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Abstract

The discrete element method (DEM) is an effective computational technique that is used to investigate the mechanical behavior of
various particle systems like, for example, agglomerates. However, for systems of perfectly spherical and non-overlapping particles,
the structural input is almost always based only qualitatively on experimentally observed structures. In this paper, we consider the
case of agglomerates where particles are nearly spherical and connected by bonds. A novel bonded-particle extraction (BPE)
method is proposed for the automated approximation of such agglomerate structures from tomographic data sets. This method can
be effectively used in conjunction with various commercial or open-source DEM simulation systems. By BPE, sphere-like primary
particles are represented each by exactly one (perfect) sphere, and the set of spheres is non-overlapping. Furthermore, the solid
bridge bonds between primary particles are retained. Having derived such a simple description of complex tomographic data sets,
one can perform DEM simulations with well-established models like the bonded-particle model. Moreover, it is shown that a larger
data base of statistically equivalent microstructures can be generated by a stochastic modeling approach. This approach reduces the
need for (time-consuming) experimental agglomerate production and characterization.

Keywords: agglomerate structure, bonded-particle model, bonded-particle extraction, segmentation, stochastic microstructure
model

1. Introduction

The discrete element method (DEM) [1] is a modern and
effective computational technique to simulate the mechanical
behavior of granular systems on microscale. A common
approach to the simulation-based investigation of agglomerates
is the bonded-particle model [2]. The particles are specified as
a dense packing of spheres that are bonded together. Usually,
particles are spherical and bonds cylindrical. More complex
geometries are possible, but they lead to higher computational
effort. This is due to the need for more complex contact models
or the description of complex objects as a cluster of spheres
[3, 4, 5, 6, 7]. So far, very often agglomerate microstructures
are obtained by generating packings of (bonded) particles, such
that they have similar properties as observed experimentally
in real agglomerates (see, e.g., [8, 9, 10]). However, more
realistic morphologies are desirable [7]. In the last few
years, the microstructural characterization in 3D using µCT has
become feasible and, therefore, more popular. For example,
agglomerate microstructures have been studied [11, 12] and,
e.g., their relationship to process variables has been investigated
[13, 14]. As a link to DEM, a direct approach is to
approximate 3D structures of real agglomerates by (idealized)
objects. Recently, experimentally obtained structures have
been represented by different kinds of objects. For example,
individual particles may be approximated by ellipsoids [15, 16],
clusters of (non-overlapping or overlapping) spheres [15, 17,
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18], polyhedra [19] or splines [20]. In that case, DEM
simulations and real experiments can be compared directly –
the structures are not only statistically equivalent with respect
to some characteristics, they are identical (under the restriction
of having idealized objects).

In this paper, we consider the case of highly spherical
primary particles. In contrast to the literature mentioned
above, this allows us to represent each particle by exactly
one sphere. However, this simplicity comes at a cost. Even
for a packing of particles with high sphericities of about 0.9,
it is hard to find a non-overlapping set of spheres without
changing the structure too much. To the authors knowledge,
volume-equivalent spheres with a subsequent DEM relaxation
step have been used to obtain particle configurations from
tomographic data; see, e.g., [21]. However, the presence of
solid bridges in agglomerates is a problem because mechanical
equilibrium of the system is not a sufficient criterion for
relaxation, and, of course, solid bridges have a volume as
well. With these problems in mind, we propose a new
automated method to extract bonded particle systems from
tomographic data. We state an optimization problem to find
a configuration of bonded particles such that (i) the spherical
particles are non-overlapping, (ii) the cylindrical bonds match
the thickness of solid bridges, (iii) the agglomerate mass does
not change, and (iv) the shape and size of the agglomerate is
captured well. A stochastic optimization method is applied
to find a solution to this high-dimensional and multi-extremal
optimization problem. We call this method the bonded-particle
extraction (BPE) method.
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In the second part of the paper, we show how statistically
equivalent microstructures can be obtained by a parametric
stochastic model for agglomerate microstructures. The model
proposed in [22] is fitted to real agglomerate structures.
There are several advantages of such an approach. First,
one can reduce the number of real agglomerates that have
to be produced and characterized experimentally. Second,
realizations generated by a fitted stochastic model are more
closely related to the real microstructures than packings
generated with less information (e.g., only based on aggregated
characteristics like the mean coordination number). Third,
parametric models allow the systematic variation of individual
structural parameters in a realistic setting. As mentioned in
[22], this is an important step to obtain reliable results by
means of DEM, which leads to a better understanding of the
relationship between microstructure and mechanical properties.

2. Experimental data

In this contribution, agglomerates consisting of maltodextrin
(DE47) primary particles have been analyzed. Maltodextrin
is a material which is widely used as a model substance for
amorphous food powders and employed often as carrier or filler
in the food industry. The production of agglomerates was
performed in three subsequent steps: (1) creation of spherical
primary particles; (2) storage of primary particles under
specific conditions (temperature, humidity); (3) agglomeration
of primary particles under high temperature.

To produce spherical maltodextrin particles, a solution
consisting of 70 wt% maltodextrin and 30 wt% water was
prepared. In order to decrease the water content, the
solution was preheated in the microwave oven. Afterwards,
it was dropped via separate droplets into an oil bath and
primary particles were formed. For further decrease of the
water content, the particles were placed in the oven at a
temperature of 85◦C. This allows to get primary particles
with a mean sphericity of 0.864 (standard deviation 0.026;
sphericity as defined by Wadell [23]) and water content of
3 wt% (Figure 1(a)). In the second step, in order to reproduce
different storage conditions, the water content of primary
particles was increased by placing them into a chamber with
high air humidity and temperature. Finally, agglomerates
were assembled by putting particles together into spherical
(Figure 1(b)) or cylindrical form and placing them in the oven
at a temperature of 65◦C.

In total, 34 maltodextrin agglomerates were produced and
characterized using a µCT 35 of SCANCO Medical AG.
The tomographic reconstruction was performed based on 100
rotations, where each 2D cross-section was captured at a
resolution of 2048 × 2048 pixels. A visualization is given
in Figure 2. There are 10 spherical agglomerates (diameter
about 16 mm) and 24 cylindrical agglomerates (diameter about
16 mm, height about 11 mm). A dataset label is assigned to
each agglomerate. The spherical agglomerates are labeled by
elements of a certain set LS , the cylindrical agglomerates by
LC , andL = LS ∪LC corresponds to all datasets. Furthermore,
the mass of each agglomerate was measured. It is in the range

(a) Primary particles. (b) Spherical agglomerate.

Figure 1: Maltodextrin primary particles and agglomerates.

of 1.8 to 2.25 g, where each agglomerate consists of about 130
to 170 primary particles.

(a) 3D visualization. (b) Planar 2D section.

Figure 2: Tomographic data of a spherical agglomerate.

