametric family to the piecewise constant
estimates q̂θ3,k , we obtain more realistic smooth versions of q̂θ3,k .

a) b)

Figure 9: (a): Moving median of estimation errors ‖q̂ − qθ3,k‖ and ‖qθ̂1,θ̂2,θ̂3,k −
qθ3,k‖ in dependency of the number α(M,N) = NM of linear equations
for piecewise-constant estimates (blue, yellow) and for parametric fits (red,
purple), respectively. (b): Error of the copula parameter in dependency of
α(M,N) = NM .
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Since the bivariate densities qθk , which are to be estimated, and the
parametric fits belong to the same parametric family, we are able to investigate
how well we estimated model parameters. More precisely, we obtain for
each configuration of model parameters (n,N,M) and for each k = 1, . . . , 14

an estimate θ̂3,k of the real copula parameter θ3,k. The estimation errors

|θ3,k − θ̂3,k| are visualized in Figure 9b, where we observe that for some values
of α = NM the copula parameter is estimated rather poorly. However, when
using additional information, i.e., when increasing the values of α, the errors
are relatively small.

Therefore, the error analysis performed in this section indicates that the
method described in Sections 2.3 and 2.4 for estimating the joint distribution
of length and diameter of gold nanorods based on univariate measurements can
be utilized successfully for different manifestations of the underlying bivariate
PSD q0.

4 Conclusions

Particle technology faces the development of particle systems of ever increasing
complexity in terms of disperse properties like their size, shape and
composition. Multidimensional particle size distributions can be a powerful
tool to describe these particle ensembles. However, apart from a few
examples, measurement techniques providing this multidimensional information
are missing (Wawra et al., 2018; Li et al., 2020). Therefore, we introduced
a general approach to reconstruct multidimensional property distributions.
Exemplarily, the combination of independently measured univariate mass and
sedimentation coefficient distributions allows the reconstruction of the bivariate
size distribution of gold nanorods. This is possible as the different univariate
measurements are results of the same underlying multi-dimensional probability
distribution of the particle system. The performance of the reconstruction
is evaluated via comparison to the original bivariate size distribution. A
forthcoming study will focus on the mathematical details, e.g., uniqueness and
stability of the solution, and the experimental realization of the technique for
different particle systems and sets of measurement techniques.
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Publications de l’Institut Statistique de l’Université de Paris, 8:229–231.
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