3. Image processing

The tomographic data sets are denoted by I` = {I`(x, y, z) ∈
{0, . . . , 255} : (x, y, z) ∈ W}, where ` ∈ L denotes the
considered dataset and W ⊂ N3 is a grid of voxel coordinates.
Because of the high resolution, the original image data were
(down)scaled by factor 0.5 in all three directions. The final
grid of voxel coordinates has a size of 1024 × 1024 × 1024 and
the edge length of a voxel in the processed data corresponds to
0.02 mm.

In a first step, all images are preprocessed. As the sample
holder is visible, it is removed from all data sets. This is easily
possible by setting the affected voxels to black, i.e., grayscale
value zero, because the sample holder is located at the same
position in all datasets. Furthermore, a median-filter [24] with
a box size of 3 × 3 × 3 voxels is applied, which reduces noise
without losing much structural specifics. The resulting images
are denoted by I′`.

Global thresholding is used to binarize all images I′`. For a
threshold τ`, the resulting binary image Iτ`

`
is given by

Iτ`
`

(x, y, z) =

255 if I′`(x, y, z) ≥ τ`,
0 if I′`(x, y, z) < τ`,

where the value 255 corresponds to the solid (maltodextrin)
phase, also called foreground phase. Because the mass of each
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agglomerate and the density ρ = 1500 kg/m3 of maltodextrin
are known, the threshold τ` can be chosen such that the “mass”
of the foreground phase

#
{
(x, y, z) ∈ W : Iτ`

`
(x, y, z) = 255

}
· (0.02 mm)3 · ρ

corresponds to the experimentally measured mass as closely as
possible (#A denotes the number of elements in a set A).

Having obtained the thresholds τ` and the corresponding
thresholded images Iτ`

`
, a further processing step is necessary

to obtain the final binary image that will be used in all
subsequent steps. One can observe that there are very small
foreground or background clusters of voxels present in the
thresholded images, which are obviously not relevant. The
Hoshen–Kopelman algorithm [25] is applied to detect clusters
in the foreground as well as in the background. Small clusters
with a volume of at most 53 voxels are removed. The resulting
binary images are denoted by Ibin

` .

3.1. Agglomerate shape parameters

Later on, the position and exact shape of agglomerates is
required. Therefore, it is necessary to detect the spheres
or cylinders that match the agglomerates best. It is already
known which agglomerate has a spherical or cylindrical shape.
However, the exact coordinates and sizes of these spheres and
cylinders have to be determined.

The Hough transform (HT) [26, 27, 28] is used to estimate
the “best-fit” spheres or cylinders, respectively. The idea of
the HT is to maximize the agreement between the boundary
of an object observed in (binary) image data, and a simple
geometric object that has one or several parameters. Essentially,
the (discretized) parameter space is scanned and a so-called
accumulator space is constructed, where a score is assigned to
every parameter. The score is the number of voxels that belong
to the object boundary in both the image and the parametric
object. Then, the global maximum in this accumulator space
identifies the object providing the best match. For example, for
a sphere there are four parameters: the three coordinates of the
center and the radius. For a cylinder, there are 7 parameters:
the coordinates of two extreme points on the cylinder axis, and
the radius.

Given the binary images of spherical agglomerates, the
best-fit spheres are detected as follows. First, the convex
hull [29, 30] of all foreground voxels is computed. The
primary particles do not fill out the complete space of the
agglomerate – by computing the convex hull, pore phase
voxels lying “between” pairs of solid phase voxels are added,
yielding a single (non-parametric) object corresponding to
the agglomerate shape. The boundary of the convex hull is
discretized to an image with a certain thickness. (In our case,
we dilated the convex hull surface with a sphere as structuring
element [24, 31], where the sphere centered in the origin has a
radius of three voxels.) Based on this image, the HT is applied
to detect a sphere whose surface matches the convex hull
boundary best. Note that the thickness used for the convex hull
boundary discretization is helpful because the convex hull is, of
course, not a perfect sphere, and some tolerance is sensible.

For the binary images of the cylindrical agglomerates, the
procedure is exactly the same. The only difference is that
one has to take even more care when determining a suitable
discretization of the 7-dimensional parameter space, to avoid
issues with very long computing times and high memory
requirements.

The detected objects describing the agglomerate positions
and shapes are denoted by S `, ` ∈ L. Note that the best-fit
shape may not cover all voxels of the foreground. This can be
observed in Figure 3. The inner circle is the best-fit; however,
there are some particles (partially) outside. The object S `

is dilated with a sphere as structuring element such that the
foreground is just completely contained; this result is denoted
by S ′`.

Figure 3: Planar 2D section with best-fit object (inner circle: cross-section of
3D sphere) and best-fit object dilated such that the complete solid volume is
contained (outer circle: cross-section of dilated 3D sphere).

3.2. Regions of primary particles
The individual particles are identified in the binarized

tomographic data by means of the watershed algorithm [32,
33, 34, 35]. The idea and standard technique is as follows.
One considers shortest distances from voxels of the foreground
to the background phase. An image containing such shortest
distances is called (Euclidean) distance transform [24, 36].
Taking the negative image, “valleys” with respect to the
grayscale values (i.e., high distances) are starting points for
the objects that one wants to detect. Then, starting from these
points, the valleys are flooded until the basins touch each other.
The process is called watershed transformation; the voxels
where two basins meet are called watersheds.

In the standard watershed transformation, all local minima
are used as starting points for basins. With this method,
over-segmentation is a typical problem [31, 33]. The reason is
that the distance transform is very sensitive to small problems
in the original binary image, therefore many local minima
are generated. A solution to this problem are marked-based
watershed transformations [31, 33]. In that case, instead of
using the local minima, some predefined markers are employed.
Often, these markers are chosen based on the regional minima,
but some minima are left out or joined. The agglomerates
investigated in this study consist of primary particles with a
high sphericity. Therefore, the distance to the pore phase that
is associated with every local minimum can be thought of as
the radius of a sphere around that local minimum. Every other
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local minimum contained in that sphere and having a smaller
distance to the background is removed.

Using the thinning procedure of local minima as described
above yields very good results. However, small unnecessary
regions can exist near the boundary of a particle or between
two particles. Therefore, in a last step, watershed regions with
a small volume are assigned to an adjacent (large) region. This
is useful as it is known that primary particles have a certain
minimum size. Note that it is not necessary to distinguish
between particles and bonds at this point. The identified particle
regions consist each of one primary particle and, potentially,
one or several (partial) bonds. The optimization problem stated
below will assign volume to particles and bonds as necessary.

The final result is given by labeled images, where each
particle region is identified by an (integer) label. For N` > 1
particle regions in data set ` ∈ L, the labeled image is given by
{Iregions
`

(x, y, z) ∈ {0, . . . ,N`} : (x, y, z) ∈ W}. In particular, the
voxels of the ith particle region are given by R`(i). Note that
R`(0) does not correspond to a particle region, it denotes the
background, i.e., the pore phase plus watersheds that separate
particle regions by a layer with one voxel thickness. A
visualization of the result is given in Figure 4.

(a) Binary image data. (b) Identified particle regions.

Figure 4: Identification of particle regions with watershed transformation,
based on binary data (planar 2D section). Colors of particles are put at random.

3.3. Extraction of region data

As an input to the BPE method described below, not only the
agglomerate shape is needed, but also information describing
the particle regions. These are the volumes of particle regions
and the contact areas between particle regions (which describe
the thickness of solid bridges). It is sensible to assume
that these two characteristics have a large influence on the
mechanical behavior. In the following, the volume of a particle
region is called a local volume. It contains the volume of one
primary particle and (partially) the volume of solid bridges. The
local volume V`(i) for particle i can be obtained by counting the
voxels of the particle region, i.e., V`(i) = #R`(i).

The contact areas between particle regions are estimated
based on ideas used for surface area estimation in voxelized
data. A simple method is to use a local weighting of
voxel configurations as presented in [37]. First, particles in

contact are determined by detecting for every background voxel
whether it is in contact to two particles (i.e., it is 26-adjacent1

to two regions with different particle labels). All voxels in
contact to two particles determine the approximate region of
interest. The local weights introduced in [37] are evaluated for
all voxel configurations that touch the region of interest. With
this technique, the surface area from both particles is summed
up. Therefore, the contact area is given by half the obtained
sum; it is denoted by A`(i, j) for two particle regions with labels
i and j. The variable A`(i, j) is set to zero if the two particles
are not adjacent.

4. Bonded-particle extraction

The primary goal is a parametric description of the
agglomerates such that the data may be used as input for DEM
simulations. We restrict ourselves to the case of approximately
spherical primary particles and want to represent one primary
particle by exactly one (solid) sphere. The system of spheres
must be non-overlapping because we want the system to be
in an equilibrium state (when put into DEM simulations as
an initial configuration, without external forces applied). The
solid bridges between primary particles are approximated by
cylindrical bonds. Natural conditions are the preservation of
agglomerate shape as well as its mass (or its volume, which is
equivalent).

4.1. Optimization problem
Recall that the following information was extracted from the

tomographic data sets. For every analyzed agglomerate, there
is

• the “best-fit” object describing the agglomerate shape S `,
including S ′`,

• the local volume V`(i) > 0 for every particle region i =

1, . . . ,N`, and

• the contact area A`(i, j) ≥ 0 between two particle regions.

Based on this information, the aim is to find a bonded-sphere
description of the original data. We assume that the local
volumes as well as the thickness of contacts dominate the
mechanical behavior. There is flexibility in the positions
and radii of the spheres; under the condition that the local
volume is matched quite well and the contact area (or bond
radius) is fixed. The radius of the bond between particles
i and j is computed as ri, j =

√
A`(i, j)/π. The fact

that primary particles are not perfectly spherical and the
condition that the spheres should be non-overlapping can lead
to bonded-sphere configurations where the spheres drift apart
when only minimizing overlap. To lessen this effect, a good
fit to the agglomerate shape is required as well. An intuitive
further restriction is that the radius of a particle may not be
smaller than the radius of a bond emanating from this particle.

1The 26-neighborhood of a voxel (x, y, z) is given by all voxels that share a
face, edge or corner with (x, y, z).
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We state the problem of finding a suitable bonded-sphere
configuration as an optimization problem, where all undesired
configurations are assigned a cost. As we only allow flexibility
in the sphere centers and radii, the optimization problem can
be formulated as follows. A set of spheres {B(x̂i, ŷi, ẑi, r̂i), i =

1, . . . ,N`} should be detected, where B(x, y, z, r) denotes the
sphere with center (x, y, z) and radius r > 0. The optimal
parametrization {(x̂i, ŷi, ẑi, r̂i), i = 1, . . . ,N`} of the spheres is
obtained by minimizing a cost function, i.e.,

{(x̂i, ŷi, ẑi, r̂i)} = arg min
{(xi,yi,zi,ri)∈Pi}

C({(xi, yi, zi, ri)}) , (1)

where Pi = {(xi, yi, zi, ri) ∈ R4 : ri ≥ max j,i ri, j} denotes the
admissible parameters for each sphere i = 1, . . . ,N`; the total
cost of a configuration {pi} = {(xi, yi, zi, ri) ∈ Pi, i = 1, . . . ,N`}

of spheres is given by

C({pi}) =
1
N`

∑
j=1,...,N`

C{pi}

overlap( j) +
1
2

max
j=1,...,N`

C{pi}

overlap( j)

+
1
N`

∑
j=1,...,N`

C{pi}

volume( j) +
1
2

max
j=1,...,N`

C{pi}

volume( j)

+
1
N`

∑
j=1,...,N`

C{pi}

shape( j) +
1
2

max
j=1,...,N`

C{pi}

shape( j)

(2)

meaning that the mean value and maximum value of three
different cost functions is minimized, which each map the
particle label to a cost value. The cost values themselves are
volumes, which makes interpretation and weighting easier. The
three cost functions are given by

• the overlap volume of particle j with all other particles,
i.e.,

C{pi}

overlap( j) =
∑
k, j

Vintersection(p j, pk)

where Vintersection(p j, pk) denotes the intersecting volume
of the two spheres p j and pk,

• the local volume mismatch in comparison to the original
particle region j, i.e.,

C{pi}

volume( j) =

∣∣∣∣∣V`( j) − Vsphere(p j) +
1
2

C{pi}

overlap( j)−

1
2

∑
k, j with r j,k>0

Vbond(p j, pk, r j,k)
∣∣∣∣∣

where Vsphere(p j) denotes the volume of the sphere p j, and
Vbond(p j, pk, r j,k) stands for the volume of the cylindrical
bond with radius r j,k between particles j and k, and

• the volume outside of the agglomerate shape S ` of particle
j, i.e.,

C{pi}

shape( j) = Vsphere(p j) − Vintersection(p j, S `)

where Vintersection(p j, S `) denotes the intersecting volume
of the sphere p j and the agglomerate shape S `.

Note that the appendix contains some comments on how
to compute the required volumes, i.e., the bond volumes,
sphere–sphere intersections, and sphere-cylinder intersections.

4.2. The cross-entropy method
The optimization problem given in (1) is high-dimensional

and multi-extremal, which makes it hard to solve. To
compute an approximative solution to this problem, we apply
a stochastic optimization technique, namely the cross-entropy
(CE) method [38, 39, 40, 41]. The basic idea is to interpret the
solution as a (degenerate) random variable, whose distribution
is learned starting from a plausible initial configuration. A
standard choice is to use normal densities whose variances
shrink until they are below a predefined threshold. In every
iteration, samples are drawn using the current normal densities,
the best-performing samples are selected, then they are used to
update the normal densities. This procedure has proven to be
suitable for high-dimensional and multi-extremal optimization
problems [39, 41, 42].

For a given dataset ` ∈ L, the natural initial configuration
for the spheres describing the particles is given by their centers
of mass (x(0)

i , y(0)
i , z(0)

i ) and their volume-equivalent radii r(0)
i =

(3V`(i)/(4π))1/3. However, one must take care that a particle has
at least the same radius as each bond that starts or ends in this
particle. Therefore, the condition r(0)

i ≥ max j,i ri, j is enforced.
The application of the CE method to our problem is given by

the following algorithm.

1) Initialization. Set t = 0. Obtain the initial
parametrization of the normal parameter densities from the
initial configuration given above, i.e., set the mean values

(µ(0)
Xi
, µ(0)

Yi
, µ(0)

Zi
) = (x(0)

i , y(0)
i , z(0)

i ), µ(0)
Ri

= r(0)
i ,

and standard deviations

(σ(0)
Xi
, σ(0)

Yi
, σ(0)

Zi
) = (dc, dc, dc), σ(0)

Ri
= dr,

for all i = 1, . . . ,N`, where dc, dr > 0 denote the initial
standard deviations of coordinates and radii, respectively.
For example, they can be chosen as a fraction of the mean
diameter of all particle regions.

2) Set up next iteration. Increment t and define independent
normally-distributed random variables, i.e.,

X(t)
i ∼ N

(
µ(t−1)

Xi
, (σ(t−1)

Xi
)2
)
,

Y (t)
i ∼ N

(
µ(t−1)

Yi
, (σ(t−1)

Yi
)2
)
,

Z(t)
i ∼ N

(
µ(t−1)

Zi
, (σ(t−1)

Zi
)2
)
,

R(t)
i ∼ N≥maxk,i ri,k

(
µ(t−1)

Ri
, (σ(t−1)

Ri
)2
)
,

for all i = 1, . . . ,N`. Note that the index “≥ maxk,i ri,k”
to N emphasizes the natural constraint that the radius of
a particle must be equal to or larger than all radii of its
emanating bonds.

3) Sample generation. Generate M samples{
((x(t,s)

i , y(t,s)
i , z(t,s)

i ), r(t,s)
i ), s = 1, . . . ,M

}
of ((X(t)

i ,Y
(t)
i ,Z

(t)
i ),R(t)

i ), i = 1, . . . ,N`.
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4) Sample evaluation. Compute the cost function given in
Eq. (2) for all samples, denote the cost values by c(t,s), i.e.,
set

c(t,s) = C
(
{((x(t,s)

i , y(t,s)
i , z(t,s)

i ), r(t,s)
i )}

)
for all s = 1, . . . ,M.

5) Update parameters of densities. Update the mean values
and standard deviations based on the best-performing
samples, which is called the elite set. More precisely, for
rarity parameter % ∈ (0, 1), use the d%Me samples with the
lowest cost values c(t,s) and use their coordinates and radii to
estimate the new mean values µ(t)

Xi
, µ(t)

Yi
, µ(t)

Zi
, µ(t)

Ri
and standard

deviations σ(t)
Xi

, σ(t)
Yi

, σ(t)
Zi

, σ(t)
Ri

. This is done by using the
sample mean and sample standard deviation estimators of
the elite set.

6) Termination condition. If all standard deviations are
sufficiently small, i.e.,

max{σ(t)
Xi
, σ(t)

Yi
, σ(t)

Zi
, σ(t)

Ri
, i = 1, . . . ,N`} < ε

for some ε > 0, then return with the result

{(x̂i, ŷi, ẑi, r̂i)} =
{
(µ(t)

Xi
, µ(t)

Yi
, µ(t)

Zi
, µ(t)

Ri
)
}
.

Otherwise, go back to step 2.

A good choice for the parameters of this algorithm is
required. Our investigations showed that M = 4000, % = 0.05,
and ε = 0.1 are suitable. This means that the elite set consists of
d%Me = 200 samples, which is a good data base for estimating
sample means and sample variances. If the standard deviations
of coordinates and radii are below 0.1 voxels for all particles,
the algorithm is terminated. The initial standard deviations
were chosen as dc = r̄`/6 and dr = r̄`/20, where r̄` =

N−1
`

∑N`

i=1 r(0)
i denotes the mean radius of volume-equivalent

spheres of the particle regions. The exact choice of these
parameters is not very important for convergence, but it may
affect the computational cost to perform one iteration and the
number of required iterations. For example, for larger M one
could choose a smaller % – then one iteration would take more
time, but typically less iterations are required in total. Note that
the CE method has a natural aptitude to escape local minima.
This ability can be improved even more using fixed smoothing,
dynamic smoothing or variance injection [39]. However, for
our problem, these techniques seem not to be necessary – the
results did not improve substantially.

4.3. Postprocessing
In optimization problem (1), it is not clear whether there

exists a configuration of spheres {(xi, yi, zi, ri) ∈ Pi} such that
C({(xi, yi, zi, ri)}) = 0. Particles observed in real materials
are not perfectly spherical and they are often densely packed.
As a consequence, it is to be expected that a “zero cost” is
often not possible. This implies that all three cost functions
will have non-zero cost in the typical case. Therefore, there
may be differences in the local volume, spheres may overlap
or the shape condition may be slightly violated. This is not

critical for local volumes or the shape – but the overlapping of
spheres should be minimized or eliminated to avoid unphysical
starting configurations for DEM simulations, and to have
an equilibrium configuration without external forces applied
(because overlapping is often interpreted as elastic deformation
of particles).

For this reason, we propose a postprocessing step.
Overlapping is removed with the force-biased algorithm [43,
44], a collective rearrangement algorithm for the packing of
spheres. The algorithm is modified such that each sphere is
moved at most a distance of 1/20 voxel per iteration. By
applying this restriction, it is ensured that the structure itself
does not change fundamentally. Typically, the CE method
already detects a solution very close to a non-overlapping
configuration. However, in many cases, it did not completely
coincide with such a configuration because the other (local
volume and shape) cost components would have increased. In
principle, it is possible to modify the CE method to obtain an
admissible solution directly. However, this would require a
dynamic weighting of the three cost functions, i.e., the penalty
of overlapping configurations would have to increase the closer
one gets to terminating the algorithm. But, note that even for
very high penalties, a configuration without any overlapping is
not guaranteed.

4.4. Validation with artificial data
To check the suitability of the proposed BPE method,

artificial data sets were generated, where the exact locations
and radii of particles are known. We used a stochastic
agglomerate microstructure model that has been presented
recently [22], where a random mixing ratio controls the particle
size distribution. For the artificial data set considered in the
following, a mixing ratio of a = 0.6 was chosen. A realization
of the model is a bonded-sphere configuration, where only two
sizes of spherical primary particles are present. In expectation,
60% of the solid volume consists of large spheres, 40% of small
spheres, which have exactly half the radius of the large spheres.
Bonds are generated such that all particles are connected and a
certain total bond volume is obtained [22].

In a first step, the local volumes (of primary particles
including partial bonds) and contact areas are computed
directly, i.e., without discretization to a voxel grid. We
chose this technique to avoid the influence of image data
preprocessing, where regions and contact areas are not perfectly
estimated. Then, the CE method is applied to detect the original
spheres. A visual inspection shows that the centers of all
extracted particles are very close to their original positions
and their radii are almost perfect. The centers of particles are
slightly shifted: the absolute center displacement divided by
the mean particle radius is 7%. The mean absolute difference
in particle radii is 0.3% of the mean particle radius. Figure 5
shows a visualization of both the original as well as the
extracted bonded-particle system.

Furthermore, we discretized the simulated agglomerate and
stored it as a binary image. All steps from detecting
agglomerate shape, extracting particle regions, estimating
particle region volumes and particle contact areas as well as
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(a) 3D visualization.

(b) Planar 2D section.

Figure 5: Original discretized microstructure of an agglomerate realized by the
model presented in [22] (left), and result of BPE method (right).

the CE method were applied. The relative displacement of
particle centers is 10%, the mean absolute difference in particle
radii is 1.2% (again, both percentages are proportions of the
mean particle radius). The mean absolute difference in bond
radii is 7.8% of the mean bond radius. This deviation is
caused by the estimation of contact areas from image data.
Typically, the estimated contact areas are too high. There are
two reasons for this. First, there is no absolute guarantee that
the watersheds, which separate particle regions, have optimal
properties. Second, surface area estimation techniques for
voxelized data are not perfect, either. Considering these facts,
we think that the approximation is quite good, although this
could be improved certainly.

4.5. Results for experimental data

The BPE method has been applied to all experimental data
sets; we call the extracted systems of particles and bonds
bonded-particle approximations (BPAs). The main part of the
computation time is spent on the Hough transform that is used
to detect the agglomerate shape parameters. The CE method
itself takes only 4 to 8 minutes for one agglomerate (using
multi-threading on a standard quad-core processor). The CE
method terminates after 250 to 450 iterations, depending on
the data set. A visualization of the results is given in Figure 6
(for a spherical agglomerate) and in Figure 7 (for a cylindrical
agglomerate).

The quality of the BPAs is investigated in the following.
First, we look at the total volume of the extracted agglomerates.
The volume of the configuration obtained directly from the
CE method should correspond to experimental solid volume

(a) 3D visualization.

(b) Planar 2D section.

Figure 6: Original microstructure of spherical agglomerate (left), and result of
BPE method (right).

(a) 3D visualization.

(b) Planar 2D section.

Figure 7: Original microstructure of cylindrical agglomerate (left), and result
of BPE method (right).

almost exactly, as the local volumes are optimized. Table 1
confirms that the volume before postprocessing is almost
perfect. There are only three (of 34) agglomerates where
the ratio of volumes from BPAs and original data exceeds
1.02. These problematic cases will be discussed below. It
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is clear that the postprocessing, which removes all remaining
overlapping, increases the volume. By shifting overlapping
particles apart, the volume of the bonds gets larger. This
effect is in an acceptable range for most agglomerates. 30
of 34 agglomerates have volume ratios between 1.004 and
1.031. However, the analysis of 4 agglomerates is problematic.
An investigation of the tomographic data shows that primary
particles in these agglomerates are (partially) melted together,
effectively violating the assumption of a sphere-like shape.
This makes it impossible to represent the same volume with
non-overlapping spheres. Furthermore, this manifests itself
already in the result of the CE method (where the cost value
after termination is still very high), but becomes really distinct
in the structure after enforcing non-overlapping particles.

Table 1: Total volume of extracted bonded-particle system divided by original
volume obtained from image data; once before and once after postprocessing
(removal of remaining overlapping).

volume ratio CE result after postprocessing

minimum 0.993 1.004
median 0.999 1.016
mean value 1.002 1.025
maximum 1.066 1.138

Another important characteristic of agglomerates is their
porosity. As discussed in Section 3.1, not all particles
are completely contained in the detected shape object S `.
Therefore, the container S ′` has been introduced, which covers
the complete solid volume observed in tomographic data.
Table 2 shows that the fraction of the solid volume with
respect to S ` or S ′` changes in the approximations: On the one
hand, in S `, the solid volume fraction of the approximation
decreases by one percent point in the median. On the
other hand, the same difference evaluated in S ′` shows an
absolute increase of +0.8 %. This increase can be attributed
to the slight volume increase after postprocessing, which we
discussed above. The large minimum and maximum absolute
differences observed for our 34 agglomerates correspond again
to agglomerates where particles had to be shifted significantly
outside of the agglomerate shape to obtain a non-overlapping
packing of particles. Summarizing, slightly larger agglomerates
with correspondingly higher porosity are obtained owing to
the non-perfect sphericity of experimental primary particles.
However, this plays no role once one considers S ′`. This means
that primary particles in the BPAs may be pushed outwards, but
this effect is comparable to some of the experimental primary
particles, which are also not perfectly contained in S `.

Altogether, we can state that the method works fine as long as
the spherical shape condition of primary particles is not violated
too badly. This is an inherent problem that cannot be solved
directly. If the assumption of sphere-like primary particles
is not reasonable, then one should think about, e.g., using
ellipsoids or several spheres to represent one particle – either by
bonding several non-overlapping spheres together to form the

Table 2: Percent points in the difference of solid volume fractions: volume
fraction in extracted bonded-particle systems minus the respective original
volume fractions, which are obtained directly from tomographic data.

solid volume fraction difference in S ` difference in S ′`
minimum −4.7 % +0.2 %
median −1.0 % +0.6 %
mean value −1.2 % +0.8 %
maximum +3.4 % +4.5 %

primary particle, or by using the multi-sphere DEM approach
[4, 5, 6]. Another very flexible alternative is voxel-based DEM
simulation [45].

5. Stochastic modeling

The stochastic model for agglomerate microstructures
presented in [22] has been used to investigate the effect
of structural changes on breakage behavior of agglomerates.
The model is not based on experimental data – this has the
advantage that one can tailor the microstructures exactly as
desired. However, as mentioned in [22], fitting the stochastic
model to experimental agglomerate structures is important to
ensure that the simulation results are in good agreement with
experiments. The validity of results from DEM calculations
can be verified only if exactly the same agglomerates or at
least the same type of agglomerates (i.e., statistically equivalent
agglomerates) can be characterized experimentally. The BPE
method proposed in the present paper is a first step to
facilitate the validation of simulated mechanical behavior by
comparing it to the measurements – based on exactly the same
samples. Nonetheless, it remains useful to be able to generate
a larger number of agglomerate structures that are statistically
equivalent. Furthermore, slightly modified structures allow
the investigation of effects caused by structural changes in a
realistic setting. Note that such approaches have been used
previously for other types of materials. For example, in [46],
a stochastic model is proposed for coral-like microstructures
in Al–Si alloys, which has been fitted to real data. Then, this
model has been used to determine the mechanical behavior of
real and virtually generated alloy microstructures by help of the
finite element method [47].

In this section, we show how the stochastic agglomerate
microstructure model [22] can be fitted to experimental data.
First, the idea of the modeling approach is briefly repeated.
Then, model parameters are estimated. Finally, the quality of
fit is discussed by comparing characteristics obtained directly
from experimental data with simulated microstructures.

5.1. Model description

The stochastic model introduced in [22] is based on the
idea of a network of primary particles, which are connected
to each other directly or indirectly through a bond system. We
summarize the main requirements and the model construction.
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Requirements are isotropy of the structure, non-overlapping
spheres interpreted as primary particles, connectivity of the
primary particles through bonds, and a defined total volume of
the bonds. The model construction follows directly from these
requirements.

• Primary particles. The primary particles are obtained
from a sphere-packing algorithm that generates isotropic
structures. A commonly used technique is the force-biased
algorithm [43, 44]. The initial configuration is generated
such that all sphere centers are placed randomly in
the agglomerate shape W (uniform distribution on W,
independent placement). The radii of spheres r1, r2, . . .
are drawn independently from a random radius Rp. The
packing density η of the spheres is a parameter of the
model. The number of spheres is chosen such that the
packing density η is matched as well as possible.

• Bond system. The main parameters for bond generation
are the radius distribution for the cylindrical bonds and
the total volume of bonds. The total volume of bonds is
defined relative to the total volume of primary particles;
the ‘bond/particle volume ratio’ is called b. Bond radii
are defined indirectly. For every possible bond connecting
particle i and j, a factor is applied to the minimum radius
of its primary particles, i.e., ri, j = kb min{ri, r j} for some
factor kb ∈ (0, 1]. The value kb is deterministic in the
model of [22]. For real data, a random factor Kb is used to
draw the factor kb for every bond independently.

The generation of the bond system itself is a bit more
involved. The bonds between particles are put as follows.
Intuitively, primary particles with small distances are
likely to be connected by a solid bridge. For this reason,
the existence of a bond is controlled by a thresholding
value on the particle–particle distances. After having
generated a radius for every possible bond, the threshold
is selected such that the correct total volume (specified
by b) is obtained. However, one cannot be sure that
all primary particles of an agglomerate are connected to
each other. Therefore, tools from graph theory like the
minimum-spanning tree are used to guarantee connectivity
by adding additional bonds if necessary (for details, see
[22]).

• A comment on the bond network model. In this paper,
the bond radius factor kb is obtained from some random
variable Kb. Therefore, a clarification of the minimization
problem [22, Section 2.1.3] is necessary. The threshold l?

for bond lengths is determined such that the total volume
of bonds is as close as possible to the desired bond volume.
The bond volumes depend on the bond radii. Therefore,
bond radii have to be realized for every possible bond (i.e.,
every pair of primary particles) before the minimization
problem. This means that bond radii are already fixed
previously to the selection of the threshold l? – only
the existence of a bond for a particular pair of particles
depends on the threshold.

In [22], all parameters except a mixing ratio (which
determined Rp) were constant. For real agglomerates, it is
clear that this is not reasonable. As mentioned above, it makes
sense to allow random bond radii by introducing a random
factor Kb. Furthermore, we take η to be a realization of a
random packing density H and b to be a realization of a random
bond/particle volume ratio B. Therefore, the parameters are the
four random variables Rp, Kb, H and B. It is assumed that these
four random variables are independent. (Note that particle radii
and bond radii are obtained from independent copies of Rp and
Kb.) All four random variables are modeled using parametric
distributions.

5.2. Model fitting
In this section, we describe how we selected the parametric

families of distributions and their parameters for the random
variables H, Kb, Rp, and B. All characteristics are fitted based
on the data from both spherical and cylindrical agglomerates
because we assume that they are statistically equivalent in
their internal microstructure. Note that three agglomerates
were excluded manually (in order to not use them for fitting):
these are exactly the three agglomerates from experiments that
were very conspicuous regarding the bonded-particle extraction
(compare Section 4.5). The agglomerate shape is not fitted to
experimental data – later on, if we want to generate spherical or
cylindrical agglomerates, we define the desired (non-random)
shape object directly.

First, the packing density of primary particles is considered.
The results shown in Figure 8 were obtained from the
experimental data sets by computing the primary particle
volume inside the detected agglomerate shape, i.e., the packing
density is estimated by computing the ratio of the volume
of all extracted primary particles intersected with S ` and
the volume of S `. Figure 8 shows a histogram and a
(non-parametric) estimation of the density function (obtained
by kernel density estimation, see [48, 49]), which is both
useful to get a feeling for the shape of a distribution. In this
case, however, it does not make much sense to try to match
the exact shape because the number of data sets is only 31.
Therefore, we chose the normal distribution and fitted it to
the samples using maximum-likelihood [50]. We obtained
H ∼ N[ηmin,ηmax](µH , σ

2
H) with µH = 0.549 and σH = 0.025.

The additional condition H ∈ [ηmin, ηmax] is natural: very small
packing densities below approximately ηmin = 0.45 do not
make much sense, and packing densities above ηmax = 0.65
are hard to obtain with perfect hard spheres.

Essentially, the same procedure is used for fitting the
distribution of the the bond/particle volume ratio. The BPAs
allow to compute the ratios of the total bond volume to the
total primary particle volume. A histogram of the resulting
samples is drawn in Figure 9. Again, a non-parametric
estimate of the density is shown. We chose a (shifted) gamma
distribution in order to have a positive lower bound and a skew
distribution. The parameters of the gamma distribution were
fitted to the shifted samples b̃`, i.e., b̃` = b` − 0.02, where
the shift parameter 0.02 was selected manually. Therefore, the
bond volume has always at least 2% of the primary particle
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Figure 8: Estimated packing densities of primary particles observed in
experimental data (histogram), non-parametric density function (dashed curve)
and fitted normal distribution (solid curve).

volume. The random bond/particle ratio volume is given by
B ∼ 0.02 + Gamma[0,0.18](αB, βB), where the shape parameter
was determined as αB = 6.214 and the rate parameter as
βB = 141.951. The condition B ∈ [0.02, 0.2] is applied
such that no unreasonable large values are obtained (which
has a low probability, but would be possible otherwise). It is
assumed that B is independent of H – we could not observe
an obvious relationship when looking at the scatter plot of the
experimental bond/particle volume ratios against the particle
packing densities.
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Figure 9: Estimated bond/particle volume ratios in bonded-particle
approximations of experimental data (histogram), non-parametric density
function (dashed curve) and fitted (shifted) gamma distribution (solid curve).

The two remaining distributions are those of the particle
radii and the (relative) bond radii. The samples consist
of all particles or bonds, respectively, of all agglomerates.
Therefore, the sample sizes are much larger. Figure 10
shows histograms of the sample of particle radii: once for
the volume-equivalent radii of the original particle regions,
and once for particle radii of bonded-particle approximations
(which are the basis for fitting). It is clear that the distribution
is very narrow. Nonetheless, there are some outliers, which
are ignored by requiring all radii to be in the range of 50 to
75 voxels (corresponding to 1 to 1.5 mm). A very good fit
can be obtained by a mixture of two normal distributions, i.e.,
Rp = Rp,1 with probability w ∈ (0, 1) and Rp = Rp,2 with
probability 1 − w, where Rp,1 ∼ N[50,75](µRp,1 , σ

2
Rp,1

) and Rp,2 ∼

N[50,75](µRp,2 , σ
2
Rp,2

). Therefore, the mixture distribution has 5
parameters. Maximum-likelihood fitting yields µRp,1 = 63.047,
σRp,1 = 1.169, µRp,2 = 62.997, σRp,2 = 4.599 (all in voxels) and
w = 0.682.
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(a) Volume-equivalent radii of particle regions.
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(b) Particle radii in BPAs of experimental data.

Figure 10: Histograms of particle radii obtained directly from experimental
data and from BPAs. For the latter, a particle radius distribution was fitted and
its density is shown as a solid curve. The dashed curve is a non-parametric
estimation of the density. The two vertical lines indicate a manual truncation of
the samples, because very small and very large radii are considered as artifacts
from image processing.

Finally, the relative bond radii are considered. Again, a
histogram is shown in Figure 11, and only samples between
0.05 and 0.9 are used. We do not want to consider the
slight clustering effect visible near zero, as we can suspect
that very thin bonds may originate from particle contacts
(or just particles that are very close together; i.e., without
solid bridges). On the other hand, bonds whose radii are
almost as large as their connected primary particles are
likely to correspond to segmentation problems or primary
particles that melted together. The remaining data follows a
skew distribution. Therefore, we fitted a gamma distribution
(truncated to the interval (0, 1]). The obtained result is Kb ∼

Gamma(0,1](αKb , βKb ) with αKb = 5.105 and βKb = 15.349. The
fitted density is shown in Figure 11.

5.3. Model validation

In the previous section, four distributions were fitted to the
experimental data. Based on these fits and the stochastic model
for agglomerate microstructures, 100 internal structures were
simulated each for the spherical and cylindrical agglomerates.
In this section, the quality of fit regarding further agglomerate
characteristics is evaluated. Namely, a comparison is done
for the number of contacts between primary particles, for the
structure of the pore phase, for the arrangement of primary
particles and for bond characteristics.

First, we consider the coordination number, i.e., the number
of bonds per primary particle. Figure 12 shows the distribution
of coordination numbers obtained from experimental data as
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Figure 11: Samples of relative bond radius Kb in BPAs of experimental data
(histogram), non-parametric density function (dashed curve) and fitted gamma
distribution (solid curve). The two vertical lines indicate a manual truncation of
the samples, because very thin and very thick bonds are considered as artifacts
from image processing.

well as from simulated data. Recall that the coordination
numbers of the particle regions from tomographic data are
identical to the coordination numbers in the BPAs. Estimated
density functions are used instead of histograms, which makes
it easier to compare the two distributions in a single figure. We
can state that the agreement is quite good, even though the
number of contacts is not directly modeled in the stochastic
modeling approach. Note that extremely high coordination
numbers (> 12) are very rare; however, they are possible due to
the non-equally sized primary particles, their medium packing
density of about 0.55, and the existence of bonds (i.e., primary
particles do not need to be in direct contact).
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(a) Spherical agglomerates.
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(b) Cylindrical agglomerates.

Figure 12: Coordination numbers in BPAs of experimental data (dashed curve)
and from simulated agglomerates (solid curve).

An important characteristic describing the pore space is the
spherical contact distribution. A point of the pore space is
selected randomly according to the uniform distribution on the

pore space, and the resulting distribution of shortest distances
to the solid phase is the quantity of interest. An illustration
of this concept is given in Figure 13. The smallest distances
to the solid phase evaluated for a large number of randomly
placed points describe the pore sizes and pore shapes in an
aggregated way, without the need to give an (object-based)
definition of individual pores. Figure 14 shows the estimated
density functions for experimental data. For simulated data,
a 96% point-wise confidence band is computed. The density
functions obtained from experimental data should in almost all
cases be between the upper and lower bound of the confidence
band. This is the case for spherical agglomerates. Only for
cylindrical agglomerates, there are a few experimental data
sets that seem to have a bit more larger pores. Looking at
the microstructure of cylindrical agglomerates, we can confirm
that there are some agglomerates where the cylindrical shape
is not as perfect as desired, which leads to large “pores” at the
boundary of the detected shape object.

randomly selected point in pore phase

location of "spherical contact"

Figure 13: 2D illustration of the spherical contact distance for a point in the
pore phase to the solid phase. The spherical contact distance is given by the
distance of the point to the location of “spherical contact”, i.e., it corresponds to
the radius of the dashed circle. The evaluation of all spherical contact distances
for all possible points yields a distribution, which can be understood as the
“spherical contact distribution” of a randomly chosen point.

The pair correlation function is a tool that is often used
to describe attraction and repulsion in point patterns, in
dependence of pairwise point distances. A reference scenario
is the case of “complete spatial randomness” – i.e., there is no
interaction between points. In that case, the pair correlation
equals one. As shown in Figure 15 and as expected for
packings of spheres, there is a clear attraction of points with
certain distances (distances that correspond to about two times
the mean particle radius). This effect is visible for the same
distances in both experimental and simulated data and its
strength is very similar for the first two peaks.

Finally, two characteristics of the bonds are considered: their
lengths and their radii. The experimental data has two main
features: an increasing bond radius for increasing bond length,
and a proportion of bonds where the bond radius seems to
be independent of the bond length. This can be observed
in Figure 16(a) and (c). Note that the bond length is not
the distance between particle centers, but the length of the
cylinder surface that is outside the particles. The scattering
of length–radius pairs is not identical for experimental and
simulated data, cf. Figure 16(b) and (d). The first main feature
is also observed in the simulated data, which leads us to believe
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(a) Spherical agglomerates.
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(b) Cylindrical agglomerates.

Figure 14: Spherical contact distribution function: distribution of shortest
distances when considering a random point in the pore phase and evaluating
its shortest distance to the solid phase. The density functions are shown for
experimental data (black dashed lines), and 96% point-wise confidence bands
were estimated from simulated data (gray area). Note that the black lines from
experimental data are hard to distinguish. However, it is important to see that
almost no black lines are outside the confidence bands.

that the bond network modeling approach is realistic. However,
the second feature is missing and could certainly be integrated
as a modification to the stochastic model. We refrain from
making such a change for two reasons. First, at least two
parameters would be needed to integrate these effects into the
model (width of bonds of the second type and their proportion)
– this would complicate the model, its implementation, and its
fitting significantly. Second, we do not yet know why these
bonds with nearly constant thickness are present, and whether
they can be found in other types of agglomerates as well.

Altogether, we can state that we obtained a very realistic
stochastic model that is able to imitate the structural features
and randomness of real agglomerates quite well.

6. Conclusions and outlook

In this paper, we consider the problem of extracting optimal
and generating realistic particle structures suitable for DEM
simulations, where particles are bonded together. For example,
this is the case for agglomerates, which are produced in various
apparatuses by addition of binder or after sintering of stored
material. Maltodextrin agglomerates have been produced and
characterized, they consist of primary particles with a high
sphericity. The tomographic data is processed to detect the
agglomerate shape parameters as well as individual primary
particle regions. We present a novel algorithm to transform
this data into spherical particles that are bonded by cylindrical
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(a) Spherical agglomerates.
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(b) Cylindrical agglomerates.

Figure 15: Pair correlation function of primary particle centers: the relative
frequency of particle centers in a given distance to each other (relative to point
patterns with ‘complete spatial randomness’). The pair correlation functions
are shown for BPAs of experimental data (black lines), and 96% point-wise
confidence bands were estimated from simulated data (gray area).

bonds. We call this method the bonded-particle extraction
(BPE) method. This method can be effectively integrated in
various DEM simulation systems, where the bonded-particle
model is employed. The method is validated with artificial and
experimental data. Using the obtained agglomerate structures,
an extended version of the stochastic model proposed in [22]
has been fitted to experimental data. A validation shows
a high agreement with respect to various structural features.
Advantages of our approach are:

1) Parametric representation of real agglomerate structures
with bonded (spherical) particles allows a more direct
calibration of DEM model parameters and/or validation of
DEM simulation results.

2) The stochastic modeling technique provides the possibility
of generating as many agglomerate structures as desired,
which are statistically equivalent to those of experimental
agglomerates.

3) The stochastic model is parametric. Therefore, individual
parameters can be modified to investigate structural effects
on the mechanical behavior of agglomerates in a realistic
setting.

However, it should be mentioned that the BPE method can be
effectively applied only to systems with relative high sphericity
of primary particles. Application of this method for strongly
deformed primary particles can lead to a large discrepancy
between the generated DEM model and reality.
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(a) Experimental spherical agglomerates.
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(b) Simulated spherical agglomerates.
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(c) Experimental cylindrical agglomerates.
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(d) Simulated cylindrical agglomerates.

Figure 16: Scatter plots of bond radii versus bond lengths: obtained from BPAs of experimental data and simulated data for both spherical and cylindrical
agglomerates.

An obvious next step is to perform DEM simulations for
bonded-particle approximations (BPAs) of real agglomerates.
The results obtained by DEM have to be compared to those of
real experiments. A problem is that some parameters required
in DEM simulations (like bond strengths) are hard to measure
or calibrate. Furthermore, the effect of the approximation by
spherical particles and cylindrical bonds has to be investigated.
These are non-trivial problems and subject to further research.

Appendix A. Formulas for bond volumes and intersections

Some comments on analytical formulas for bond and
intersection volumes might be helpful regarding the (fast)
evaluation of the cost function defined in Eq. (2).

Appendix A.1. Volume of cylindrical bonds

It is required to compute the volume of a bond
Vbond(pi, p j, ri, j) connecting two particles pi and p j. The
distance between the two particle centers is denoted by d. The
bond radius must not be larger than the particle radii, i.e., ri, j ≤

max{ri, r j}. If the particles are non-overlapping (d ≥ ri +r j), the
bond volume is given by the formula

Vbond(pi, p j, ri, j) = πr2
i, jd −

2
3
π(r3

i − (r2
i − r2

i, j)
3/2)

−
2
3
π(r3

j − (r2
j − r2

i, j)
3/2) .

However, the case d < ri + r j must be considered as well: the
particles may overlap during CE optimization. In the trivial

case d = 0, the volume is zero. Otherwise, if d > 0 and d <
ri + r j, the bond volume is given by

Vbond(pi, p j, ri, j) = πr2
i, jd

−

 2
3π( 3

2 r2
i d1 −

1
2 d3

1 − (r2
i − r2

i, j)
3/2) if r2

i − r2
i, j ≤ d2

1

πr2
i, jd1 if r2

i − r2
i, j > d2

1

−

 2
3π( 3

2 r2
j d2 −

1
2 d3

2 − (r2
j − r2

i, j)
3/2) if r2

j − r2
i, j ≤ d2

2

πr2
i, jd2 if r2

j − r2
i, j > d2

2

with d1 = max{0,min{d, (r2
i − r2

j + d2)/2d}}, and d2 = d − d1.

Appendix A.2. Sphere–sphere intersections

Suppose again there are two spheres pi and p j with radii
ri and r j, and the distance between their centers is d. Their
intersection should be non-empty, i.e., d ≤ ri +r j. If d ≤ |ri−r j|,
then the smaller sphere is completely contained in the larger
sphere, and the intersection volume is given by 4

3πmin{ri, r j}
3.

Otherwise, the volume of the intersection is given by

Vintersection(pi, p j) = π(ri + r j − d)2(d2 + 2dr j − 3r2
j

+ 2dri + 6rir j − 3r2
i )/12d .

Note that this formula applies as well for the computation of
Vintersection(pi, S `) if the agglomerate shape S ` is spherical.

Appendix A.3. Sphere–cylinder intersections

To compute the volume Vintersection(pi, S `) of the intersection
of a sphere pi with a cylindrical agglomerate, a general method
to compute sphere–cylinder intersection volumes is required.

13



One possibility is to use numerical integration. In particular, by
integrating along the axis of the cylinder, the problem reduces
to computing the one-dimensional integral over circle–circle
intersection areas.
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simulations of amorphous irregular shaped micrometer-sized titania
agglomerates at compression, Adv. Powder Technol. 26 (3) (2015)
767–777.

[11] L. Farber, G. Tardos, J. N. Michaels, Use of X-ray tomography to study
the porosity and morphology of granules, Powder Technol. 132 (2003)
57–63.

[12] M. Dadkhah, M. Peglow, E. Tsotsas, Characterization of the internal
morphology of agglomerates produced in a spray fluidized bed by X-ray
tomography, Powder Technol. 228 (2012) 349–358.

[13] M. Dadkhah, E. Tsotsas, Influence of process variables on internal
particle structure in spray fluidized bed agglomeration, Powder Technol.
258 (2014) 165–173.

[14] M. Dadkhah, E. Tsotsas, Study of the morphology of solidified binder in
spray fluidized bed agglomerates by X-ray tomography, Powder Technol.
264 (2014) 256–264.

[15] L. Wang, J.-Y. Park, Y. Fu, Representation of real particles for DEM
simulation using X-ray tomography, Constr. Build. Mater. 21 (2007)
338–346.

[16] P.-Y. F. Robin, C. R. J. Charles, Quantifying the three-dimensional shapes
of spheroidal objects in rocks imaged by tomography, J. Struct. Geol. 77
(2015) 1–10.

[17] X. Yang, Z. You, C. Jin, H. Wang, Aggregate representation for
mesostructure of stone based materials using a sphere growth model based
on realistic aggregate shapes, Mater. Struct. 49 (6) (2016) 2493–2508.

[18] C. Jin, X. Yang, Z. You, Automated real aggregate modelling
approach in discrete element method based on X-ray computed
tomography images, Int. J. Pavement Eng. (published online), DOI:
10.1080/10298436.2015.1066006.

[19] Y. Lee, C. Fang, Y.-R. Tsou, L.-S. Lu, C.-T. Yang, A packing algorithm
for three-dimensional convex particles, Granular Matter 11 (5) (2009)
307–315.

[20] J. E. Andrade, K.-W. Lim, C. F. Avila, I. Vlahinić, Granular element
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